The Physics Case for PVDIS with SoLID

and lepton pair production at the LHC

P. A. Souder

Outline

- The solid spectrometer and experimental program
- BSM Physics and PVDIS
- Implications of LHC Data
- PVES as a probe of hadronic structure (and BSM physics)

Overview of SoLID in Hall A

Solenoidal Large Intensity Device

• Full exploitation of JLab 12 GeV Upgrade

→ A Large Acceptance Detector AND Can Handle High Luminosity (10^{37} - 10^{39}) Take advantage of latest development in detectors , data acquisitions and simulations Reach ultimate precision for SIDIS (TMDs), PVDIS in high-x region and threshold J/ ψ

•5 highly rated experiments approved

4/25/18

Three SIDIS experiments, one PVDIS, one J/ψ production (+ 3 run group experiments)
 Strong collaboration (250+ collaborators from 70+ institutes, 13 countries)
 Significant international contributions (Chinese collaboration)

SoLID Timeline

- 2017 Passed Director's Review
- 2018 DOE Science review
 - Must have updated Physics case
- 2020 CD0
- 2025 Construction finished??

Non-PVDIS Physics Case: An Enhanced Science Impact of SoLID through the NAS report lens

- NAS report soon to be released. Two science questions have taken center stage are:
 - What is the origin of mass?
 - SoLID will contributes to answering this question with a "precision measurement of the J/psi cross section in photo-production very close to threshold. This physics is best done at high luminosity i.e. with SoLID because of the rapid decrease of the production cross section at threshold. The goal is to access of the trace anomaly (pure gluonic contribution) to the mass of the nucleon. This quantity, that give mass to the nucleon even when the quark masses are zero (chiral limit) is a fundamental consequence of scale invariance in QCD.
 - The EIC cannot access the J/Psi threshold region, however, it will use the Upsilon (heavier) production at threshold to measure the same quantity. We expect this complementary measurement to be important and should confirm JLab's extraction of the trace anomaly.
 - What is the origin of Spin?
 - The SoLID Transverse Momentum Distributions program with its momentum imaging goal of the using SoLID is the precursor and stepping platform for the EIC imaging program.
 - While JLab will provide for exquisite momentum imaging of both the proton and the neutron enabling a flavor decomposition in the valence quark region the EIC will benefit from the overlap x region and will focus on the sea-quark dominated region and gluons.

PVES and Contact Interactions

 $\mathcal{L}^{PV} = \frac{G_F}{\sqrt{2}} [\bar{e}\gamma^{\mu}\gamma_5 e(C_{1u}\bar{u}\gamma_{\mu}u + C_{1d}\bar{d}\gamma_{\mu}d) + \bar{e}\gamma^{\mu}e(C_{2u}\bar{u}\gamma_{\mu}\gamma_5 u + C_{2d}\bar{d}\gamma_{\mu}\gamma_5 d)$

$$+ C_{ee}(e\gamma^{\mu}\gamma_5 e\bar{e}\gamma_{\mu}e)$$

 $C_{1u} = -\frac{1}{2} + \frac{4}{3} \sin^2 \theta_W \approx -0.19 \quad \text{ner}$ $C_{1d} = \frac{1}{2} - \frac{2}{3} \sin^2 \theta_W \approx 0.35$ $C_{2u} = -\frac{1}{2} + 2 \sin^2 \theta_W \approx -0.04$ $C_{2d} = \frac{1}{2} - 2 \sin^2 \theta_W \approx 0.04$ $C_{ee} = \frac{1}{2} - 2 \sin^2 \theta_W \approx 0.02$

new physics
$$\mathcal{L}_{eff}^{BSM} = \frac{g^2}{\Lambda^2} \sum_{i,j=L,R} \eta_{ij}^{eff} \overline{e}_i \gamma_\mu e_i \overline{q}_j \gamma^\mu q_j$$

 $f_1 \qquad f_1 \qquad f_1 \qquad f_1 \qquad = g^2 \sum_{i,j=L,R} \left(\frac{1}{\Lambda_{ij}^{ef}}\right)^2 \overline{e}_i \gamma_\mu e_i \overline{f}_j \gamma^\mu f_j$

Theory of PVDIS

At high x, A_{iso} becomes independent of pdfs, x & W, with well-defined SM MITP, 25 April 2018 prediction for Q² and y 7

Published 6 GeV PVDIS data from JLab

6 GeV run results

 $Q^2 \sim 1.1 \text{ GeV}^2$

A^{phys} (ppm)	-91.10
(stat.)	± 3.11
(syst.)	± 2.97
(total)	± 4.30

 $Q^2 \sim 1.9 \text{ GeV}^2$

$A^{\rm phys}$ (ppm)	-91.10
(stat.)	± 3.11
(syst.)	± 2.97
(total)	± 4.30

Wang et al., Nature 506, no. 7486, 67 (2014);

PARTICLE PHYSICS

Quarks are not ambidextrous

W. Marciano article in Nature

By separately scattering right - and left-handed electrons off quarks in a deuterium target, researchers have improved, by about a factor of five, on a classic result of mirror-symmetry breaking from 35 years ago. SEE LETTER P.67

SoLID and the Low Energy PVES Program

- Measure each of the coupling constants as precisely as possible.
- The C₂'s are the most difficult to measure.
 - Large, uncalculable radiative corrections present in coherent processes.
- PVDIS is the most promising approach to measure one combination for the the C_2 's.

What Does the LHC Say?

- $PP \rightarrow ||^+|^-$ data are relevant
- LHC data is interpreted in terms of the Λ_{LR}

Relating $\Delta C's$ to $\Lambda's$

$$\eta_{ij}/\Lambda \rightarrow 1/\Lambda_{LR} \rightarrow 1/\Lambda_{VA} \rightarrow \Delta C$$

Constants related by 4X4 matrices

$$4\overline{e}_{R}\gamma_{\mu}e_{R}\overline{q}_{R}\gamma^{\mu}q_{R} = \{\overline{e}\gamma_{\mu}e\}\{\overline{q}\gamma^{\mu}q\} + \{\overline{e}\gamma_{\mu}\gamma^{5}e\}\{\overline{q}\gamma^{\mu}q\} + \{\overline{e}\gamma_{\mu}e\}\{\overline{q}\gamma^{\mu}\gamma^{5}q\} + \{\overline{e}\gamma_{\mu}\gamma^{5}e\}\{\overline{q}\gamma^{\mu}\gamma^{5}q\}$$

$$\begin{aligned} \mathcal{L}_{eff}^{BSM} &= g^2 \left[\left(\frac{1}{\Lambda_{VV}^{eq}} \right)^2 \{ \overline{e} \gamma_{\mu} e \} \{ \overline{q} \gamma^{\mu} q \} + \left(\frac{1}{\Lambda_{AV}^{eq}} \right)^2 \{ \overline{e} \gamma_{\mu} \gamma^5 e \} \{ \overline{q} \gamma^{\mu} q \} + \left(\frac{1}{\Lambda_{VA}^{eq}} \right)^2 \{ \overline{e} \gamma_{\mu} e \} \{ \overline{q} \gamma^{\mu} \gamma^5 q \} + \left(\frac{1}{\Lambda_{AA}^{eq}} \right)^2 \{ \overline{e} \gamma_{\mu} \gamma^5 e \} \{ \overline{q} \gamma^{\mu} \gamma^5 q \} \right] \end{aligned}$$

Sensitivity in terms of Λ

Sensitive to very large values of Λ, competitive with with LHC data?

Oval: SoLID + Qweak

Lepton Pair Production form ATLAS

Figure 1: Distributions of (a) dielectron and (b) dimuon reconstructed invariant mass $(m_{\ell\ell})$ after selection, for data and the SM background estimates as well as their ratio before and after marginalisation. Selected Z'_{χ} signals with a pole mass of 3, 4 and 5 TeV are overlaid. The bin width of the distributions is constant in $\log(m_{\ell\ell})$ and the shaded band in the lower panels illustrates the total systematic uncertainty, as explained in Section 7. The data points are 4/25/18 where with their statistical uncertainty. MITP, 25 April 2018

Features of LHC Data

- Data goes up to 2 TeV!
- Lots of statistics at low s
- Errors at low s dominated by PDF uncertainties
- Conclusion I: Contact interaction analysis valid only for $\Lambda \gg 2$ TeV.
- Conclusion II: Need g2=4 π

Lepton Pair Production Cross Sections

$$\frac{d\sigma}{d\Omega} \left(q_L \overline{q}_R \to e_L^- e_R^+ \right) = \frac{\alpha^2}{4s} (1 + \cos\theta)^2 \left| Q_q - rL_q L_e - \frac{s}{\alpha (\Lambda_{LL}^{eq})^2} \right|^2$$

$$\frac{d\sigma}{d\Omega} \left(q_L \overline{q}_L \to e_L^- e_L^+ \right) = \frac{\alpha^2}{4s} (1 - \cos\theta)^2 \left| Q_q - rL_q R_e - \frac{s}{\alpha (\Lambda_{LR}^{eq})^2} \right|^2$$

$$\frac{d\sigma}{d\Omega} \left(q_R \overline{q}_L \to e_R^- e_L^+ \right) = \frac{\alpha^2}{4s} (1 + \cos\theta)^2 \left| Q_q - rR_q R_e - \frac{s}{\alpha (\Lambda_{RR}^{eq})^2} \right|^2$$

$$\frac{d\sigma}{d\Omega} \left(q_R \overline{q}_R \to e_R^- e_R^+ \right) = \frac{\alpha^2}{4s} (1 - \cos\theta)^2 \left| Q_q - rR_q L_e - \frac{s}{\alpha (\Lambda_{RL}^{eq})^2} \right|^2$$

Two Types of Terms

1.Interference ~ $1/\Lambda^2$ 2. Direct Terms ~ $1/\Lambda^4$

Since LHC is unpolarized, It measures the sum of all Four cross sections

Direct Terms Set Limits on PV Couplings

Direct terms in cross Section measure:

Convert from LR terms To VA terms:

$$\begin{pmatrix} \frac{1}{\Lambda_{LL}^{eq}} \end{pmatrix}^4 + \left(\frac{1}{\Lambda_{LR}^{eq}} \right)^4 + \left(\frac{1}{\Lambda_{RL}^{eq}} \right)^4 + \left(\frac{1}{\Lambda_{RR}^{eq}} \right)^4 = \\ \begin{pmatrix} \frac{1}{\Lambda_{VV}^{eq}} \end{pmatrix}^4 + \left(\frac{1}{\Lambda_{VA}^{eq}} \right)^4 + \left(\frac{1}{\Lambda_{AV}^{eq}} \right)^4 + \left(\frac{1}{\Lambda_{AA}^{eq}} \right)^4$$

Direct terms therefore set upper bounds in all of the C_1 's and C_2 's (Interference terms are relatively insensitive to PV.)

 $\Lambda_{ij} > 40 \ TeV \ from \ LHC$: Direct terms set limits > 20 TeV (LHC experiments fit only to a single Λ .)

Any Loopholes?

Are contact interactions appropriate for $Q^2 \sim \Lambda^2$?

$$\mathcal{L}_{eff} = \frac{g^2}{\Lambda^2} \sum_{i,j=L,R} \eta_{ij}^{eff} \overline{e}_i \gamma_{\mu} e_i \left(1 + \mathcal{O} \frac{4\pi\alpha s}{\Lambda^2} + \dots \right).$$

$$\frac{d\sigma}{d\Omega} \sim \frac{\alpha^2 s}{4\alpha^2 \Lambda^4} (1 + \cos\theta)^2 \left[1 + \mathcal{O} 4\pi\alpha (Q_q + rL_qL_e) \right]$$
Higher order term interferes with electroweak amplitude

Another Loophole: Is there new physics below 2 TeV that LHC has failed to uncover??

- Leptophobic Z'?
- Z' with exotic decays that make it wide?
- Dark light

Note: $A_Z/A_\gamma \approx Q^2 for Q^2 \ll M_Z$; : $A_Z/A_\gamma \approx 1 for Q^2 \gg M_Z$

New Physics and c₂'s

Leptophobic Z'

Virtually all GUT models predict new Z's e
LHC reach ~ 5 TeV, but....
Little sensitivity if Z' doesnt couple to leptons
Leptophobic Z' as light as 120 GeV could have escaped detection

Since electron vertex must be vector, the Z' cannot couple to the C_{1q} 's if there is no electron coupling: can only affect C_{2q} 's

SOLID can improve sensitivity: 100-200 GeV range

arXiv:1203.1102v1 Buckley and Ramsey-Musolf

Impact of Leptophobic Z' Bosons on PVDIS

- Justifies measuring C₂'s
- Example of low energy physics that LHC cannot see
- Not a popular model

Weak angle shift for Low Q² due to Dark Z'

[Davoudiasl, Lee, Marciano (2014)]

For the Low-Q² Parity Test (measuring Weak angle), we can use

(i) Atomic Parity Violation (Cs, ...)

(ii) Low-Q² PVES (E158, Qweak, MESA P2, Moller, SoLID...)

independent of Z' decay BR (good promote visibly/invisibly decaying Z').

New Models Extend Q² Range

Low Q^2 Weak Mixing Angle Measurements and Rare Higgs Decays

Hooman Davoudiasl,¹ Hye-Sung Lee,² and William J. $Marciano^1$

¹Department of Physics, Brookhaven National Laboratory, Upton, New York 11973, USA ²CERN, Theory Division, CH-1211 Geneva 23, Switzerland

FIG. 3. Effective weak mixing angle running as a function of Q^2 shift (the blue band) due to an intermediate mass Z_d for (a) $m_{Z_d} = 15$ GeV and (b) $m_{Z_d} = 25$ GeV for 1 sigma fit to $\varepsilon \delta'$ in Eq. (12). The lightly shaded area in each band corresponds to choice of parameters that is in some tension with precision constraints (see text for more details).

Qweak data provides

Important limit.

3

Lorentz Invariance Violation

R. Lenhert: Effect in Moller scattering. Similar effect should also be observable in PVDIS. Theory features many new parameters. LHC data is irrelevant.

$$\begin{split} \delta A(t) &= \frac{G_F}{\sqrt{2}\pi\alpha} \, \frac{E_k \, y \, (1-y) \sin^2 \theta_W}{(y^2 - y + 1)^2} \, \vec{k}(t) \cdot \vec{\xi} \\ &= \frac{G_F}{\sqrt{2}\pi\alpha} \, \frac{E_k^2 \, y \, (1-y) \sin^2 \theta_W}{(y^2 - y + 1)^2} \times \\ & \left[\sqrt{\xi_X^2 + \xi_Y^2} \sqrt{1 - \cos^2 \alpha \sin^2 \chi} \, \cos \Omega_{\oplus} t + c_0 \right] \end{split}$$

SMEFT (wEFT) Analysis

- Recent publications on the subject.
- Discuss low Q² vs high Q² in ways I do not understand.
- Use spinors instead of Dirac wavefunctions.
- Use different variables: hard to connect to experiments; papers discuss C₁'s but not C₂'s. (One problem is correlations)

Review of Questions for PVDIS Physics Case

- What are the limits on the C₂'s from LHC Drell-Yan data?
- Are these limits model dependent?
- Is there sub 2 TeV physics missed by the LHC?
- Are leptophobic Z' bosons useful motivation?
 - Example of sub 2 TeV physics
 - Sensitive to C₂'s, not C₁'s
 - Leptophobic Z' models were not motivated by SoLID
 - Models are not very popular

Criteria for Evaluating PVES Experiments

- Improvement over previous experiment
- ΔC/C
- ΔC
- $\Delta \sin^2 \theta_W$
- Models

Kinematic Acceptance

4/25/18

Untangling the Physics

Kinematic dependence of physics topics

	X	Y	\mathbf{Q}^2
New Physics	none	yes	small
\mathbf{CSV}	yes	small	small
Higher Twist	large?	no	large

$$A_{\text{Meas.}} = A_{\text{SM}} \left[1 + \frac{\beta_{\text{HT}}}{\left(1 - x\right)^3 Q^2} + \beta_{\text{CSV}} x^2 \right]$$

Charge Symmetry Violation

We already know CSV exists:

- u-d mass difference $\delta m = m_d m_u \approx 4 \text{ MeV}$ $\delta M = M_n - M_n \approx 1.3 \text{ MeV}$
- electromagnetic effects
- Direct sensitivity to parton-level CSV
- Important implications for PDF's
- Could be partial explanation of the NuTeV anomaly

$$u^{p}(x) \stackrel{?}{=} d^{n}(x) \implies \delta u(x) \equiv u^{p}(x) - d^{n}(x)$$
$$d^{p}(x) \stackrel{?}{=} u^{n}(x) \implies \delta d(x) \equiv d^{p}(x) - u^{n}(x)$$
$$\downarrow$$
$$R_{CSV} = \frac{\delta A_{PV}}{A_{PV}} \approx 0.28 \frac{\delta u(x) - \delta d(x)}{u(x) + d(x)}$$

For A_{PV} in electron-²H DIS

Sensitivity will be enhanced if u+d falls off more rapidly than δu - δd as x \rightarrow 1

₂₀Significant effects are predicted at high x

Isovector EMC Effect (New Proposal)

4/25/18

A Special HT Effect

The observation of Higher Twist in PV-DIS would be exciting direct evidence for diquarks

following the approach of Bjorken, PRD 18, 3239 (78), Wolfenstein, NPB146, 477 (78)

Isospin decomposition before using PDF's

 $A_{PV} = \frac{G_F Q^2}{\sqrt{2}\pi\alpha} \left[a(x) + f(y)b(x) \right]$

$$V_{\mu} = \left(i \gamma_{\mu} u - \overline{d} \gamma_{\mu} d \right) \Leftrightarrow S_{\mu} = \left(i \gamma_{\mu} u + \overline{d} \gamma_{\mu} d \right)$$
$$\left\langle VV \right\rangle = l_{\mu\nu} \int \left\langle D \mid V^{\mu}(x) V^{\nu}(0) \mid D \right\rangle e^{iq \times x} d^{4}x$$

$$\delta = rac{\langle VV
angle - \langle SS
angle}{\langle VV
angle + \langle SS
angle} \qquad a(x) \propto rac{F_1^{\gamma Z}}{F_1^{\gamma}} \propto 1 - 0.3\delta$$

Higher-Twist valence quark-quark correlation Zero in quark-parton model $\langle VV \rangle - \langle SS \rangle = \langle (V-S)(V+S) \rangle \propto l_{\mu\nu} \int \langle D | \overline{u}(x) \gamma^{\mu} u(x) \overline{d}(0) \gamma^{\nu} d(0) \rangle e^{iq \times x} d^4 x$

(C) Castorina & Mulders, '84

(c) type diagram is the only operator that can contribute to a(x) higher twist: theoretically very interesting!

 σ_L contributions cancel

Use v data for small b(x) term.

MITP, 25 April 2018

PVIDS with the Proton

4/25/18

Recent Analysis with Fermilab Data

Could improved d/u determination improve W mass measurement and hence $\sin^2 \theta_W$?

Marathon 3He/3H data taken at Jlab; should be released soon. Will provide a real measure of possible impact

Summary of Motivation for PVDIS

- Limits on Λ . Favored by Jlab PAC, management.
- EMC effect on ⁴⁸Ca. My favorite, but not approved by Jlab PAC.
- CSV. Rule out semi-reasonable range.
- HT. Connect to np \rightarrow d γ ? Limited literature, no models with big effects.
- d/u. Will Marathon data help motivate new data?

Signature of Neutral Weak Interaction in Electron Scattering - Parity Violation Asymmetry

- In the Standard Model,
 •weak interaction current = V(vector) minus A(axial-vector)
- PV comes from the product V×A

• In DIS:
$$A_{PV} = -\left(\frac{G_F Q^2}{4\sqrt{2}\pi a}\right) [a_1 Y_1 + a_3 Y_3]$$

$$\frac{\eta_{ij}}{\Lambda^2} = \frac{1}{\Lambda_{ij}^2}$$

$$\frac{1}{\Lambda_{LR}^2} = \sum A^{LR} i j C_{ij}$$
$$C_{VA}^{eq} \to \frac{1}{(\Lambda_{VA}^{eq})^2}$$

$$\begin{split} C_{1q} \propto (g_{RR}^{eq})^2 + (g_{RL}^{eq})^2 - (g_{LR}^{eq})^2 & \longrightarrow \begin{array}{l} \textit{PV elastic e-p scattering,} \\ \textit{Atomic parity violation} \\ C_{2q} \propto (g_{RR}^{eq})^2 - (g_{RL}^{eq})^2 + (g_{LR}^{eq})^2 - (g_{LL}^{eq})^2 & \longrightarrow \begin{array}{l} \textit{PV elastic e-p scattering,} \\ \textit{Atomic parity violation} \\ \textit{PV deep inelastic scattering} \\ C_{ee_{1/25/18}} (g_{RR}^{ee})^2 - (g_{LL}^{ee})^2 & \longrightarrow \begin{array}{l} \textit{PV Moller scattering} \\ \textit{MITP, 25 April 2018} \end{array}$$

Parity Violation with SoLID

Is the lack of a compelling model a good reason to ignore measuring a fundamental coupling?