The CONUS coherent Neutrino scattering Experiment

Bridging the Standard Model to New Physics with the Parity Violation Program at MESA

23 April 2018 to 4 May 2018

Coherent Neutrino Scattering

The Standard Model has six different interactions of neutrinos with matter:

• 5 have already been detected

• 1 has so far not been detected:

Coherent neutrino-nucleus scattering: CEvNS

- conceptually important
- useful method to test new physics

D.Z. Freedman, Phys.Rev. 9 (1974) 5 A. Drukier, Leo Stodolsky, Phys.Rev. D30 (1984) 2295 (1984), DOI: 10.1103/PhysRevD.30.2295

Coherent Neutrino Scattering

Z-exchange of a neutrino with nucleus
→ nucleus recoils as a whole
→ coherent up to E_v~ 50 MeV

$$Q_w = N - (1 - 4\sin^2\theta_w)Z \sim \mathbf{N}$$

$$\frac{d\sigma(E_{\nu},T)}{dT} = \frac{G_f^2}{4\pi} Q_w^2 M \left(1 - \frac{MT}{2E_{\nu}^2}\right) F(Q^2)^2 \sim \mathbb{N}^2$$

 $N \simeq 40 \Rightarrow N^2 = 1600 \Rightarrow detector mass 10t \Rightarrow few kg$

Important: Coherence length ~ 1/E
→ need neutrinos below O(50) MeV for typical nuclei
→ low energy E_v ← → lower cross sections ← → maximal flux!

The Neutrino Spectrum

10 GW at a distance of 150 km

close to power reactors: ca. 4% of the thermal power P 3.9 GW \rightarrow ca. 150 MW in v's dilution by distance R flux $\Phi \sim P/R^2$ ca. 150 kW/m² at 10m distance

Cross section grows with neutrino energy

source	flux	
reactor neutrinos (3 GW, at 10m distance)	5 x 10^13	/cm^2/s
solar neutrinos (on Earth)	6 x 10^10	/cm^2/s
supernova (50 kpc Abstand, for O(10) seconds)	~ 10^9	/cm^2/s
geo-neutrinos (on the Earth's continental surface)	6 x 10^6	/cm^2/s

Two Paths

Low energy v's from accelerators:

π-decay-at-rest (DAR) v source
Different flavors produced
relatively high recoil energies
→ close to de-coherence

Reactors:

Lower v energies than accelerators Lower cross section Different flavor content implications for probes of new physics

First Observation of CEvNS

COHERENT experiment (stopped π beam 30-50 MeV neutrinos)

- 4 different detector technologies
 - 14 kg of CsI scintillating crystals
 - 35 kg single phase LAr detector
 - 185 kg NaI scintillating crystal
 - 10 kg HPGe PPC detectors
- SNS source with v flux of 4.3 · 10⁷ v/cm²/s @ 20m

First COHERENT result July 2017

- 15 month of live-time accumulated with CsI[Na]
- 6.7 σ significance for excess in events, with 1 σ consistency with the SM prediction

The CONUS Experiment

Combine:

- highest neutrino flux
 → close to power reactor

COherent NeUtrino Scattering experiment

C. Buck, J. Hakenmüller, G. Heusser, M. Lindner, W. Maneschg, T. Rink, H. Strecker, T. Schierhuber and V. Wagner Max-Planck-Institut für Kernphysik, Heidelberg

> K. Fülber and R. Wink Preussen Elektra GmbH, Kernkraftwerk Brokdorf

Experimental Requirements

• measure nuclear recoil energy T

for $E_v = 10 \text{ MeV} \rightarrow T_{max} \simeq 3 \text{ keV}$ (in Ge)

energy loss due to quenching (Lindhard)
 → Quenching Factor (QF)
 QF down to 0.2 in Ge → 600 eV
 → include systematic uncertainty

D. Barker, D.M. Mei, 2012 [1]

detection of CEvNS signal:

- high v flux
- low threshold (sub keV)
- low background
 - radio-pure materials
 - "virtual depth" shielding

Event Rates for a conceivable Experiment

1kg detector: BEGE or SAGE type germanium diode Distance D=15 m; 3.9GW $\leftarrow \rightarrow$ flux = 3.12*10¹³/cm²/s Background ~ 1/kg/keV/day

S[1/yr] / B[1/ye] / R=S/B

Pulser/Threshold [eV]	QF = 0.15	QF = best fit	QF = 0.25
60 / 180	971 / 61 / 15.8	2 173 / 85 / 25.6	9 194 / 127 / 72.3
65 / 195	588 / 58 / 10.1	1 488 / 81 / 18.4	6 962 / 123 / 56.4
70 / 210	352 / 55 / 6.4	1 014 / 78 / 13.0	5 272 / 120 / 44/0
75 / 225	207 / 52 / 4.0	686 / 75 / 9.2	3 989 / 117 / 34.2
80 / 240	120 / 49 / 2.5	460 / 71 / 6.5	3 012 / 113 / 26.7
85 / 255	69 / 46 / 1.5	306 / 68 / 4.5	2 269/110/20.7

- Not trivial, but doable on a short time scale!
- Even a 1kg detector can detect CEvNS
- ➔ Upscaling...

Maneschg, Rink, Salathe, ML

The Source

The Brokdorf (Germany) power plant:

thermal power 3.9GW_{th} detector @ d=17m → v flux: 10¹⁴/cm²/s ca. 50 kW/m² in v's very high duty cycle

→ most intense integral neutrino flux E_v up to ~ 8 MeV → fully coherent

access during operation overburden 10-45 m.w.e measurements of neutron background ON/OFF periods → backgd. measurement

The GIOVE active Shield

coaxial HPGe detector (m_{act} = 1.8 kg) radio-pure passive shielding:

- Pb and Cu against external radioactivity
- borated PE to capture and moderate neutrons

active veto:

- plastic scintillators with PMTs
- 99% muon veto efficiency (dead time ~2%)

main purpose: material screening

detector	depth [m w.e.]	μ flux reduction	Bkg rate [45,50] keV [kg ⁻¹ d ⁻¹ keV ⁻¹]
Gemma-I[5]	70	~ 10	2.1 ± 0.7
Texono[6]	25	\sim 4	1.3 ± 0.5
GIOVE[7]	15	~2-3	0.4 ± 0.1

→ GIOVE: ``virtual depth'' of several hundred meter

- inner layer: Pb \Rightarrow suppress μ -induced bremsstrahlung continuum
- careful material selection (screening @MPIK & GeMPIs@LNGS)
- testing at Low Level Laboratory at MPIK (15 m w.e.):
 - mechanical tests
 - muon veto performance (with coaxial high-purity detector CONRAD)
 - radiopurity of shield (with CONRAD)

Detectors

Low background - low threshold Ge detectors BEGe R&D @MPIK: Asterix & Obelix....

→ kg-size SAGe detectors
 PT-cooled (no LN; optimally adjustable T)
 pulser resolution 70-85 eV, E_{th} ~ 240 eV

$$CONUS: 4kg = 4x 1kg$$

The CONUS Detector

Components:

about 1.2 m 4 \rightarrow

- active/passive shielding
- 4 Germanium detectors
- 4kg -> smallest v detector
- PT coolers
- → all ultra low background
- electronics and DAQ rack

Successful combination of three essential improvements:

- new (best) active/passive shielding (GIOVE @ MPIK = "virtual depth")
- new detectors with very low thresholds
- site with highest neutrino flux

Start of the project summer 2016

Data taking starts 2017 (6 months delay due to unexpected reactor stop)

.

Muon induced Background in CONUS Shield

Continuum of bremsstrahlung:

- Pb has more bremsstrahlung than Cu (~Z²)
- but better self-shielding in Pb (~Z⁵)
 → in total:

lower count rate at low energies

Energy m _{act}	${ m GIOVE}\ 1.8{\pm}0.1~{ m kg}$	$\begin{array}{c} CONRAD \\ \approx 2.2 kg^* \end{array}$
[45,100] keV, cts in $d^{-1}kg^{-1}$	$\textbf{2146} \pm \textbf{13}$	1162 ± 8 *
$[100,500]$ keV, cts in d $^{-1}$ kg $^{-1}$	18177 ± 38	$9799\pm23^*$
$[45,2700]$ keV, cts in d $^{-1}$ kg $^{-1}$	30952 ± 50	$20407\pm33^*$
511 keV, cts in d^{-1}	1113 ± 17	1203 ± 12

* detector characterization in progress, only stat. uncertainty on meas. data given

Muon Veto Performance

Muon veto efficiency:

- around 99% (comparible to GIOVE) almost no line background of radioactive contaminations
- in ROI [45,50] keV: < 1kg⁻¹ d ⁻¹ keV⁻¹

design goals achieved

detector	depth [m w.e.]	μ flux reduction	Bkg rate [45,50] keV $[kg^{-1}d^{-1}keV^{-1}]$		
Gemma-I[5] Texono[6]	70 25	${}^{\sim}_{\sim}$ 10 ${}^{\sim}_{\sim}$ 4	$\begin{array}{c} \textbf{2.1} \pm \textbf{0.7} \\ \textbf{1.3} \pm \textbf{0.5} \end{array}$		
GIOVE[7]	15	~2-3	0.4 ± 0.1		
CONRAD	15	~2-3	0.7 ± 0.1		

 \Rightarrow "virtual depth" of several 100 m w.e. achieved!

Neutron Background

Neutron background at reactorsite (10-45 m.w.e. overburden)

Cosmic ray background: more overburden than at MPIK

- similar conditions: μ -induced neutrons in shield dominate
- background understood and acceptable

Neutrons from reactor

- measured by PTB Braunschweig (German National Metrology Institute)
- MC simulations from reactor core to experimental site in progress
- outcome:
 - mostly thermal neutrons arrive at experimental site
 - thermal neutrons are shielded well
 - within shield: mostly muon-induced neutrons in lead

CONUS100

Upscaling to 100kg → **very interesting Potential** high statistics \rightarrow precision \rightarrow various interesting topics...

assume:

	Puler/Thresh [eV]	QF=0.15	BSMsens	QF=BF	BSMsens	QF=0.25	BSMsens
assume: 100kg detector 4GW @ 15m flux ~3*10 ¹³ /cm ² /s background 1/kg/day	40 / 120	647 474/ 8291 / 78.1	1*10 ⁻³	965 999/ 10 775/89.7	1*10 ⁻³	2.9*10 ⁶ / 15 158 / 189	6*10 ⁻⁴
	45 / 135	407 092/ 8 036 / 50.7	2*10 ⁻³	664 316/ 10 519/63.2	1*10 ⁻³	2.1*10 ⁶ / 14 866 / 144	7*10 ⁻⁴
	50 / 150	254 745/ 7780 / 32.7	2*10 ⁻³	458 072/ 1 0264/44.6	1*10 ⁻³	1.6*10 ⁶ / 14 574 / 84.9	8*10 ⁻⁴
	55 / 165	158 109/ 7 524 / 21.0	3*10 ⁻³	315 843/ 9 971/31.7	2*10 ⁻³	1.2*10 ⁶ / 14 318 / 84.9	9*10 ⁻⁴
BSMsens=∆S/S	60 / 180	97 066/ 7 305 / 13.3	3*10 ⁻³	217 277/ 9 716/22.4	2*10 ⁻³	919 435/ 13 026 / 65.6	1*10 ⁻³
	65 / 195	58 827/ 7 049 / 8.3	4*10 ⁻³	148 848/ 9 460/15.7	3*10 ⁻³	696 196/ 13 770 / 50.6	1*10 ⁻³
	70 / 210	35 154/ 6 830 / 5.1	5*10 ⁻³	101 386/ 9 204/11.0	3*10 ⁻³	527 204/ 13 514 / 39.0	1*10 ⁻³
Manascha Rink Salatha MI	75 / 225	20 711/ 6 575 / 3.2	7*10 ⁻³	68 573/ 8 949/7.7	4*10 ⁻³	398 867/ 13 222 / 30.2	2*10 ⁻³
	80 / 240	12 042/ 6 355 / 1.9	9*10 ⁻³	46 008/ 8 730/5.27	5*10 ⁻³	301 231/ 12 966 / 23.2	2*10 ⁻³
	85 / 255	6 924/ 6 136 / 1.1	1*10 ⁻²	30 598/ 8 474/3.6	6*10 ⁻³	226 910/ 12 711 / 17.9	2*10 ⁻³
	BSMsens=∆S/S					S[1/yr] /	' B[1/yr] / R=S/B

CEvNS becomes a Tool for other Topics

DM connection:

- 1) DM experiments <u>assume</u> coherent DM scattering \rightarrow test of CvS
- 2) Neutrino floor of direct DM experiments *IS* due to CvS

Searches for new Physics: Magnetic Moments

10

Magnetic moment for minimal v masses are very tiny:

Dirac:
$$\begin{aligned} \mu_{kk}^D &\simeq 3.2 * 10^{-19} \left(\frac{m_k}{\text{eV}}\right) \mu_B \\ \text{ajorana:} \quad \mu_{ll'}^M &\lesssim 4 * 10^{-9} \mu_B \left(\frac{M_{ll'}^M}{\text{eV}}\right) \left(\frac{\text{TeV}}{\Lambda}\right)^2 \left|\frac{m_{\tau}^2}{m_l^2 - m_{l'}^2}\right| \end{aligned}$$

New physics \rightarrow detectable enhancements due to new physics: SUSY, extra dimensions, ...

At least new best limits: e-scattering (GEMMA) and astrophysics:

$$\mu_{
u} < 3 imes 10^{-11} \mu_b$$

Scattering on protons coherently enhanced: \rightarrow detectable at low energy (Vogel & Engel 1989)

 $(d\sigma/dT)$ (10⁻⁴⁵ cm² MeV⁻¹ fission⁻¹) magnetic, µ_v = 10 - 10 102 weak, $\sin^2 \vartheta_w = 0.226$ 101 10⁰ 10 10^{-2} 10 -3 10-2 10 - 110 0 10 1 Electron recoil T (MeV)

$$\left. \frac{d\sigma}{dT_{\rm R}} \right|_{\mu_{\nu}} = \left. \frac{\pi \alpha^2 \mu_{\nu}^2}{m_e^2} \left[\frac{1 - T_{\rm R}/E_{\nu}}{T_{\rm R}} + \frac{T_{\rm R}}{4E_{\nu}^2} \right] \right.$$

M. Lindner, MPIK

Μ

Potential for Magnetic Moments

100kg * 5y = 500 kg-year ; low threshold → one order of magnitude better

Searches for new Physics: NSI's

NSI's ←→ new physics at high scales Which are integrated out Z', new scalars, ... → ε_{ij}

 $\mathcal{L}_{NSI} \simeq \epsilon_{lphaeta} 2\sqrt{2}G_F(ar{
u}_{Leta} \ \gamma^{
ho} \
u_{Llpha})(ar{f}_L\gamma_{
ho}f_L)$

 $\frac{d\sigma}{dT}(E_{\nu},T) = \frac{G_F^2 M}{\pi} \left(1 - \frac{MT}{2E_{\nu}^2} \right) \times \left\{ \left[Z(g_V^p + 2\varepsilon_{ee}^{uV} + \varepsilon_{ee}^{dV}) + N(g_V^n + \varepsilon_{ee}^{uV} + 2\varepsilon_{ee}^{dV}) \right]^2 + \frac{1}{2} \left[Z(g_V^p + 2\varepsilon_{ee}^{uV} + \varepsilon_{ee}^{dV}) + N(g_V^n + \varepsilon_{ee}^{uV} + 2\varepsilon_{ee}^{dV}) \right]^2 + \frac{1}{2} \left[Z(g_V^p + 2\varepsilon_{ee}^{uV} + \varepsilon_{ee}^{dV}) + N(g_V^n + \varepsilon_{ee}^{uV} + 2\varepsilon_{ee}^{dV}) \right]^2 + \frac{1}{2} \left[Z(g_V^p + 2\varepsilon_{ee}^{uV} + \varepsilon_{ee}^{dV}) + N(g_V^n + \varepsilon_{ee}^{uV} + 2\varepsilon_{ee}^{dV}) \right]^2 + \frac{1}{2} \left[Z(g_V^p + 2\varepsilon_{ee}^{uV} + \varepsilon_{ee}^{dV}) + N(g_V^n + \varepsilon_{ee}^{uV} + 2\varepsilon_{ee}^{dV}) \right]^2 + \frac{1}{2} \left[Z(g_V^p + 2\varepsilon_{ee}^{uV} + \varepsilon_{ee}^{dV}) + N(g_V^n + \varepsilon_{ee}^{uV} + 2\varepsilon_{ee}^{dV}) \right]^2 + \frac{1}{2} \left[Z(g_V^p + 2\varepsilon_{ee}^{uV} + \varepsilon_{ee}^{dV}) + N(g_V^n + \varepsilon_{ee}^{uV} + 2\varepsilon_{ee}^{dV}) \right]^2 + \frac{1}{2} \left[Z(g_V^p + 2\varepsilon_{ee}^{uV} + \varepsilon_{ee}^{dV}) + N(g_V^n + \varepsilon_{ee}^{uV} + 2\varepsilon_{ee}^{dV}) \right]^2 + \frac{1}{2} \left[Z(g_V^p + 2\varepsilon_{ee}^{uV} + \varepsilon_{ee}^{dV}) + N(g_V^n + \varepsilon_{ee}^{uV} + 2\varepsilon_{ee}^{dV}) \right]^2 + \frac{1}{2} \left[Z(g_V^p + 2\varepsilon_{ee}^{uV} + \varepsilon_{ee}^{dV}) + Z(g_V^n + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{dV}) \right]^2 + \frac{1}{2} \left[Z(g_V^n + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV}) + Z(g_V^n + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV}) \right]^2 + \frac{1}{2} \left[Z(g_V^n + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV}) + Z(g_V^n + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV}) \right]^2 + \frac{1}{2} \left[Z(g_V^n + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV}) + Z(g_V^n + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV}) \right]^2 + \frac{1}{2} \left[Z(g_V^n + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV}) + Z(g_V^n + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV}) \right]^2 + \frac{1}{2} \left[Z(g_V^n + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV}) + Z(g_V^n + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV}) \right]^2 + \frac{1}{2} \left[Z(g_V^n + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV}) + Z(g_V^n + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV}) \right]^2 + \frac{1}{2} \left[Z(g_V^n + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV}) + Z(g_V^n + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV}) \right]^2 + \frac{1}{2} \left[Z(g_V^n + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV}) \right]^2 + \frac{1}{2} \left[Z(g_V^n + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV}) \right]^2 + \frac{1}{2} \left[Z(g_V^n + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV}) \right]^2 + \frac{1}{2} \left[Z(g_V^n + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV}) \right]^2 + \frac{1}{2} \left[Z(g_V^n + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV} + \varepsilon_$ $\sum_{\alpha e} \left[Z(2\varepsilon_{\alpha e}^{uV} + \varepsilon_{\alpha e}^{dV}) + N(\varepsilon_{\alpha e}^{uV} + 2\varepsilon_{\alpha e}^{dV}) \right]^2 \right\}$

Barranco et al. 2005

Competitive method to test TeV scales
 ε = 0.01 ← TeV scales

NSI-Potential

100kg detector, 5 years operation @ 4GW ML, W. Rodejohann, X.Xu

Precise Measurement of $\sin^2\theta_W$ at low E

slide adopted from K. Scholberg

Searches for new Physics: Sterile v's

- Various indications / hints for sterile neutrinos
- Tensions with cosmology?
- eV hints with small mixing
- keV warm dark matter with tiny mixing $\leq 10^{-8}$ x
- ...different mass ranges
- any sterile state would motivate more...

 $P(\nu_{lpha}
ightarrow \nu_{lpha}) = 4|U_{lpha 4}|^2(1-|U_{lpha 4}|^2)\sin^2(1.27\Delta m_{41}^2L/E)$

test if / how flux deviates from 1/R² time scales compared to other projects

B. Dutta et al, arXiv:1511.02834

Nuclear Physics with coherent Scattering

Remember: DAR sources close to decoherence < > combine with reactor measurements

we can start to explore nuclear form factors

P. S. Amanik and G. C. McLaughlin, J. Phys. G 36:015105

K. Patton et al., PRC86 (2012) 024612

$$\frac{d\sigma}{dT}(E,T) = \frac{G_F^2}{2\pi} M \left[2 - \frac{2T}{E} + \left(\frac{T}{E}\right)^2 - \frac{MT}{E^2} \right] \frac{Q_W^2}{4} F^2(Q^2) < 0$$

Form factor: encodes information about nuclear (primarily neutron) distributions

Fit recoil *spectral shape* to determine the F(Q²) moments (requires very good energy resolution, good systematics control)

Nuclear Safeguarding

P. Huber, talk at NA/NT workshop, Manchester, May 2015

Presence of plutonium breeder blanket

in a reactor has v spectral signature

$$^{238}\text{U} + n \rightarrow ^{239}\text{U} \stackrel{\beta}{\rightarrow} ^{239}\text{Np} \stackrel{\beta}{\rightarrow} ^{239}\text{Pu}$$

 $\boldsymbol{\nu}$ spectrum is below IBD threshold

➔ accessible with CEvNS, but require low recoil energy threshold

a) Of interest to IAEA

b) Could be used as an extra "sensor" in reactors (close to core ← → 1/R²)
→ safety, optimal burn-up = neutrino technology

Summary

- CEvNS recently observed by COHERENT at $E_v \simeq 30-50$ MeV
- CONUS will see CEvNS of reactor neutrinos (few MeV)
 - detector ready and tested ; reactor re-started
 - final approval for operation of CONUS @ Brokdorf
 - move detector in place \rightarrow data taking in 2017
- CEnNS will become an interesting tool
 - discussed upscaling of existing technology to O(100kg)
 - will contribute / make use of better β -spectra
 - coherent v scattering $\leftarrow \rightarrow$ DM & WIMP scattering, neutrino floor
 - search / limits for magnetic Moments
 - search for new physics: NSIs, steriles, $sin^2\theta_W$, sterile oscillation searches
 - nuclear form factors with neutrinos $F(q^2)$
 - supernova physics
 - reactor v spectrum & anomalies
 - reactor monitoring: safe-guarding, optimization

→ very interesting potential of CEvNS