Parity violation in Yb and Dy

Dionysis Antypas

PVES 2018

Atomic Parity Violation at the Helmholtz-Institut Mainz

Dionysis Antypas Anne Fabricant

Arijit Sharma Lykourgos Bougas Peter Leyser

Outline

- Background & motivations
- Yb experiment, new results & future
- Dy experiment

The weak interaction mixes atomic states of opposite nominal parity (s & p)

The weak interaction mixes atomic states of opposite nominal parity (s & p)

Atomic PV Enhancement:

- Heavy atoms (high Z)
- Small ΔE

Types of atomic PV experiments

- 100% contrast (small signal)
- No reversals

Types of atomic PV experiments

- 100% contrast (small signal)
- No reversals

Many reversals for systematics

Experimental atomic PV studies

...and a molecule: BaF

Atomic parity violation: Main processes

Safranova et al. arXiv:1710.01833

9

Nuclear spin-independent atomic PV

- Probe the nuclear weak charge Q_W
- Lower bound on new Z bosons
- Probe of the "dark" sector: dark boson, cosmic

parity violation (axions, ALPs)

 $Q_{W} \approx -N + Z \cdot (1 - 4 \sin^2 \vartheta_{W})$

Nuclear spin-dependent atomic PV: Anapole

Anapole:

Safranova et al. arXiv:1710.01833

- P-odd E/M moment from intranuclear PV
- Probe of weak meson-nucleon couplings (hadronic PV)

The cesium experiment

Based on Stark interference technique proposed by Bouchiat & Bouchiat in the 70s

The cesium results

Isotopic ratios in atomic PV

 \triangleright APV measures: $E1_{PV} = k_{PV}Q_W$

Isotopic ratios in atomic PV

 \triangleright APV measures: $E1_{PV} = k_{PV}Q_W$

Atomic PV calculation errors cancel in isotopic ratios Dzuba, Flambaum, and Khriplovich, Z. Phys. D 1, 243 (1986)

$$R = \frac{E \mathbf{1}_{PV}'}{E \mathbf{1}_{PV}} = \frac{Q'_W}{Q_W}$$

Isotopic ratios and neutron skins

Limitation to isotopic ratio method: enhanced sensitivity to the neutron distribution ρ_n(r) Fortson, Pang, Wilets, PRL 65, 2857 (1990)

$$\bar{Q}_W = -Nq_n + Zq_p(1 - 4\sin^2\theta_W) + \Delta Q_{\text{new}}$$

Isotopic ratios and neutron skins

Limitation to isotopic ratio method: enhanced sensitivity to the neutron distribution ρ_n(r) Fortson, Pang, Wilets, PRL 65, 2857 (1990)

$$\bar{Q}_W = -Nq_n + Zq_p(1 - 4\sin^2\theta_W) + \Delta Q_{\text{new}}$$

$$\frac{E1_{PV}}{E1'_{PV}} = 1 + \frac{\Delta N}{N} + \frac{3}{7}(aZ)^2 \frac{\left[\Delta R'_{ns} - \Delta R_{ns}\right]}{R_p}$$

skin contribution for 170 Yb - 176 Yb isotopes ~ 0.1%

Isotopic ratios and neutron skins [PHYSICAL REVIEW C **79, 035501 (2009)**]

Dispelling the curse of the neutron skin in atomic parity violation

B. A. Brown,¹ A. Derevianko,^{2,3} and V. V. Flambaum³

¹Department of Physics and Astronomy, and National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824-1321, USA ²Department of Physics, University of Nevada, Reno, Nevada 89557 ³ School of Physics, University of New South Wales, Sydney 2052, Australia

Neutron-skin effects in different isotopes are correlated

• Large APV effect (DeMille et al, 1995 - Tsigutkin et al, 2009)

- Large APV effect (DeMille et al, 1995 Tsigutkin et al, 2009)
- 7 stable isotopes (A=168, 170-174,176)

Isotope	NA (%)	Ι
¹⁷⁴ Yb	31.8	0
¹⁷² Yb	21.8	0
¹⁷⁶ Yb	12.8	0
¹⁷³ Yb	16.1	5/2
¹⁷¹ Yb	14.3	1/2
¹⁷⁰ Yb	3.04	0
¹⁶⁸ Yb	0.13	0

• PNC on chain of isotopes \rightarrow neutron distributions

 \rightarrow Physics beyond Standard Model

- Large APV effect (DeMille et al, 1995 Tsigutkin et al, 2009)
- 7 stable isotopes (A=168, 170-174,176)

Isotope	NA (%)	Ι
¹⁷⁴ Yb	31.8	0
¹⁷² Yb	21.8	0
¹⁷⁶ Yb	12.8	0
¹⁷³ Yb	16.1	5/2
¹⁷¹ Yb	14.3	1/2
¹⁷⁰ Yb	3.04	0
¹⁶⁸ Yb	0.13	0

• PNC on chain of isotopes \rightarrow neutron distributions

 \rightarrow Physics beyond Standard Model

• Two isotopes with nuclear spin \rightarrow hadronic weak interaction

The Yb PV experiment

The Yb PV experiment

$$R_0 \propto \left| A_{Stark} + A_{PNC} \right|^2 \approx \beta^2 E^2 \sin^2 \theta + 2E\beta \zeta \cos \theta \sin \theta$$

Stark-PV interference

Parity reversals: E (20 Hz) and θ (0.2 Hz)

PV asymmetry:
$$2\zeta/BE_0 \approx 5 \cdot 10^{-5}$$

¹⁷⁴Yb PV results at UC Berkeley

Selected for a Viewpoint in *Physics* PHYSICAL REVIEW LETTERS

PRL 103, 071601 (2009)

week ending 14 AUGUST 2009

Observation of a Large Atomic Parity Violation Effect in Ytterbium

K. Tsigutkin,^{1,*} D. Dounas-Frazer,¹ A. Family,¹ J. E. Stalnaker,^{1,†} V. V. Yashchuk,² and D. Budker^{1,3}

Yb reincarnation in Mainz

New apparatus

- Newly built vacuum system
- More powerful and frequency stable laser system
- More precise control of fields applied in interaction region
- 20 times better SNR

Mainz Roadmap

Verify expected isotopic dependence of PV (0.5% accuracy)

- Probe spin-dependent PV (sub-0.1 %)
- Neutron distributions/new physics (sub-0.1%)

Yb atomic beam apparatus

New Yb PV data in 4 spin-zero isotopes (450 hrs)

First observation of isotopic variation of atomic PV

SM: $Q_W \approx -N + Z(1 - 4\sin^2\theta_W) \rightarrow 1\%$ change per neutron around N=103

Observation: 0.96(15) % change per neutron

Single isotope measurement uncertainties

	Systematic uncertainties	Error (%)
	Harmonics ratio calibration	0.22
	Polarization angle	0.1
	High-voltage measurements	0.06
	Transition saturation correction	0.05 (0.09 for ¹⁷⁰ Yb)
	Field-plate spacing	0.04
	Photodetector response calibration	0.02
False-PV	Stray fields & field-misalignments	0.02
(1 year of	Total systematic	0.26
work)	Statistical uncertainty	0. 42 (0.9 for ¹⁷⁰ Yb)
	Total uncertainty	0.5 (0.9 for ¹⁷⁰ Yb)

Isotopic comparison **bonus**: decreased sensitivity to systematics

Yb PV measurement sensitivity

Next: spin-dependent PV with Yb

			T	able 1					
Nuclear	spin	-dependent	P-odd	amplitudes	$E1_{SD}$	are	in	units	of
(ĸea) ×	10^{-11}), A i	is the m	umber of nuc	cleons i	in the	e nu	cleus.	

Isotope	Transition	$F' \to F$	$E1_{SD}$
A = 171	${}^1S_0 \rightarrow {}^3D_1$	$1/2 \rightarrow 1/2$	-2.75
I = 1/2	${}^1S_0 \rightarrow {}^3D_1$	$1/2 \rightarrow 3/2$	-1.94
3	${}^1S_0 \rightarrow {}^3D_2$	$1/2 \rightarrow 3/2$	9.13
A = 173	${}^{1}S_{0} \rightarrow {}^{3}D_{1}$	$5/2 \rightarrow 3/2$	2.82
I = 5/2	${}^1S_0 \rightarrow {}^3D_1$	$5/2 \rightarrow 5/2$	-0.99
-	${}^1S_0 \rightarrow {}^3D_1$	$5/2 \rightarrow 7/2$	-2.85
	${}^1S_0 \rightarrow {}^3D_2$	$5/2 \rightarrow 3/2$	3.89
${}^{1}S_{0} \rightarrow {}^{3}D_{2}$	${}^1S_0 \rightarrow {}^3D_2$	$5/2 \rightarrow 5/2$	-6.79
	${}^{1}S_{0} \rightarrow {}^{3}D_{2}$	$5/2 \rightarrow 7/2$	-8.05

S.G. Porsev et al. Hyperfine Interactions 127, 395 (2000)

"Best guess" PV difference between ¹⁷³Yb F'=7/2 and $F'=3/2 \sim 0.15\%$ But...partial cancellation due to V_eA_n Need to boost SNR!

Yb sensitivity improvements

Need ~ 10 times better SNR for anapole, neutron skins

- Optical pumping in the spin-isotopes
- Laser cooling of the atomic beam
- Optimization of the oven flux
- Power build-up cavity mirror upgrades

(increase intracavity power, decrease the intensity)

PV in dysprosium

Atomic PV in Dy

Atomic PV in Dy

V. A. Dzuba, V. V. Flambaum, and I. B. Khriplovich (1986) Enhancement of P- & T-odd effects in rear-earth³ atoms

Dy parity violation experiment becomes...

PHYSICAL REVIEW A

VOLUME 56, NUMBER 5

NOVEMBER 1997

Search for parity nonconservation in atomic dysprosium

A. T. Nguyen,¹ D. Budker,^{1,2} D. DeMille,^{1,*} and M. Zolotorev³

¹Physics Department, University of California, Berkeley, California 94720-7300

²Nuclear Science Division, E. O. Lawrence Berkeley National Laboratory, Berkeley, California 94720

³Center for Beam Physics, E. O. Lawrence Berkeley National Laboratory, Berkeley, California 94720

(Received 2 June 1997)

Results of a search for parity nonconservation (PNC) in a pair of nearly degenerate opposite-parity states in atomic dysprosium are reported. The sensitivity to PNC mixing is enhanced in this system by the small energy separation between these levels, which can be crossed by applying an external magnetic field. The metastable odd-parity sublevel of the nearly crossed pair is first populated. A rapidly oscillating electric field is applied to mix this level with its even-parity partner. By observing time-resolved quantum beats between these sublevels, we look for interference between the Stark-induced mixing and the much smaller PNC mixing. To guard against possible systematic effects, reversals of the signs of the electric field, the magnetic field, and the decrossing of the sublevels are employed. We report a value of $|H_w| = |2.3 \pm 2.9$ (statistical) ± 0.7 (systematic)| Hz for the magnitude of the weak-interaction matrix element. A detailed discussion is given of the apparatus, data analysis, and systematic effects. [S1050-2947(97)02111-2]

Towards a sensitive search for variation of the fine-structure constant using radio-frequency E1 transitions in atomic dysprosium

A. T. Nguyen*

Department of Physics, University of California at Berkeley, Berkeley, California 94720-7300, USA

D. Budker[†]

Department of Physics, University of California at Berkeley, Berkeley, California 94720-7300, USA and Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

S. K. Lamoreaux[‡] and J. R. Torgerson[§]

University of California, Los Alamos National Laboratory, Physics Division, P-23, MS-H803, Los Alamos, New Mexico 87545, USA (Received 28 August 2003; published 12 February 2004)

Limit on the Temporal Variation of the Fine-Structure Constant Using Atomic Dysprosium

A. Cingöz,¹ A. Lapierre,¹ A.-T. Nguyen,² N. Leefer,¹ D. Budker,^{1,3} S. K. Lamoreaux,^{2,*} and J. R. Torgerson² ¹Department of Physics, University of California at Berkeley, Berkeley, California 94720-7300, USA ²Physics Division, Los Alamos National Laboratory, P-23, MS-H803, Los Alamos, New Mexico 87545, USA ³Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA (Received 1 September 2006; published 26 January 2007) University of California, Los Alamos National Laboratory, Physics Division, P-23, MS-H803, Los Alamos, New Mexico 87545, USA

(Received 28 August 2003; published 12 February 2004)

PHYSICAL REVIEW LETTERS

PHYSICAL REVIEW A 76, 062104 (2007)

Investigation of the gravitational-potential dependence of the fine-structure constant using atomic dysprosium

S. J. Ferrell,¹ A. Cingöz,¹ A. Lapierre,² A.-T. Nguyen,³ N. Leefer,¹ D. Budker,^{1,4} V. V. Flambaum,^{5,6} S. K. Lamoreaux,⁷ and J. R. Torgerson³

PHYSICAL REVIEW LETTERS

PHYSICAL REVIEW A 76, 062104 (2007)

PHYSICAL REVIEW A 81, 043427 (2010)

Transverse laser cooling of a thermal atomic beam of dysprosium

N. Leefer,^{1,*} A. Cingöz,^{1,†} B. Gerber-Siff,² Arijit Sharma,³ J. R. Torgerson,⁴ and D. Budker^{1,5,‡}

PHYSICAL REVIEW LETTERS

week ending 26 JANUARY 2007

PHYSICAL REVIEW A 76, 062104 (2007)

PHYSICAL REVIEW A 81, 043427 (2010)

Transverse laser cooling of a thermal atomic beam of dysprosium

PRL 111, 050401 (2013)

PHYSICAL REVIEW LETTERS

week ending 2 AUGUST 2013

ട്ട്

Limits on Violations of Lorentz Symmetry and the Einstein Equivalence Principle using Radio-Frequency Spectroscopy of Atomic Dysprosium

M. A. Hohensee,* N. Leefer, and D. Budker

Physics Department, University of California, Berkeley 94720, USA

C. Harabati, V. A. Dzuba, and V. V. Flambaum

School of Physics, University of New South Wales, Sydney 2052, Australia (Received 14 March 2013; published 29 July 2013)

PHYSICAL REVIEW LETTERS

week ending 26 JANUARY 2007

PHYSICAL REVIEW A 76, 062104 (2007)

PHYSICAL REVIEW A 81, 043427 (2010)

Transverse laser cooling of a thermal atomic beam of dysprosium

Revived Dy Atomic PV experiment

Improved theory (2010)

 $|H_W|=4 \pm 4 \text{ Hz}$ V. A. Dzuba & V. V. Flambaum, PRA 81, 052515 (**2010**)

Dy setup upgrades & current status

- New apparatus
- CW laser sources
- Soon: Optical pumping to extreme m_F states (x30 signal increase)

Dr. L. Bougas

Prof. D. Budker

Dr. A. Sharma

P. Leyser

A. Frabricant

Backup slides

Atomic PV landmarks

• 1959 Ya. B. Zel'dovich:

PNC (Neutr. Current) → Opt. Rotation in atoms

• 1974 M.-A. & C. Bouchiat

Z³ enhancement **→** PV observable in **heavy** atoms

• 1978-9 Novosibirsk, Berkeley

discovery of PV in OR(Bi) and Stark-interf.(TI)

•...1995 Boulder, Oxford, Seattle, Paris

PV measured to 1-2% in Cs, Tl, Bi, Pb

• 1997 Boulder 0.35% measurement, discovery of anapole moment

• 2009 Berkeley, 10% measurement in Yb. Largest effect ever observed in any atom

The Yb PV Experiment

Nuclear spin-dependent APV: $V_e \cdot A_N$

Only valence nucleon contributes

Suppressed by ~ 10³ compared to NSI effect

$$H_{axial} = \frac{G_F}{\sqrt{2}} \eta_{axial} (\boldsymbol{\alpha} \cdot \boldsymbol{I}) \rho(r)$$

$$\eta_{axial} = -C_N^{(2)} \frac{\kappa_N - 1/2}{I(I+1)}$$
 N=p or n

The Yb PV experiment

Yb systematics studies

Preliminary studies (~ 1 year)

Check model

$$r_0 = \frac{4E_{dc}}{E_0} + \frac{4\zeta}{\beta E_0} \cot\theta + \frac{4b_x e_y}{BE_0} \cot\theta - \frac{4b_x e_z}{BE_0} + \dots ???$$

- Check that PV result does not change with things like:
 - Varying *E*, *B* amplitude and *E* frequency.
 - Varying θ .
 - Different field plates and HV amplifiers.
 - Acqusition without power-build-up cavity .
 - Varying position on lineshape.
 - With left or right half of atom beam blocked.
- Measure "zero": asymmetry on ¹⁷¹Yb $F=1/2 \rightarrow F'=1/2$ transition.
- Measure PV on *m*=± 1 components (asymmetry flips sign).
- Calibrations applied to data (polarization θ , transition saturation...)

During the long PV run

- Measure and minimize field imperfections introducing false PV signals
- Monitor calibration parameters.