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EFT at the EW scale

~ 1 TeV              SM

  ~  10 TeV              NPW

W

EFT    =    Symmetries   +   Fields

- Lorentz; 

- SU(2) x U(1); 

- Flavour sym? 

- B, L; 

- SM fields 

- h SU(2) doublet 

- No light NP

L = L(�,�⇤)

α: Wilson coefficients (UV physics)  
59 dim-6 operators 
[Buchmuller & Wyler’1986, Leung et al.’1986, Grzadkowksi et al., 2010] 
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q e
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Parity-violating electron scattering (PVES),  
or atomic parity violation (APV) experiments  
essentially probe 4-fermion qqee contact interactions,  
where q=u,d are the light quarks  and e are electrons  

Thanks to the superior energy, the LHC is sensitive to qqee contact interactions  
with smaller coefficients than what can be currently (QWEAK, PVDIS, APV cesium) or in 
the near future (P2, SoLID, APV radium) achieved by low-energy experiments  

Then what’s the point going on  
with the PVES and APV precision program ??? 



EFT Formalism



The SM has been very successful in predicting the results of all collider and 
low-energy precision experiments. Discovery of the 125 GeV Higgs boson was 
the last piece of the puzzle falling into place. No more free parameters in 
the SM


We know physics beyond the SM exists (neutrino masses, dark matter, 
inflation, baryon asymmetry).  There are also some theoretical hints for new 
physics (strong CP problem, flavor hierarchies, gauge coupling unification, 
naturalness problem)


But there isn’t one model or a class of models that is strongly preferred. 
Myriads of models addressing neutrino masses, dark matter, inflation, baryon 
asymmetry, and even more models addressing the various theoretical issues 
of the SM… 


It is advantageous to keep an open mind on many possible forms of new 
physics that may show up in experiment.  The best model-independent 
language for this purpose is that of effective field theories.  

Status report



For observables at a given energy/momentum scale, retain only 
the degrees of freedom relevant at that scale and integrate 
out all heavier degrees of freedom


Identify the symmetries of the low-energy theory and the 
small expansion parameters (typically, coupling constants and 
Energy_Scale/Heavy Mass_Scale)


Write down most general interactions for the light degrees of 
freedom consistent with the symmetries and organize them in 
consistent expansion following some power counting with 
respect to the small parameter


If the UV completion  is known, connect its parameters to that 
of the effective theory by the matching procedure       

Effective field theories
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Assumption: below ~1 TeV scale, no new degrees of freedom beyond those of the SM



wEFT: EFT below the weak scale

In this workshop, the focus is on precision observables where the characteristic 
energy scale is much smaller than the Z boson mass 


Below mZ the only SM degrees of freedom available are leptons, photon, gluons, and 
5 flavors of quark, while  H/W/Z bosons and top quark are integrated out


I refer to it as the wEFT (also known as Fermi theory, WET, LEFT ,…)     


wEFT is an EFT with SU(3)xU(1) gauge group and fermionic matter spectrum, where 
the expansion parameter is E/mW, mW≈80 GeV. 


There are 70 dimension-5 and 3631 dimension-6 operators preserving baryon and 
lepton number


I focus on parity-violating 4-fermion effective interactions between electron and 
light quarks and on electron self-interactions (other effective interactions can of 
course be equally or even more interesting but they are not discussed in this talk)

Jenkins et al
1711.05270



(Subset of) wEFT Lagrangian
Parity-violating neutral current interactions of 2 electron and 2 light quarks

Parity-violating 4-electron interactions

Closely 
following

PDG
notation

LwEFT �� 1

2v2

X

q=u,d

geqAV (ē �̄⇢e� ec�⇢ē
c)(q̄ �̄⇢q + qc�⇢q̄c)

� 1

2v2

X

q=u,d

geqV A(ē �̄⇢e+ ec�⇢ē
c)(q̄ �̄⇢q � qc�⇢q̄c)

LwEFT � 1

2v2
geeAV [�(ē�̄µe)(ē�̄µe) + (ec�µē

c)(ec�µē
c)]
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Assume that the SM degrees of freedom are all there is below the TeV scale. But 
we treat the SM as an EFT, and we call it the SMEFT


In the SMEFT, the SM Lagrangian is treated as the lowest order approximation of 
the dynamics. Effects of heavy particles are encoded by new contact interactions of 
the SM particles added to the  Lagrangian. The SMEFT Lagrangian can be defined 
as an expansion in the inverse mass scale of heavy particles, which coincides with 
the expansion in operator dimensions  


Under some (mild) assumptions, the SMEFT framework  allows one to describe 
effects of new physics beyond the SM in a model independent way


Convenient for BSM practitioners because it is easy to connect SMEFT constraints to 
constraints on specific models. Automation of that process is ongoing

SMEFT

+



SMEFT

Much as in the SM, relativistic QFT with linearly 
realized SU(3)xSU(2)xU(1) local symmetry 
spontaneously broken by VEV of Higgs doublet field


SMEFT Lagrangian  expanded in inverse powers of 
Λ, equivalently in operator dimension D 

Basic assumptions

Generated by integrating out 

lepton number or B-L violating  

heavy particles with mass scale ΛL, 

responsible for neutrino masses

Subleading

wrt D=5/6  
if ΛL/Λ 


high enough
Generated by integrating out 


heavy particles with mass scale Λ

In large class of BSM models that conserve B-L, 


D=6 operators capture leading effects of new physics

on collider observables at E << Λ

Buchmuller,Wyler 
 (1986)

ΛL≾ 10^15 GeV

TeV ≾ Λ ≾ ?Grządkowski et al.

 1008.4884

http://arxiv.org/abs/1303.3876


This leads to non-trivial and often counter-intuitive relations between operators. For

example, by using equations of motion one can establish equivalence between purely

bosonic operators, and a linear combination of 2- and 4-fermionic operators! Thus,

starting from the set of all distinct D=6 operators that can be constructed from the

SM fields, a number of these operators will be redundant as they are equivalent to

linear combinations of other operators. The redundant operators can be removed to

simplify the EFT description, and to establish an unambiguous map from observables

to the EFT Wilson coe�cients. A minimal, non-redundant set of operators is called

a basis.

Yukawa

[O†
eH ]IJ H†HecIH

†`J

[O†
uH ]IJ H†HucI

eH†qJ

[O†
dH ]IJ H†HdcIH

†qJ

Vertex

[O(1)
H`]IJ i¯̀I �̄µ`JH† !DµH

[O(3)
H`]IJ i¯̀I�i�̄µ`JH†�i !DµH

[OHe]IJ iecI�µē
c
JH

† !DµH

[O(1)
Hq]IJ iq̄I �̄µqJH† !DµH

[O(3)
Hq]IJ iq̄I�i�̄µqJH†�i !DµH

[OHu]IJ iucI�µū
c
JH

† !DµH

[OHd]IJ idcI�µd̄
c
JH

† !DµH

[OHud]IJ iucI�µd̄
c
JH̃

†DµH

Dipole

[O†
eW ]IJ ecI�µ⌫H

†�i`JW i
µ⌫

[O†
eB]IJ ecI�µ⌫H

†`JBµ⌫

[O†
uG]IJ ucI�µ⌫T

a eH†qJ Ga
µ⌫

[O†
uW ]IJ ucI�µ⌫

eH†�iqJ W i
µ⌫

[O†
uB]IJ ucI�µ⌫

eH†qJ Bµ⌫

[O†
dG]IJ dcI�µ⌫T

aH†qJ Ga
µ⌫

[O†
dW ]IJ dcI�µ⌫H̄

†�iqJ W i
µ⌫

[O†
dB]IJ dcI�µ⌫H

†qJ Bµ⌫

Table 2.3: Two-fermion D=6 operators in the Warsaw basis. The flavor indices are
denoted by I, J . For complex operators (OHud and all Yukawa and dipole operators)
the corresponding complex conjugate operator is implicitly included.

Because of a humungous number of D=6 operators, and because establishing

equivalence between operators may be time consuming, identifying a basis is not a

14

The fields Gz and G± do not correspond to new physical degrees of freedom (they

kinetically mix with the massive gauge bosons and can be gauged away). From now

on until Chapter 5 I will work in the unitary gauge and set G± = 0 = Gz. The

scalar field h corresponds to a scalar particle called the Higgs boson. Its mass can be

expressed by the parameters of the Higgs potential as

m2
h = 2µ2

H = 2�v2. (2.19)

2.2 Dimension-6 operators

Bosonic CP-even

OH (H†H)3

OH⇤ (H†H)⇤(H†H)

OHD

��H†DµH
��2

OHG H†H Ga
µ⌫G

a
µ⌫

OHW H†HW i
µ⌫W

i
µ⌫

OHB H†H Bµ⌫Bµ⌫

OHWB H†�iHW i
µ⌫Bµ⌫

OW ✏ijkW i
µ⌫W

j
⌫⇢W k

⇢µ

OG fabcGa
µ⌫G

b
⌫⇢G

c
⇢µ

Bosonic CP-odd

O
H eG H†H eGa

µ⌫G
a
µ⌫

O
HfW H†H fW i

µ⌫W
i
µ⌫

O
H eB H†H eBµ⌫Bµ⌫

O
HfWB

H†�iH fW i
µ⌫Bµ⌫

OfW ✏ijkfW i
µ⌫W

j
⌫⇢W k

⇢µ

O eG fabc eGa
µ⌫G

b
⌫⇢G

c
⇢µ

Table 2.2: Bosonic D=6 operators in the Warsaw basis.

We turn to discussing operators with canonical dimensions D=6 in Eq. (2.1).

Their importance for characterizing low-energy e↵ects of heavy particles has been

recognized long ago, see e.g. [21, 35]. More recently, advantages of using a complete

and non-redundant set of operators have been emphasized. The point is that seem-

ingly di↵erent higher-dimensional operators can have the same e↵ect on on-shell am-

plitudes of the SM particles. This is the case if the operators can be related by using

equations of motion, integration by parts, field redefinitions, or Fierz transformations.
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Dimension-6 operators

(R̄R)(R̄R)

Oee ⌘(ec�µēc)(ec�µēc)

Ouu ⌘(uc�µūc)(uc�µūc)

Odd ⌘(dc�µd̄c)(dc�µd̄c)

Oeu (ec�µēc)(uc�µūc)

Oed (ec�µēc)(dc�µd̄c)

Oud (uc�µūc)(dc�µd̄c)

O0
ud (uc�µT aūc)(dc�µT ad̄c)

(L̄L)(R̄R)

O`e (¯̀̄�µ`)(ec�µēc)

O`u (¯̀̄�µ`)(uc�µūc)

O`d (¯̀̄�µ`)(dc�µd̄c)

Oeq (ec�µēc)(q̄�̄µq)

Oqu (q̄�̄µq)(uc�µūc)

O0
qu (q̄�̄µT aq)(uc�µT aūc)

Oqd (q̄�̄µq)(dc�µd̄c)

O0
qd (q̄�̄µT aq)(dc�µT ad̄c)

(L̄L)(L̄L)

O`` ⌘(¯̀̄�µ`)(¯̀̄�µ`)

Oqq ⌘(q̄�̄µq)(q̄�̄µq)

O0
qq ⌘(q̄�̄µ�iq)(q̄�̄µ�iq)

O`q (¯̀̄�µ`)(q̄�̄µq)

O0
`q (¯̀̄�µ�i`)(q̄�̄µ�iq)

(L̄R)(L̄R)

Oquqd (ucqj)✏jk(dcqk)

O0
quqd (ucT aqj)✏jk(dcT aqk)

O`equ (ec`j)✏jk(ucqk)

O0
`equ (ec�̄µ⌫`j)✏jk(uc�̄µ⌫qk)

O`edq (¯̀̄ec)(dcq)

Table 2.4: Four-fermion D=6 operators in the Warsaw basis. Flavor indices are
suppressed here to reduce the clutter. The factor ⌘ is equal to 1/2 when all flavor
indices are equal (e.g. in [Oee]1111), and ⌘ = 1 otherwise. For each complex operator
the complex conjugate should be included.

be more easily linked to collider observables such as (di↵erential) cross sections and

decay widths.

Deriving collider predictions in an EFT with higher-dimensional operators involves

several subtleties that need to be taken into account.

• In the SM, the electroweak parameters gL, gY , v are customarily determined

from input observables: the electromagnetic coupling constant ↵, the Z boson

mass mZ , and the muon lifetime ⌧µ. In the presence of D=6 operators the

SM relations between the input observables and the Lagrangian parameters

can be distorted. For example, the bosonic operator OHD contributes to the

16

Full set has 2499 distinct operators,  
including flavor structure and CP conjugates


Enough fun for everyone :)

Alonso et al 1312.2014, Henning et al 1512.03433

Warsaw basis Grządkowski et al.

 1008.4884

http://arxiv.org/abs/1303.3876


More intuitive parametrization (Higgs basis)
Effect of dimension-6 operators: vertex corrections to Z and W boson interactions with fermions 

Not all vertex corrections are independent

In the following, 
parametrizing the relevant space of 
dimension-6 operators using 
the independent vertex corrections 
and coefficients of 4-fermion operators

Also, rescaling c→c 𝞚^2/v^2, 
so that dimension-6 operators in Lagrangian
 normalized by the scale 1/v^2  

operators in the Warsaw basis:

�m = � g2Y
4(g2L � g2Y )


4gL
gY

cHWB +
g2L
g2Y

cHD + 2[c(3)H`]11 + 2[c(3)H`]22 � [c``]1221

�
, (2.30)

��3 = �1

�
cH + 3cH⇤ � 3

4
cHD +

1

4
[c``]1221 � 1

2
[c(3)H`]11 �

1

2
[c(3)H`]22,

��4 = �6

�
cH +

50

3
cH⇤ � 25

6
cHD +

1

2
[c``]1221 � [c(3)H`]11 � [c(3)H`]22,

��5 = � 3

4�
cH + 2cH⇤ � 1

2
cHD,

��6 = � 1

8�
cH +

1

3
cH⇤ � 1

12
cHD, (2.31)

�gW `
L = c(3)H` + f(1/2, 0)� f(�1/2,�1),

�gZ⌫
L =

1

2
c(3)H` �

1

2
c(1)H` + f(1/2, 0),

�gZe
L = �1

2
c(3)H` �

1

2
c(1)H` + f(�1/2,�1),

�gZe
R = �1

2
cHe + f(0,�1), (2.32)

�gWq
L =

⇣
c(3)Hq + f(1/2, 2/3)� f(�1/2,�1/3)

⌘
VCKM,

�gWq
R = �1

2
cHud,

�gZu
L =

1

2
c(3)Hq �

1

2
c(1)Hq + f(1/2, 2/3),

�gZd
L = �1

2
V †
CKMc

(3)
HqVCKM � 1

2
V †
CKMc

(1)
HqVCKM + f(�1/2,�1/3),

�gZu
R = �1

2
cHu + f(0, 2/3),

�gZd
R = �1

2
cHd + f(0,�1/3), (2.33)

22

where

f(T 3, Q) = �I3Q
gLgY

g2L � g2Y
cHWB (2.34)

+ I3

✓
1

4
[c``]1221 � 1

2
[c(3)H`]11 �

1

2
[c(3)H`]22 �

1

4
cHD

◆✓
T 3 +Q

g2Y
g2L � g2Y

◆
,

and I3 is the 3⇥ 3 identity matrix in the generation space.

For my precision analyses in the following chapters I will also need the terms in

the second line of Eq. (2.29). The Higgs couplings to matter are parametrized as:

Lh,matter =
h

v


(1 + �cw)

g2Lv
2

2
W+

µ W�
µ + (1 + �cz)

(g2L + g2Y )v
2

4
ZµZµ

�
X

f2u,d,e

X

IJ

p
mfImfJ

h⇣
�IJ + [�yf ]IJe

i�f
IJ

⌘
fIf

c
J + h.c.

i

+cww
g2L
2
W+

µ⌫W
�
µ⌫ + c̃ww

g2L
2
W+

µ⌫W̃
�
µ⌫ + cw⇤g

2
L

�
W�

µ @⌫W
+
µ⌫ + h.c.

�

+cgg
g2s
4
Ga

µ⌫G
a
µ⌫ + c��

e2

4
Aµ⌫Aµ⌫ + cz�

e
p

g2L + g2Y
2

Zµ⌫Aµ⌫ + czz
g2L + g2Y

4
Zµ⌫Zµ⌫

+cz⇤g
2
LZµ@⌫Zµ⌫ + c�⇤gLgYZµ@⌫Aµ⌫

+c̃gg
g2s
4
Ga

µ⌫G̃
a
µ⌫ + c̃��

e2

4
Aµ⌫Ãµ⌫ + c̃z�

e
p

g2L + g2Y
2

Zµ⌫Ãµ⌫ + c̃zz
g2L + g2Y

4
Zµ⌫Z̃µ⌫

#
,

(2.35)

where all the couplings are real, and �yf and �f are general 3⇥3 matrices. The triple

gauge couplings of electroweak gauge bosons are parametrized as

Ltgc = ie
�
W+

µ⌫W
�
µ �W�

µ⌫W
+
µ

�
A⌫ + igLc✓ (1 + �g1,z)

�
W+

µ⌫W
�
µ �W�

µ⌫W
+
µ

�
Z⌫

+ ie(1 + ��)Aµ⌫ W
+
µ W�

⌫ + igLc✓ (1 + �z)Zµ⌫ W
+
µ W�

⌫

+ ie(1 + ̃�)Ãµ⌫ W
+
µ W�

⌫ + igLc✓ (1 + ̃z)Zµ⌫ W
+
µ W�

⌫

+ i
��

m2
W

eW+
µ⌫W

�
⌫⇢A⇢µ + i

�z

m2
W

gLc✓W
+
µ⌫W

�
⌫⇢Z⇢µ + i

�̃�

m2
W

eW+
µ⌫W

�
⌫⇢Ã⇢µ + i

�̃z

m2
W

gLc✓W
+
µ⌫W

�
⌫⇢Z̃⇢µ

+ g3s
�g

v2
fabcGa

µ⌫G
b
⌫⇢G

c
⇢µ + g3s

�̃g

v2
fabcGa

µ⌫G
b
⌫⇢G̃

c
⇢µ, (2.36)
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Matching  wEFT to SMEFT

SM contribution
from Z exchange Effect of shifted 

Z couplings Trivial matching 
of 4-fermion operators

One can match wEFT to SMEFT at 𝜇 = mZ to relate parameters of the 2 effective theories 

geeAV =
1

2
� 2s2✓ � 2

�
1� 2s2✓

�
�gZe

L � 4s2✓�g
Ze
R � 1

2
[c``]1111 +

1

2
[cee]1111

Chirality conserving (I, J = 1, 2, 3) Chirality violating (I, J = 1, 2, 3)

[Oℓq]IIJJ = (ℓ̄I σ̄µℓI)(q̄J σ̄µqJ) [Oℓequ]IIJJ = (ℓ̄jI ē
c
I)ϵjk(q̄

k
J ū

c
J)

[O(3)
ℓq ]IIJJ = (ℓ̄I σ̄µσiℓI)(q̄J σ̄µσiqJ) [O(3)

ℓequ]IIJJ = (ℓ̄jI σ̄µν ē
c
I)ϵjk(q̄

k
J σ̄µν ū

c
J)

[Oℓu]IIJJ = (ℓ̄I σ̄µℓI)(uc
Jσ

µūc
J) [Oℓedq]IIJJ = (ℓ̄jI ē

c
I)(d

c
Jq

j
J )

[Oℓd]IIJJ = (ℓ̄I σ̄µℓI)(dcJσ
µd̄cJ)

[Oeq]IIJJ = (ecIσµē
c
I)(q̄J σ̄

µqJ)
[Oeu]IIJJ = (ecIσµē

c
I)(u

c
Jσ

µūc
J)

[Oed]IIJJ = (ecIσµē
c
I)(d

c
Jσ

µd̄cJ)

Table 1: Flavor-conserving 2-lepton-2-quark operators in the SMEFT Lagrangian of Eq. (2.1).

One flavor (I = 1, 2, 3) Two flavors (I < J = 1, 2, 3)

[Oℓℓ]IIII =
1
2(ℓ̄I σ̄µℓI)(ℓ̄I σ̄

µℓI) [Oℓℓ]IIJJ = (ℓ̄I σ̄µℓI)(ℓ̄J σ̄µℓJ)
[Oℓℓ]IJJI = (ℓ̄I σ̄µℓJ)(ℓ̄J σ̄µℓI)

[Oℓe]IIII = (ℓ̄I σ̄µℓI)(ecIσ
µēcI) [Oℓe]IIJJ = (ℓ̄I σ̄µℓI)(ecJσ

µēcJ)
[Oℓe]JJII = (ℓ̄J σ̄µℓJ)(ecIσ

µēcI)
[Oℓe]IJJI = (ℓ̄I σ̄µℓJ)(ecJσ

µēcI)
[Oee]IIII =

1
2(e

c
Iσµē

c
I)(e

c
Iσ

µēcI) [Oee]IIJJ = (ecIσµē
c
I)(e

c
Jσ

µēcJ)

Table 2: Flavor-conserving 4-lepton operators in the SMEFT Lagrangian of Eq. (2.1).
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LwEFT � 1

2v2
geeAV [�(ē�̄µe)(ē�̄µe) + (ec�µē

c)(ec�µē
c)]

SMEFT ⊂
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Z couplings 
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[Oℓq]IIJJ = (ℓ̄I σ̄µℓI)(q̄J σ̄µqJ) [Oℓequ]IIJJ = (ℓ̄jI ē
c
I)ϵjk(q̄

k
J ū

c
J)

[O(3)
ℓq ]IIJJ = (ℓ̄I σ̄µσiℓI)(q̄J σ̄µσiqJ) [O(3)

ℓequ]IIJJ = (ℓ̄jI σ̄µν ē
c
I)ϵjk(q̄

k
J σ̄µν ū

c
J)

[Oℓu]IIJJ = (ℓ̄I σ̄µℓI)(uc
Jσ

µūc
J) [Oℓedq]IIJJ = (ℓ̄jI ē

c
I)(d

c
Jq

j
J )

[Oℓd]IIJJ = (ℓ̄I σ̄µℓI)(dcJσ
µd̄cJ)

[Oeq]IIJJ = (ecIσµē
c
I)(q̄J σ̄

µqJ)
[Oeu]IIJJ = (ecIσµē

c
I)(u

c
Jσ

µūc
J)

[Oed]IIJJ = (ecIσµē
c
I)(d

c
Jσ

µd̄cJ)

Table 1: Flavor-conserving 2-lepton-2-quark operators in the SMEFT Lagrangian of Eq. (2.1).

One flavor (I = 1, 2, 3) Two flavors (I < J = 1, 2, 3)

[Oℓℓ]IIII =
1
2(ℓ̄I σ̄µℓI)(ℓ̄I σ̄

µℓI) [Oℓℓ]IIJJ = (ℓ̄I σ̄µℓI)(ℓ̄J σ̄µℓJ)
[Oℓℓ]IJJI = (ℓ̄I σ̄µℓJ)(ℓ̄J σ̄µℓI)

[Oℓe]IIII = (ℓ̄I σ̄µℓI)(ecIσ
µēcI) [Oℓe]IIJJ = (ℓ̄I σ̄µℓI)(ecJσ

µēcJ)
[Oℓe]JJII = (ℓ̄J σ̄µℓJ)(ecIσ

µēcI)
[Oℓe]IJJI = (ℓ̄I σ̄µℓJ)(ecJσ

µēcI)
[Oee]IIII =

1
2(e

c
Iσµē

c
I)(e

c
Iσ

µēcI) [Oee]IIJJ = (ecIσµē
c
I)(e

c
Jσ

µēcJ)

Table 2: Flavor-conserving 4-lepton operators in the SMEFT Lagrangian of Eq. (2.1).
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One can match wEFT to SMEFT at 𝜇 = mZ to relate parameters of the 2 effective theories 

LwEFT �� 1

2v2

X

q=u,d

geqAV (ē �̄⇢e� ec�⇢ē
c)(q̄ �̄⇢q + qc�⇢q̄c)

� 1

2v2

X

q=u,d

geqV A(ē �̄⇢e+ ec�⇢ē
c)(q̄ �̄⇢q � qc�⇢q̄c)

SMEFT ⊂



Workflow

Low-energy
experiment

Constraints on
Fermi theory
Wilson coefficients 

Constraints on 
SMEFT
Wilson coefficients

1

2

3

Constraints on
 BSM model #1

Constraints on
 BSM model #2

…



Present



Current wEFT constraints from APV and PVES
PDG combination of (old) QWEAK, PVDIS, and  APV cesium experiments: 

geqAV =geqAV,SM + �geqAV

geqV A =geqV A,SM + �geqV A

geuAV,SM =� 0.1887

gedAV,SM =+ 0.3419

geuV A,SM =� 0.0351

gedV A,SM =+ 0.0247

0

@
�geuAV

�gedAV

2�geuV A � �gedV A

1

A =

0

@
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�4.7± 5.1
�49± 68

1

A⇥ 10�3
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X
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c)(q̄ �̄⇢q � qc�⇢q̄c)

Contain the difficult part
(loop corrections) 

BSM part treated 
at leading order 

wEFT
parameters

PDG



Current wEFT constraints from APV and PVES

PDG combination of (old) QWEAK, PVDIS, and  APV cesium experiments: 

Updating with the final QWEAK measurement: 

0

@
�geuAV

�gedAV

2�geuV A � �gedV A

1

A =

0

@
3.3± 5.5
�4.7± 5.1
�49± 68

1

A⇥ 10�3

0

@
�geuAV

�gedAV

2�geuV A � �gedV A

1

A =

0

@
0.74± 2.2
�2.1± 2.5
�39± 54

1

A⇥ 10�3

QW (p) =0.0719± 0.0045

PDG



SLAC E158 measurement of parity-violating asymmetry 
 in Møller scattering e− e− → e− e−

where xIJ = [c``]IIJJ if I  J or xIJ = [c``]JJII otherwise.
Last, we parameterize the parity-violating self-interaction of electrons in the e↵ective theory

below the weak scale as

L
e↵

� 1

2v2
geeAV [�(ē�̄µe)(ē�̄µe) + (ec�µē

c)(ec�µē
c)] , (2.14)

with the following SMEFT expression

geeAV =
1

2
� 2s2✓ � 2

�
1� 2s2✓

�
�gZe

L � 4s2✓�g
Ze
R � 1

2
[c``]1111 +

1

2
[cee]1111 . (2.15)

2.3 Renormalization and scale running of the Wilson coe�cients

In general the Wilson coe�cients display renormalization-scale dependence that is to be canceled
in the observables by the opposite dependence in the quantum corrections to the matrix elements.
Let us first discuss the QCD running, which can have a numerically significant impact due to the
magnitude of the strong coupling constant ↵s. This e↵ect is further enhanced by the large separa-
tion of scales of the experiments discussed in this work (from low-energy precision measurements to
LHC collisions). Among the coe�cients involved in our analysis, only the three chirality-violating

ones, clequ, cledq, c
(3)

lequ (i.e. ✏d`S,P,T in the low-energy EFT), present a non-zero 1-loop QCD anomalous
dimension, namely [63]

d ~x(µ)

d log µ
=

↵s(µ)

2⇡

0

@
�4 0 0
0 �4 0
0 0 4/3

1

A ~x(µ), (2.16)

where ~x refers to the SMEFT coe�cients ~c = (cledq, clequ, c
(3)

lequ) if the scale µ is above the weak
scale or to the low-energy EFT coe�cients ~✏ = (✏d`S , ✏

d`
P , ✏

d`
T ) below it. We find that higher-loop

QCD corrections to the running are numerically significant, and we include them in our analysis.7

On the other hand we neglect in this work the electromagnetic/weak running of the SMEFT
Wilson coe�cients, which is expected to have a much smaller numerical importance simply due
to the smallness of the corresponding coupling constants. There is however one exception to
this, namely the chirality-violating operators discussed above, for two reasons: (i) contrary to the
QCD running, the QED/weak running involves mixing between these operators; (ii) pion decay
makes possible to set bounds of order 10�7 on the pseudoscalar coupling ✏d`P (µlow), which can give
important bounds on scalar and tensor via mixing despite the smallness of ↵em. In order to take
into account this e↵ect, Eq. (2.16) has to be replaced by

d ~x(µ)

d log µ
=

✓
↵em(µ)

2⇡
�x +

↵s(µ)

2⇡
�s

◆
~x(µ) , (2.17)

where we will use the 1-loop QED (electroweak) anomalous dimension, �x = �em(w)

, to evolve the
coe�cients ~✏ (~c) below (above) the weak scale [67–70]:

�
em

=

0

@
2

3

0 4
0 2

3

4
1

24

1

24

�20

9

1

A , �
w

=

0

B@
� 4

3c2✓
0 0

0 � 11

6c2✓

15

c2✓
+ 9

s2✓

0 5

16c2✓
+ 3

16s2✓

1

9c2✓
� 3

2s2✓

1

CA , (2.18)

7We use the 3-loop QCD anomalous dimension [64], and we include the threshold corrections at mb and mt

extracted from Refs. [65] and [66] for scalar and tensor operators respectively. See Ref. [67] for further details.
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2. Instead of recasting the weak mixing angle measured in parity-violating electron scattering
[95], we use the PDG result for the parity-violating effective self-coupling of electrons [61]:

geeAV = 0.0190± 0.0027. (3.24)

3. To evaluate SMEFT corrections to e+e− collider observables we use the electroweak couplings
at the scale mZ (instead of 200 GeV).

4. We add the measurement of the τ polarization Pτ and its FB asymmetry AP in e+e− → τ+τ−

production at
√
s = 58 GeV by the VENUS collaboration [96]:

Pτ = 0.012± 0.058, AP = 0.029± 0.057. (3.25)

The analytic expressions for Pτ and AP in function of the SMEFT parameters and
√
s are

easy to obtain but are too long to be quoted here. Instead, we give the numerical expressions
at

√
s = 58 GeV:

δPτ ≈ −0.87δgZe
L − 0.93δgZe

R + 0.17δgZτ
L + 0.25δgZτ

R

+ 0.21[cee]1133 + 0.32[cle]1133 − 0.34[cle]3311 − 0.20([cℓℓ]1133 + [cℓℓ]1331),

δAP ≈ 0.13δgZe
L + 0.19δgZe

R − 0.65δgZτ
L − 0.70δgZτ

R

+ 0.16[cee]1133 − 0.25[cle]1133 + 0.24[cle]3311 − 0.15([cℓℓ]1133 + [cℓℓ]1331). (3.26)

5. We include the constraints from the trident production νµγ∗ → νµµ+µ− [97–99]. Dimension-6
operators modify the trident cross section as

σtrident
σtrident, SM

≈ 1 + 2
gνµµ,SMLV δgνµµLV + gνµµ,SMLA δgνµµLA

(gνµµ,SMLV )2 + (gνµµ,SMLA )2
. (3.27)

The first 3 modifications lead to negligible numerical differences compared to the fit in Ref. [44].
The 4th one allows us to break the degeneracy between [cℓe]1133 and [cℓe]3311 and improve constraints
on other 4-lepton operators involving τ . The last modification leads to a constraint on one linear
combination of 4-muon dimension-6 operators.

4 Global Fit

4.1 Scope

The main goal of this paper is to provide model-independent constraints on flavor-diagonal 2-
lepton-2-quark operators summarized in Table 1. Among the chirality-conserving ones, most of
the observables considered in this paper probe the operators involving the 1st generation leptons.
There are 21 such operators and for an easy reference we list here their Wilson coefficients:

[cℓq]11JJ , [c(3)ℓq ]11JJ , [cℓu]11JJ , [cℓd]11JJ , [ceq]11JJ , [ceu]11JJ , [ced]11JJ , J = 1, 2, 3. (4.1)
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Current wEFT constraints from Moller scattering

PDG



Electron-positron collisions at LEP, LEP-2 and TRISTAN


APV and PVES


Pion decays


Nuclear beta decays 


Tau decays 


Moller scattering


Neutrino scattering on electron and nucleon targets 


Trident muon production 


…

Global constraints on SMEFT
Combining multiple low-energy measurements of flavor-conserving observables 

QWEAK, PVDIS, and APV 
are pieces of the puzzle  
in the bigger picture



Global constraints on SMEFT
SM parameter. Marginalizing over Ṽud we find the following constraints:
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(4.8)
The correlation matrix is available in the Mathematica notebook attached as a supplemental
material [56]. The complete Gaussian likelihood for the Wilson coefficients of dimension-6 SMEFT
operators at the scale µ = mZ can be reproduced from Eq. (4.8) and that correlation matrix. For
user’s convenience, in the notebook the likelihood is displayed ready-made for cut and paste, and
we also provide a translation to the Warsaw basis. That likelihood is relevant to constrain the
masses and couplings of any new physics model whose leading effects at the weak scale can be
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Constraints on 
scale suppressing 

these dimension-6 
operators between 
250 GeV and tens 
of TeV 



264 experimental inputs constraining simultaneously 61 combinations of SMEFT 
Wilson coefficients


Flavor structure of  Wilson coefficients assumed to be completely general. We are 
not assuming that some of the coefficients vanish (also those that we are not 
constraining in this analysis can be non-zero). 


The only assumptions are that SMEFT is valid up to O(200) GeV energy scale, and 
that tree-level contributions of dimension-6 operators to relevant observables 
dominate over loop-level contributions


Marginalized constraints and the correlation matrix  (thus global likelihood) is 
given ->  can be used to constrain any BSM model that reduces to the SMEFT 
below 200 GeV energy scale 


Low-energy precision measurements often competitive or superior compared to 
the LEP electroweak precision measurements. In any case, they both are essential 
for lifting degeneracies in the SMEFT parameter space 

Global constraints on SMEFT



Comparing LHC and low-energy bounds

(ee)(qq)
[c(3)ℓq ]1111 [cℓq]1111 [cℓu]1111 [cℓd]1111 [ceq]1111 [ceu]1111 [ced]1111

Low-energy 0.45± 0.28 1.6± 1.0 2.8± 2.1 3.6± 2.0 −1.8± 1.1 −4.0± 2.0 −2.7± 2.0
LHC1.5 −0.70+0.66

−0.74 2.5+1.9
−2.5 2.9+2.4

−2.9 −1.6+3.4
−3.0 1.6+1.8

−2.2 1.6+2.5
−1.5 −3.1+3.6

−3.0

LHC1.0 −0.84+0.85
−0.92 3.6+3.6

−3.7 4.4+4.4
−4.7 −2.4+4.8

−4.7 2.4+3.0
−3.2 1.9+2.5

−1.9 −4.6+5.4
−4.1

LHC0.7 −1.0+1.4
−1.5 5.9± 7.2 7.4± 9.0 −3.6± 8.7 3.8± 5.9 2.1+3.8

−2.9 −8± 10

(µµ)(qq)
[c(3)ℓq ]2211 [cℓq]2211 [cℓu]2211 [cℓd]2211 [ceq]2211 [ceu]2211 [ced]2211

Low-energy −0.2± 1.2 4± 21 18± 19 −20± 37 40± 390 −20± 190 40± 390
LHC1.5 −1.22+0.62

−0.70 1.8± 1.3 2.0± 1.6 −1.1± 2.0 1.1± 1.2 2.5+1.8
−1.4 −2.2± 2.0

LHC1.0 −0.72+0.81
−0.87 3.2+4.0

−3.5 3.9+4.8
−4.4 −2.3+4.9

−4.7 2.3+3.1
−3.2 1.6+2.3

−1.8 −4.4± 5.3
LHC0.7 −0.7+1.3

−1.4 3.2+10.3
−4.8 4.3+12.5

−6.4 −3.6± 9.0 3.8± 6.2 1.6+3.4
−2.7 −8± 11

Chirality-violating operators (µ = 1 TeV)
[cℓequ]1111 [cℓedq]1111 [c(3)ℓequ]1111 [cℓequ]2211 [cℓedq]2211 [c(3)ℓequ]2211

Low-energy (−0.6± 2.4)10−4 (0.6± 2.4)10−4 (0.4± 1.4)10−3 0.014(49) −0.014(49) −0.09(29)
LHC1.5 0± 2.0 0± 2.6 0± 0.91 0± 1.2 0± 1.6 0± 0.56
LHC1.0 0± 2.9 0± 3.7 0± 1.4 0± 2.9 0± 3.7 0± 1.4
LHC0.7 0± 5.3 0± 6.6 0± 2.6 0± 5.5 0± 6.9 0± 2.6

Table 6: Comparison of low-energy and LHC constraints (in units of 10−3) on the Wilson coef-
ficients of the chirality-conserving (ee)(qq) and (µµ)(qq) and chirality-violating operators defined
at the scale µ = 1 TeV. The 68% CL bounds are derived assuming only one 4-fermion operator
is present at a time, and that the vertex corrections and [cℓℓ]1221 are absent. The low-energy
constraints combine all experimental input summarized in Table 4. The LHC1.5 constraints use
the mℓℓ ∈ [0.5-1.5] TeV bins of the measured differential e+e− and µ+µ− cross sections at the 8
TeV LHC [106]. We also separately show the constraints obtained when the mℓℓ ∈ [0.5-1.0] TeV
(LHC1.0) and mℓℓ ∈ [0.5-0.7] TeV (LHC0.7) data range is used.

27

Using 
measurements
of electron 
and muon 
Drell-Yan 
cross-sections
in ATLAS run-1

ATLAS
1606.01736

Low-energy and LHC comparable for chirality-preserving eeqq operators
LHC superior for chirality-preserving qq operators 𝜇𝜇qq operators
Low-energy superior for chirality-violating operators

AA, Gonzalez-Alonso, Mimouni
1706.03783

M. González-Alonso

What about the LHC?
W

R.C.

SM background NP (EFT)

W

x 10-3

[Falkowski, MGA & 

Mimouni, 2017]

[Wood et al., Science’97]
[Hardy & Towner'14,  
Flavianet’16,  
MGA & Martin Camalich'16]

Borrowed from Martin Gonzalez-Alonso

M. González-Alonso

EFT at the EW scale

~ 1 TeV              SM

  ~  10 TeV              NPW

W

EFT    =    Symmetries   +   Fields

- Lorentz; 

- SU(2) x U(1); 

- Flavour sym? 

- B, L; 

- SM fields 

- h SU(2) doublet 

- No light NP

L = L(�,�⇤)

α: Wilson coefficients (UV physics)  
59 dim-6 operators 
[Buchmuller & Wyler’1986, Leung et al.’1986, Grzadkowksi et al., 2010] 

Example:

…

q

q

l

l



Comparing LHC and low-energy bounds

NLO QCD
analysis of 
13 TeV  
Drell-Yan data

Alioli et al
1804.07407

Recent update  (90% CL limits) of LHC constraints on 4-fermion SMEFT operators 



In spite of poor O(10%) accuracy, currently LHC has similar 
sensitivity to chirality conserving eeqq 4-fermion operators as 
low-energy measurements with per-mille accuracy


This happens because effects of 4-fermion operators on 
scattering amplitudes are enhanced by E^2/v^2,  where E is the 
center-of-mass energy of the parton collision. In this case, the 
superior energy reach of the LHC trumps the inferior accuracy 


Note that the same is not true for the vertex correction 𝞭g. 
These SMEFT deformations are not energy enhanced, and 
therefore it will be difficult to improve the constraints on 𝞭g at 
the LHC. 

Comparing LHC and low-energy bounds



Test #1: Does your future experiment improve 
global constraints on wEFT Wilson coefficients? 


Test #2: Does your future experiment improve 
global constraints on SMEFT Wilson coefficients?

Gauging future precision measurements

If Test #1 && Test #2
Excellent! 
You’re exploring new territories!
Here is your cheque

If Test #1 && !(Test #2) Your results may be useful to probe
light new physics particles



AA, Grilli Di Cortona, Tabrizi  
1802.08296

Future

AA, Gonzalez-Alonso  
in progress



Near-future precision measurements

�QW (225Ra) = 0.1376

Measurement of atomic parity violation in radium ions: Willmann et al.  
CERN-INTC-2017-069 

Measurement of hydrogen and carbon weak charges in MESA P2:

�QW (1H) = 0.001207 �QW(12C) = 0.01655

Becker et al.  
1802.04759

Measurement of deep-inelastic PVES scattering in SoLID: Zhao  
1701.02780

2geuAV � gedAV = �0.7193± 0.0276 2geuV A � gedV A = �0.0949± 0.0331 ⇢ = �0.9782

�geeAV = 0.0006

Measurement of parity violation in electron scattering in MOLLER: Benesch et al.  
1411.4088

Improved nuclear beta decays constraints 
on charged current interactions

Gonzalez-Alonso, Naviliat-Cuncic, Severijns  
1803.08732   Eq. (98) 



Future wEFT constraints from APV and PVES

Current QWEAK, PVDIS, and  APV cesium experiments: 

0

@
�geuAV

�gedAV

2�geuV A � �gedV A

1

A =

0

@
0.74± 2.2
�2.1± 2.5
�39± 54

1

A⇥ 10�3

Projections from combined P2,  SoLID, and  APV radium experiments: 

0

@
�geuAV

�gedAV

2�geuV A � �gedV A

1

A =

0

@
0± 0.70
0± 0.97
0± 7.4

1

A⇥ 10�3

LwEFT �� 1

2v2

X

q=u,d

geqAV (ē �̄⇢e� ec�⇢ē
c)(q̄ �̄⇢q + qc�⇢q̄c)

� 1

2v2

X

q=u,d

geqV A(ē �̄⇢e+ ec�⇢ē
c)(q̄ �̄⇢q � qc�⇢q̄c)

AA, Grilli Di Cortona, Tabrizi  
1802.08296

AA, Gonzalez-Alonso  
in progress



Future wEFT constraints from APV and PVES
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geqAV (ē �̄⇢e� ec�⇢ē
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c)(q̄ �̄⇢q � qc�⇢q̄c)

-0.04 -0.02 0.00 0.02 0.04

-0.04

-0.02

0.00

0.02

0.04

2δgAV
eu -δgAV

ed
2δ
g V
Aeu
-δ
g V
Aed

P2+APVSoLID

Test #1: all passed 
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Project global SMEFT constraints

MOLLER

Test #2: failed?

APV+PVES

Displaying Wilson coefficients for which projected
global constraints are improved by at least 1% 

Coe�cient Now Future

[ĉeu]1111 11 9.7

[ĉed]1111 20 19

[c``]1111 0.38 0.27

[cee]1111 0.38 0.27

 Current and projected 1σ error in units of 0.01



The Meaning 
Of It All



Projected 1-by-1 SMEFT constraints

Displaying Wilson coefficients for which projected
1-by-1 constraints are improved by at least a factor of two 

 Current and projected 1σ errors in units of 0.0001

Now MOLLER APV-Ra P2-H P2-C All
�gZu

R 7.4 ⇥ 2.1 2.8 4.1 1.6
�gZd

R 8.9 ⇥ 1.9 5.0 4.2 1.7

[c`q]1111 8.6 ⇥ 2.0 3.7 4.2 1.7
[c`u]1111 16 ⇥ 4.3 5.8 8.4 3.3
[c`d]1111 18 ⇥ 3.7 10 8.3 3.3
[ceq]1111 8.6 ⇥ 2.0 3.7 4.2 1.7
[ceu]1111 15 ⇥ 4.3 5.8 8.3 3.2
[ced]1111 18 ⇥ 3.7 10 8.3 3.3

[c``]1111 28 11 ⇥ ⇥ ⇥ 11
[cee]1111 28 11 ⇥ ⇥ ⇥ 11



Projected 1-by-1 SMEFT constraints

δgRZu δgRZd [clq]1111 [ceq]1111

-2

-1

0

1

2

1σ
ra
ng
e
×
10

3

One-by-One

Current
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Projected 1-by-1 SMEFT constraints from LHC 

Greljo, Marzocca  
1704.09015

After high-luminosity phase, LHC sensitivity to 
4-fermion qqee operators should be somewhat superior, 
compared to that of future PVES and APV experiments

 Current and projected 2σ errors

However, future PVES and APV experiments should be greatly superior
in constraining certain 4-electron operators, and Zqq vertex corrections!



“Every disadvantage 
has its advantage”Projected global constraints

One can estimate project SMEFT constraints from 
future PVES and APV experiments, 
taking into account strong constraints on qqee operators from the LHC

-0.010 -0.005 0.000 0.005 0.010
-0.010

-0.005

0.000

0.005

0.010

δgV
Zu

δg
VZd

Coe�cient Now (�LHC = 10

�3
) Future (�LHC = 10

�3
) Future (�LHC = 10

�4
)

�gZu
V 2.3 1.2 0.55

�gZd
V 2.6 1.3 0.59

�gZu
A 16 16 16

�gZd
A 17 16 16

δLHC = 0.0001
LHC and low-energy measurements 
are complementary. Together, 
they are expected to lead to 
factor of 4 improvement  of the 
uncertainty on Z couplings to  light quarks 

Test #2: passed, 
at least for P2 and APV radium



Projected global constraints
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Projected global constraints
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[cll]1111

[c
ee
] 11
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The impact of MOLLER will 
be to improve constraints on 
one linear combination of  
4-lepton operators  
(electron vertex corrections 
better measured by LEP)



EFT approach has numerous advantages


It is a tool to combine, within a consistent framework,  results of 
different precision experiments at different energy scales


It offers a global view of the new physics landscape, and helps 
highlighting poorly or strongly constrained directions in the BSM 
model space 


It allows one to understand what kind of BSM theories can be 
probed by future P2, SoLID, and APV radium experiments 


P2 and APV radium will significantly improve constraints on the Z 
boson couplings to up and down  quarks 


MOLLER will significantly improve constraints on new parity-
violating forces coupled to electrons  

Take-away



Fantastic Beasts and Where To Find Them
CMS


Imaginary  

Λ

Thank  You


