MITP, May I 2018

Non-standard charged-current interactions (from beta decays to the LHC)

Vincenzo Cirigliano Los Alamos National Laboratory

New physics: why?

• The SM is remarkably successful, but it's probably not the whole story

New physics: where?

- New degrees of freedom: Heavy? Light & weakly coupled?
- Two complementary laboratory paths to probe \mathcal{L}_{BSM} : energy and intensity / precision frontiers

New physics: where?

- New degrees of freedom: Heavy? Light & weakly coupled?
- Two complementary laboratory paths to probe \mathcal{L}_{BSM} : energy and intensity / precision frontiers

I/Coupling

New physics: where?

- New degrees of freedom: Heavy? Light & weakly coupled?
- Two complementary laboratory paths to probe \mathcal{L}_{BSM} : energy and intensity / precision frontiers

In this talk assume new physics at M > v_{EW}

Outline

- Charged current interactions in the "Standard Model EFT"
- Probing first-generation quarks and lepton couplings:
 - precision beta decay measurements \rightarrow LHC
- Probing tau lepton couplings to light quarks
 - Inclusive and exclusive tau decays \rightarrow LHC
- Conclusion

Charged currents and new physics

CC processes in the SM and beyond

• In the SM, W exchange \Rightarrow V-A currents, universality

CC processes in the SM and beyond

• In the SM, W exchange \Rightarrow V-A currents, universality

- Sensitivity to broad variety of BSM scenarios
- Experimental and theoretical precision at or approaching 0.1% level Probe effective scale Λ in the 5-10 TeV range

EFT framework: connecting scales

• To interpret (positive or null) searches in terms of new physics at $\Lambda > v_{ew}$ need several steps

EFT framework: connecting scales

• To interpret (positive or null) searches in terms of new physics at $\Lambda > v_{ew}$ need several steps

• If Λ > few TeV, can use EW-scale L_{eff} for LHC: connection of low-E and collider phenomenology

Effective Lagrangian at E~GeV

• New physics effects are encoded in ten quark-level couplings

Effective Lagrangian at E~GeV

• New physics effects are encoded in ten quark-level couplings

Relation to weak-scale operators

• ε_L: vertex corrections and 4-fermion contacts

Relation to weak-scale operators

• $\epsilon_R \Leftrightarrow$ weak-scale R-handed quark coupling

$$O_{\varphi\varphi} = i(\varphi^T \epsilon D_\mu \varphi)(\overline{u}\gamma^\mu d)$$

• $\epsilon_{S,P} \Leftrightarrow 2$ independent scalar structures

• $\mathcal{E}_T \Leftrightarrow$ weak-scale tensor structure

$$O_{lq}^t = (\bar{l}_a \sigma^{\mu\nu} e) \epsilon^{ab} (\bar{q}_b \sigma_{\mu\nu} u) + \text{h.c.}$$

How to probe the ϵ_{α}

- $(\epsilon_{\alpha})^{de}$
 - Beta decays: half-lives (weak universality), correlations
 - LHC (pp $\rightarrow ev + X$, pp $\rightarrow e\overline{e} + X$), if $\Lambda > few TeV$

RECENT REVIEW: Gonzalez-Alonso, Naviliat-Cuncic, Severijns, 1803.08732

- (ε_α)^{dτ}
 - Hadronic tau decays (exclusive and inclusive)
 - LHC (pp $\rightarrow \tau v + X$, pp $\rightarrow \tau \overline{\tau} + X$), if $\Lambda >$ few TeV

First generation couplings: $(\epsilon_{\alpha})^{de}$

I. Differential decay distribution

$$d\Gamma \propto F(E_e) \left\{ 1 + \frac{b}{E_e} \frac{m_e}{E_e} + \frac{a}{E_e} \frac{\vec{p_e} \cdot \vec{p_\nu}}{E_e E_\nu} + \langle \vec{J} \rangle \cdot \left[A \frac{\vec{p_e}}{E_e} + B \frac{\vec{p_\nu}}{E_\nu} + \cdots \right] \right\}$$

Lee-Yang, 1956 Jackson-Treiman-Wyld 1957

a(
$$g_A, g_\alpha \varepsilon_\alpha$$
), A($g_A, g_\alpha \varepsilon_\alpha$), B($g_A, g_\alpha \varepsilon_\alpha$),
...

isolated via suitable experimental asymmetries

I. Differential decay distribution

$$d\Gamma \propto F(E_e) \left\{ 1 + \frac{b}{E_e} \frac{m_e}{E_e} + \frac{a}{E_e} \frac{\vec{p_e} \cdot \vec{p_\nu}}{E_e E_\nu} + \langle \vec{J} \rangle \cdot \left[A \frac{\vec{p_e}}{E_e} + B \frac{\vec{p_\nu}}{E_\nu} + \cdots \right] \right\}$$

Lee-Yang, 1956 Jackson-Treiman-Wyld 1957

$$a(g_A, g_\alpha \epsilon_\alpha), A(g_A, g_\alpha \epsilon_\alpha), B(g_A, g_\alpha \epsilon_\alpha),$$

isolated via suitable experimental asymmetries

Theory input: gv,A,S,T (great progress in lattice QCD) + rad. corr.

LANL results: Bhattacharya, et al 1606.07049

Channel-dependent effective CKM element**

Axial charge contaminated by R-handed coupling

Snapshot of the field

- This table summarizes a large number of measurements and th. input
- Already quite impressive. Effective scales in the range Λ = 1-10 TeV ($\Lambda_{SM} \approx 0.2$ TeV)

$$\tilde{Y}(E_e) = \frac{Y(E_e)}{1 + b \, m_e/E_e + \dots}$$

Non-standard coupling	Observable	Current sensitivity	Prospective sensitivity
$\operatorname{Re}(\epsilon_L + \epsilon_R)$	$\Delta_{ m CKM}$	$\sim 0.05\%$	< 0.05% *
$\operatorname{Im}(\epsilon_R)$	D_n	$\sim 0.05\%$	
$\epsilon_P, \ ilde{\epsilon}_P$	$R_{\pi} = \frac{\Gamma(\pi \to e\nu)}{\Gamma(\pi \to \mu\nu)}$	$\sim 0.05\%$	
$\operatorname{Re}(\epsilon_S)$	$b,~B,~[ilde{a},~ ilde{A},~ ilde{G}]$	$\sim 0.5\%$	< 0.3%
$\operatorname{Im}(\epsilon_S)$	R_n	$\sim 10\%$	
$\operatorname{Re}(\epsilon_T)$	$b, B, [\tilde{a}, \tilde{A}, \tilde{G}], \pi \rightarrow e \nu \gamma$	$\sim 0.1\%$	< 0.03%
$\operatorname{Im}(\epsilon_T)$	$R_{^{8}Li}$	$\sim 0.2\%$	$\sim 0.05\%$
$\tilde{\epsilon}_{\alpha \neq P}$	a, b, B, A	$\sim 5-10\%$	

VC, S.Gardner, B.Holstein 1303.6953 Gonzalez-Alonso & Naviliat-Cuncic 1304.1759 Gonzalez-Alonso, Naviliat-Cuncic, Severijns, 1803.08732

Snapshot of the field

- This table summarizes a large number of measurements and th. input
- Already quite impressive. Effective scales in the range Λ = 1-10 TeV ($\Lambda_{SM} \approx 0.2$ TeV)
- Probes that depend on the ε's linearly

$$\tilde{Y}(E_e) = \frac{Y(E_e)}{1 + b \, m_e/E_e + \dots}$$

Non-standard coupling	Observable	Current sensitivity	Prospective sensitivity
$\operatorname{Re}(\epsilon_L + \epsilon_R)$	$\Delta_{\rm CKM}$	$\sim 0.05\%$	< 0.05% *
$\operatorname{Im}(\epsilon_R)$	D_n	$\sim 0.05\%$	
$\epsilon_P, \ ilde{\epsilon}_P$	$R_{\pi} = \frac{\Gamma(\pi \to e\nu)}{\Gamma(\pi \to \mu\nu)}$	$\sim 0.05\%$	
$\operatorname{Re}(\epsilon_S)$	$b, B, [\tilde{a}, \tilde{A}, \tilde{G}]$	$\sim 0.5\%$	< 0.3%
$\operatorname{Im}(\epsilon_S)$	R_n	$\sim 10\%$	
$\operatorname{Re}(\epsilon_T)$	$b, \ B, \ [\tilde{a}, \ \tilde{A}, \ \tilde{G}], \ \ \pi \to e \nu \gamma$	$\sim 0.1\%$	< 0.03%
$\operatorname{Im}(\epsilon_T)$	$R_{^{8}Li}$	$\sim 0.2\%$	$\sim 0.05\%$
$\tilde{\epsilon}_{\alpha \neq P}$	a,b,B,A	$\sim 5-10\%$	

VC, S.Gardner, B.Holstein 1303.6953 Gonzalez-Alonso & Naviliat-Cuncic 1304.1759 Gonzalez-Alonso, Naviliat-Cuncic, Severijns, 1803.08732

CKM unitarity test

FLAVIANET report 1005.2323 and refs therein

Hardy-Towner 1411.5987

Lattice QCD input from FLAG 1607.00299 and refs therein

CKM unitarity test

$$|\bar{V}_{ud}|^2 + |\bar{V}_{us}|^2 + |\bar{V}_{us}|^2 = 1 + \Delta_{\text{CKM}}(\epsilon_i)$$

$$V_{us} \text{ from } K \rightarrow \mu \nu$$

$$\Delta_{CKM} = -(4 \pm 5) * 10^{-4} \sim 1\sigma$$

$$\Delta_{CKM} = -(12 \pm 6) * 10^{-4} \sim 2\sigma$$

$$V_{us} \text{ from } K \rightarrow \pi l \nu$$

CKM unitarity test

$$|\bar{V}_{ud}|^2 + |\bar{V}_{us}|^2 + |\bar{V}_{us}|^2 = 1 + \Delta_{\mathrm{CKM}}(\epsilon_i)$$

V_{us} from
$$K \rightarrow \mu\nu$$

$$\Delta_{CKM} = -(4 \pm 5) * 10^{-4} \sim 1\sigma$$

$$\Delta_{CKM} = -(12 \pm 6) * 10^{-4} \sim 2\sigma$$
V_{us} from $K \rightarrow \pi l\nu$

Hint of something? $[\epsilon_{R,P}^{(s)}, \epsilon_{L}+\epsilon_{R}, SM \text{ th input}]$ Worth a closer look: at the level of the best LEP EW precision tests, probing scale $\Lambda \sim 10 \text{ TeV}$

Impact of neutrons

• Independent extraction of V_{ud} @ 0.02% requires:

Impact of neutrons

• Independent extraction of V_{ud} @ 0.02% requires:

(similar to KI2 vs KI3 in V_{us})

is

19

 $c_S, c_T \sim O(I)$

• Assume $\mathcal{E}_{L,R}$ are induced by gauge vertex corrections at high scale (SM-EFT)

- Assume ε_{L,R} are induced by gauge vertex corrections at high scale (SM-EFT)
- Low energy probes:
 - $\Delta_{CKM} \propto \epsilon_L + \epsilon_R$
 - $\delta \Gamma_{(\pi \to \mu \nu)} \propto \epsilon_L \epsilon_R$ [f_{\pi} from LQCD]
 - Neutron decay correlations (A, a, B) $\rightarrow \lambda = g_A (I 2 \epsilon_R)$
 - QWeak, Z-pole $\rightarrow \epsilon_L$

$$\varphi^{\dagger} \tau^{a} D_{\mu} \varphi \ \bar{q}_{L} \tau^{a} \gamma^{\mu} q_{L}$$
$$\varphi^{T} \epsilon D_{\mu} \varphi \ \bar{u}_{R} \gamma^{\mu} d_{R}$$

- Assume ε_{L,R} are induced by gauge vertex corrections at high scale (SM-EFT)
- Low energy probes:
 - $\Delta_{CKM} \propto \epsilon_L + \epsilon_R$
 - $\delta \Gamma_{(\pi \to \mu \nu)} \propto \epsilon_L \epsilon_R$ [f_{\pi} from LQCD]
 - Neutron decay correlations (A, a, B) $\rightarrow \lambda = g_A (I 2 \epsilon_R)$
 - QWeak, Z-pole $\rightarrow \epsilon_L$
- LHC (if Λ > few TeV): associated Higgs + W production

$$\varphi^{\dagger} \tau^{a} D_{\mu} \varphi \ \bar{q}_{L} \tau^{a} \gamma^{\mu} q_{L}$$
$$\varphi^{T} \epsilon D_{\mu} \varphi \ \bar{u}_{R} \gamma^{\mu} d_{R}$$

1703.04751: S. Alioli, VC, W. Dekens, J. de Vries, E. Mereghetti

21

 $\Delta_{\rm CKM}$ provides strongest constraint,

Neutron decay + LQCD: approaching competitive sensitivity to ϵ_R

Constraint on \mathcal{E}_{R} uses $g_A = 1.285(17)$ (CalLat 1710.06523)

- Several lessons:
 - Low-energy can be quite competitive with collider bounds
 - Connection between CC and NC (gauge invariance!)
 - Caveat: additional BSM operators can relax these constraints. Combination of low- and high-energy constraints helps reducing "flat directions"

- π, neutron & nuclear decays:
 - Current: $b(0^+ \rightarrow 0^+) [\epsilon_s]; \pi \rightarrow e \vee \gamma [\epsilon_T]$
 - Future: b_n, B_n [ε_{S,T}] @ 10⁻³;
 b_{GT} [ε_T](⁶He, ...) @10⁻³

- π , neutron & nuclear decays:
 - Current: $b(0^+ \rightarrow 0^+) [\epsilon_s]; \pi \rightarrow e \vee \gamma [\epsilon_T]$
 - Future: b_n, B_n [ε_{S,T}] @ 10⁻³;
 b_{GT} [ε_T](⁶He, ...) @10⁻³

 $n_{obs} (m_T > m_{T,cut}) = \epsilon_{eff} \times L \times (\sigma_W + \sigma_S \times |\epsilon_S|^2 + \sigma_T \times |\epsilon_T|^2)$

T. Bhattacharya et al, 1110.6448 VC, Gonzalez-Alonso, Graesser, 1210.4553

• Collider: for heavy new mediators probe same $\varepsilon_{S,T}$

Looking ahead

- The next frontier in beta decays will likely include:
 - δτ_n ~ 0.1s (UCNτ2,...)
 - <0.1% precision in neutron and nuclear correlation coefficients (PERC,...)
 - Improved calculations of radiative corrections^{**}: dispersive methods and lattice QCD (first results for meson decays)

** This is currently the dominant contribution to V_{ud} error from 0⁺ \rightarrow 0⁺: $\Delta_R = (2.38 \pm 0.4)\%$ [Marciano-Sirlin 2005]

T couplings to light quarks: $(\epsilon_{\alpha})^{d\tau}$

Based on ongoing work with Adam Falkowski, Martin Gonzalez-Alonso, Antonio Rodriguez-Sanchez

Special thanks to Antonio Rodriguez-Sanchez for input on the slides

T couplings to light quarks: $(\epsilon_{\alpha})^{d\tau}$

Based on ongoing work with Adam Falkowski, Martin Gonzalez-Alonso, Antonio Rodriguez-Sanchez

Special thanks to Antonio Rodriguez-Sanchez for input on the slides

Hadronic tau decays

- Experimental precision at sub-% level
- Theory:
 - Exclusive decays: requires decay constants, form-factors
 - Inclusive: requires spectral functions. Use "quark-hadron duality"

• One-meson decay: $\tau \rightarrow \pi v_{\tau}$

$$\Gamma(\tau^- \to \pi^- \nu_\tau) = \frac{m_\tau^2 f_\pi^2 G_F^{(e)2} |V_{ud}^{(e)}|^2}{16\pi} (1 + \delta_{RC}^{\pi}) (1 + 2(\epsilon_L^{d\tau} - \epsilon_L^{de} - \epsilon_R^{d\tau} - \epsilon_R^{de} - \frac{B_0}{m_\tau} \epsilon_P^{d\tau}))$$

 $f_{\pi}: \ FLAG \ 2017 \ (and \ refs \ therein) \\ \delta_{RC}: \ Deker-Finkemeier \ 1994 \ and \ VC-Rosell \ 2007$

$$\epsilon_L^{d\tau} - \epsilon_L^{de} - \epsilon_R^{d\tau} - \epsilon_R^{de} - \frac{B_0}{m_\tau} \epsilon_P^{d\tau} = -(1.5 \pm 6.7) \cdot 10^{-3}$$

Error dominated by f_{π} (2x exp. and 5x rad. corr)

• One-meson decay: $\tau \rightarrow \pi v_{\tau}$

$$\Gamma(\tau^- \to \pi^- \nu_\tau) = \frac{m_\tau^2 f_\pi^2 G_F^{(e)2} |V_{ud}^{(e)}|^2}{16\pi} (1 + \delta_{RC}^{\pi}) (1 + 2(\epsilon_L^{d\tau} - \epsilon_L^{de} - \epsilon_R^{d\tau} - \epsilon_R^{de} - \frac{B_0}{m_\tau} \epsilon_P^{d\tau}))$$

 $f_{\pi}: \ FLAG \ 2017 \ (and \ refs \ therein) \\ \delta_{RC}: \ Deker-Finkemeier \ 1994 \ and \ VC-Rosell \ 2007$

$$\epsilon_L^{d\tau} - \epsilon_L^{de} - \epsilon_R^{d\tau} - \epsilon_R^{de} - \frac{B_0}{m_\tau} \epsilon_P^{d\tau} = -(1.5 \pm 6.7) \cdot 10^{-3}$$

Error dominated by f_{π} (2x exp. and 5x rad. corr)

• Two-meson decay: $\tau \rightarrow \eta \pi v_{\tau}$ suppressed in the SM

$$a_s(s) = \mathcal{O}(rac{m_\tau}{m_u - m_d}) \rightarrow \epsilon_s \approx -(2\pm7)\cdot 10^{-3}$$

Graces et al 1708.07802

• Two-meson decay: $\tau \rightarrow \pi \pi v_{\tau}$

$$\frac{d\Gamma_{exp}(s)}{ds} = \frac{d\Gamma_{SM}(s)}{ds} [1 + 2(\epsilon_L^{d\tau} + \epsilon_R^{d\tau} - \epsilon_L^{de} - \epsilon_R^{de}) + a_T(s)\epsilon_T]$$

Known at (sub)% level

• Two-meson decay: $\tau \rightarrow \pi \pi \nu_{\tau}$

Tensor FF: use resonance saturation (shape) + LQCD (normalization)

$$\frac{d\Gamma_{exp}(s)}{ds} = \frac{d\Gamma_{SM}(s)}{ds} [1 + 2(\epsilon_L^{d\tau} + \epsilon_R^{d\tau} - \epsilon_L^{de} - \epsilon_R^{de}) + a_T(s)\epsilon_T]$$
Known at (sub)% level

• Two-meson decay: $\tau \rightarrow \pi \pi v_{\tau}$

Tensor FF: use resonance saturation (shape) + LQCD (normalization)

$$\frac{d\Gamma_{exp}(s)}{ds} = \frac{d\Gamma_{SM}(s)}{ds} [1 + 2(\epsilon_L^{d\tau} + \epsilon_R^{d\tau} - \epsilon_L^{de} - \epsilon_R^{de}) + a_T(s)\epsilon_T]$$
Known at
(sub)% level
$$e^+e^- \rightarrow T^+T^-$$
 insensitive to new physics (s/\lambda^2 effect)

 $e^+e^- \rightarrow \pi^+\pi^-$ insensitive to new physics (s/ Λ^2 effect)

• Two-meson decay: $\tau \rightarrow \pi \pi v_{\tau}$

Tensor FF: use resonance saturation (shape) + LQCD (normalization)

$$\frac{d\Gamma_{exp}(s)}{ds} = \frac{d\Gamma_{SM}(s)}{ds} [1 + 2(\epsilon_L^{d\tau} + \epsilon_R^{d\tau} - \epsilon_L^{de} - \epsilon_R^{de}) + a_T(s)\epsilon_T]$$
Known at
(sub)% level
$$F_V^{\tau}(s). \quad \text{Use} \quad F_V^{e^+e^-}(s) = F_V^{\tau}(s) \times (1 + \delta_{\text{IB}})$$

$$e^+e^- \rightarrow \pi^+\pi^- \text{ insensitive to new physics } (s/\Lambda^2 \text{ effect})$$

• Use integral constraint: $\pi\pi$ contribution to the HVP for $(g-2)_{\mu}$

Davier et al 1312.1501, 1706.09436

$$\frac{a_{\mu}^{\tau} - a_{\mu}^{ee}}{2 \, a_{\mu}^{ee}} \!=\! \epsilon_L^{d\tau} - \epsilon_L^{de} \!+\! \epsilon_R^{d\tau} \!-\! \epsilon_R^{de} \!+\! 0.64 \, \epsilon_T^{d\tau} \!=\! 0.0089(44)$$

Inclusive processes: generalities

• Total widths into "V" and "A" final states related to spectral functions

ALEPH

s (GeV²)

$$\Pi_{ij}(q) \sim \int dq e^{iqx} \langle 0 | T(J_i(x)J_j(0)) | 0 \rangle$$

$$\lim_{s \to \infty} \Pi_{ij}(s) \equiv \pi \rho_{ij}(s)$$

$$\int_{s} \frac{\Im}{2} 0.06$$

$$\int_{0.02} \frac{\Im}{2} \int_{0} \frac{1}{10} \int_{0} \frac{1}$$

Inclusive processes: generalities

• Total widths into "V" and "A" final states related to spectral functions

ALEPH

Inclusive processes: method

- Use Cauchy's theorem for ω(s)Π(s)
 on the pac-man contour
- $\Pi(s) \rightarrow \Pi_{OPE}(s)$ on the circle
- Method used to successfully extract SM parameters (α_s , m_s , chiral LECs). Here put constraints on new physics

$$\Pi^{OPE}(Q^2 = -q^2) = \sum_{i} c_i(\mu, Q^2) \frac{O_{i,D}(\mu)}{Q^D}$$

$$OPE \quad Im(q^2) \qquad \Pi - \Pi^* \sim Im\Pi$$

$$V = V = V = V$$

$$S_{th} = V = V$$

 π pole

(.)

in

Inclusive processes: method

- Use Cauchy's theorem for ω(s)Π(s)
 on the pac-man contour
- $\Pi(s) \rightarrow \Pi_{OPE}(s)$ on the circle
- Method used to successfully extract SM parameters (α_s , m_s , chiral LECs). Here put constraints on new physics

$$\Pi^{\mathsf{OPE}}(Q^2 = -q^2) = \sum c_i(\mu, Q^2) \frac{\mathcal{O}_{i,D}(\mu)}{Q^D}$$

$$\int_{s_{th}}^{s_0} \frac{ds}{s_0} \omega(s) \operatorname{Im} \Pi_{V \pm A}^{(1+0)} \pm 2\pi \frac{f_{\pi}^2}{s_0} \omega(m_{\pi}^2) = \frac{i}{2} \oint_{|s|=s_0} \frac{ds}{s_0} \omega(s) \Pi_{V \pm A}^{(1+0), \text{ OPE}} + \delta_{DV, V \pm A}^{(\omega)}(s_0)$$

$$f$$
Experiment-BSM(ϵ) = QCD
Duality Violation: $\Pi \neq \Pi_{OPE}$

Inclusive processes: results

- Four weakly correlated constraints
- V+A: $\omega(s)=I$, $\omega(s)=\omega_{kin,\tau}(s)$

$$\epsilon_{L+R}^{d\tau} - \epsilon_{L+R}^{de} - 0.89\epsilon_R^{d\tau} + 0.73\epsilon_T^{d\tau} = (8.5 \pm 8.5) \cdot 10^{-3}$$
$$0.72(\epsilon_{L+R}^{d\tau} - \epsilon_{L+R}^{de}) - 0.56\epsilon_R^{d\tau} + \epsilon_T^{d\tau} = (3.2 \pm 11.8) \cdot 10^{-3}$$

OPE side dominated by perturbative term. Use α_s from lattice QCD

• V-A: $\omega(s)=1-s/s_0$, $\omega(s)=(1-s/s_0)^2$ [to reduce duality violations].

$$0.15(\epsilon_{L+R}^{d\tau} - \epsilon_{L+R}^{de}) + 0.46\epsilon_{R}^{d\tau} + \epsilon_{T}^{d\tau} = (0.8 \pm 7.6) \cdot 10^{-3}$$
$$0.15(\epsilon_{L+R}^{d\tau} - \epsilon_{L+R}^{de}) + 0.29\epsilon_{R}^{d\tau} + \epsilon_{T}^{d\tau} = (0.8 \pm 1.5) \cdot 10^{-3}$$

OPE side has no perturbative term. Condensates from NDA and kaon physics + chiral symmetry

Constraints from T decays: summary

$$\begin{pmatrix} \epsilon_{L}^{d\tau} - \epsilon_{L}^{de} + \epsilon_{R}^{d\tau} - \epsilon_{R}^{de} \\ \epsilon_{R}^{d\tau} \\ \epsilon_{S}^{d\tau} \\ \epsilon_{P}^{d\tau} \\ \epsilon_{T}^{d\tau} \end{pmatrix} = \begin{pmatrix} 9.6 \pm 6.1 \\ 1.3 \pm 9.0 \\ -2.0 \pm 7.0 \\ -6.1 \pm 11.5 \\ -1.1 \pm 3.8 \end{pmatrix} \times 10^{-3}$$

Connection to "SM-EFT"

Connection to "SM-EFT"

New low-energy constraints on SM-EFT couplings:

$$[c_{lq}^{(3)}, c_{lequ}, c_{ledq}, c_{lequ}^{(3)}]_{\tau\tau 11} = (1.0 \pm 2.9, 0.66 \pm 0.71, -0.43 \pm 0.66, -0.02 \pm 0.82) \times 10^{-2}$$

Constraints from the LHC

• Similar to electron case:

$PP \rightarrow TV + X$

Coefficient	ATLAS $\tau \nu$	Hadronic $ au$ decays
$[c_{\ell q}^{(3)}]_{\tau \tau 11}$	[0.0, 1.1]	[-12.8, 0.0]
$[c_{\ell equ}]_{\tau \tau 11}$	[-4.6, 4.6]	[-3.9, 8.6]
$[c_{\ell edq}]_{\tau \tau 11}$	[-4.6, 4.6]	[-7.7, 4.8]
$[c_{\ell equ}^{(3)}]_{ au au 11}$	[-2.7, 2.7]	[-8.8, 1.8]

95% CL intervals (in 10^{-3} units) for the Wilson coefficients at $\mu = 1$ TeV

Impact on gauge vertex corrections

• LHC input constrains 4-fermion "L" couplings at 10-3 level

$$\epsilon_{L}^{d\tau} - \epsilon_{L}^{de} = \delta g_{L}^{W\tau} - \delta g_{L}^{We} - [c_{\ell q}^{(3)}]_{\tau\tau 11} + [c_{\ell q}^{(3)}]_{ee11}$$

$$constrained by LHC at 0.1\% level$$

$$\delta d\tau = \epsilon_{R}^{de} = \delta g_{R}^{Wq_{1}}$$
Our analysis + Greljo-Marzocca 1704.09015

 Hadronic tau decays become a new %-level probe of lepton flavor universality of vertex corrections

Impact on gauge vertex corrections

• LHC input constrains 4-fermion "L" couplings at 10-3 level

$$\epsilon_{L}^{d\tau} - \epsilon_{L}^{de} = \delta g_{L}^{W\tau} - \delta g_{L}^{We} - [c_{\ell q}^{(3)}]_{\tau\tau 11} + [c_{\ell q}^{(3)}]_{ee11}$$

$$constrained by LHC at 0.1\% level$$

$$\delta g_{R}^{d\tau} = \epsilon_{R}^{de} = \delta g_{R}^{Wq_{1}}$$
Our analysis + Greljo-Marzocca 1704.09015

 Hadronic tau decays become a new %-level probe of lepton flavor universality of vertex corrections

Summary

- CC transitions with sufficient th. and expt. precision (β decays at < 0.1%, τ decays at < 1%) provide "broad band" probe of new physics
- Discovery potential depends on the underlying model. However, for heavy mediators, EFT shows that a discovery window exists well into the LHC era (simple examples: \mathcal{E}_L - \mathcal{E}_R and \mathcal{E}_S - \mathcal{E}_T plots)
- In general, combination of low- and high-E measurements can
 - provide stronger constraints on certain couplings
 - break coupling degeneracies
 - reduce "flat directions" in space of effective couplings
- Example of global analysis in next talk