sin²θ_w(Q²), Radiative Corrections & "New Physics"

William J. Marciano April 23, 2018

"The Weak Mixing Angle, $sin^2\theta_W$, is a very special parameter that confirmed the Standard Model and continues to constrain and probe New Physics beyond it"

Early History of Electroweak Unification & $sin^2\theta_W$

Algebra of SU(2)_LxU(1)_Y mixing **Glashow 1961** $A_{\mu}=B^{0}_{\mu}cos\theta_{W}+W^{0}_{\mu}sin\theta_{W}$ photon $Z_{\mu}=W^{0}_{\mu}cos\theta_{W}-B^{0}_{\mu}sin\theta_{W}$ Z boson $tan\theta_{W}=g'/g$

Spontaneous Symmetry Breaking via Higgs Mechanism Scalar Doublet \rightarrow Masses Weinberg 1967 $m_W = m_Z \cos \theta_W$ Higgs Boson!

Renormalizable -> Finite Predictions 't Hooft 1971

Experiment takes over

1973 Weak Neutral Currents Discovered! $v_{\mu}e$ Early Atomic Parity Violation Ambiguous SU(2)_LxU(1)_Y in some peril.

1978 DIS polarized eD at SLAC (E122) **Prescott et al.** observe γ -Z interference Confirm SU(2)_LxU(1)_Y sin² θ_{w} =0.22(2) lend support to GUTS <u>Should have received a Nobel Prize</u>

<u>Outline</u>

1. <u>Introductory Remarks</u>: sin²θ_W Status vs SM Z Pole vs low Q² & BSM

2. EW Radiative Corrections

(Running sin²θ_W(Q²)) & Parity Violating Asymmetries Moller(ee) vs P2 (ep) Loop Effects

3. <u>Z' Boson Sensitivity</u> (extra U(1)' gauge symmetry) Heavy Z' up to ~ 8TeV Light Z' with Very Small "Induced" Couplings (eg Dark Parity Violation DAVOUDIASL, LEE, WJM)

Precision EW Parameters (status 2008 vs 2014):

Quantity	2008 Value		2014 Value	Comment
α^{-1}	137.035999084(5	1)	137.035999049(90)	$\alpha^{-1}(a_e)$ vs $\alpha^{-1}(Rb)$
G_{μ}	1.16637(1)x10 ⁻⁵ Ge	/ -2	1.1663787(6)x10 ⁻⁵ GeV ⁻²	τμ+ PSI
mz	91.1875(21)GeV		91.1876(21)GeV	-
*m _t	171.4(2.1)GeV	\rightarrow	<u>173.3(0.8)GeV</u>	FNAL/LHC
*m _H	>114GeV	\rightarrow	125-126GeV	
m _w	80.410(32)GeV	\rightarrow	<u>80.385(15)GeV</u>	LEP2/FNAL
sin²θ _w (m _z)) 0.23070(26)		0.23070(26)	SLAC A _{LR}
$sin^2 \theta_W(m_Z)$) 0.23193(29)		0.23193(29)	CERN A _{FB} (bb)
	(3 sigma difference	?)		
sin²θ _w (m _z)) _{ave} 0.23125(16)		0.23125(16)	Z Pole Ave.

A Beautiful Relation

SU(2)_LxU(1)_Y + Higgs Doublet + Renormalizability

• $\sin^2 \theta_W^0 = 1 - (m_W^0/m_Z^0)^2 = (e^0/g^0)^2$ Natural Bare Relation

Radiative (Loop) Corrections - Finite & Calculable! Demonstrated by Bollini, Giambiagi & Sirlin (1972)

WJM(1974) Thesis: Finite Parts Calculated but model incomplete: Charm, QCD, 3rd Generation? time not quite right for full EW Radiative Corrections Main effect: $\alpha = 1/137 \rightarrow \alpha(m_z) \sim 1/128$ Large 7% Effect Later: Large $\alpha m_t^2/m_W^2$ Corrections M. Veltman Standard Model Predictions Through 2 loops Assuming No New Physics

 $\sin^2\theta_W(m_Z)_{MS} = \pi \alpha / \sqrt{2m_W^2} G_\mu (1 - \Delta r(m_Z)_{MS})$ $\Delta r(m_Z)_{MS} = 0.0693(2) \rightarrow \sin^2\theta_W (m_Z)_{MS} = 0.23110(9)$

 $sin^{2}2\theta_{W}(m_{Z})_{MS}=2\sqrt{2\pi\alpha}/m_{Z}^{2}G_{\mu}(1-\Delta r'(m_{t},m_{H}))$ $\Delta r'(m_{t},m_{H})=0.0598(2) \rightarrow sin^{2}\theta_{W}(m_{Z})_{MS}=0.23124(6)$ $\pm 0.03\%$

Error Expected to be reduced (improved m_t) to ~ ±0.01% Corresponds to m_w =80.362(6)

Any significant difference with other precise sin²θ_w measurement Implies "New Physics" Currently sin²θ_w(m_z)_{ave}= 0.23125(16) Excellent Agreement

Evidence for Grand Unification?

In simplest GUTS (SU(5), SO(10)...) $\sin^2\theta_W^0$ =3/8 at unification $sin^2\theta_W(m_z)_{MS}$ =3/8[1-109 α /18 π ln(m_X/m_Z)+...] ~0.21! (Great Desert?) μ =m_X~2x10¹⁴GeV in minimal SU(5) But later, minimal SU(5) ruled out by proton decay exps τ (p \rightarrow e⁺ π^0)>10³³yr \rightarrow m_X>3x10¹⁵GeV <u>SUSY GUT Unification</u> (m_{susy}~1TeV) \rightarrow m_X~10¹⁶GeV τ_p ~10³⁵-10³⁶yr

SUSY sin²θ_W(m_Z)_{MS}=0.233 (Current Agreement!) (Where is SUSY at the LHC?)

S & T Constraints Gauge Boson Self-Energy Loops

 $\frac{Experimental Averages}{m_{W}} = \frac{0.23125(15)}{0.23125(15)} & m_{W} = \frac{80.385(15)GeV}{0.23125(15)}$

 $\frac{Standard Model + S \& T}{\sin^2 \theta_W(m_Z)_{MS}} = \frac{0.23124(6)[1+0.016S-0.011T]}{m_W} = \frac{80.362(6)GeV[1-0.0036S+0.0056T]}{S \approx 0.7T (from Z pole sin^2 \theta_W(m_Z)_{MS}} = \frac{0.23125(15)}{0.23125(15)})$ S=0.07(8) T=0.10(11) $\Delta N_{doublets}$ =2(2) Little (but some) room available for "New Physics" Constrains: New Dynamics (Technicolor), 4th Generation, SUSY, Z', Z'' (mixing)...

Best Off Z Resonance Measurements of $\sin^2\theta_W$

(Not Competitive with Z Pole)

Reaction	sin²θ _w (m _z) _{MS}	<q></q>
Cs APV	0.2283(20)	2.5MeV
E158 ee	0.2329(13)	160MeV
Q _{weak} ep	0.2329(30)	160MeV
6GeV Dis eD	0.2299(43)	1.5GeV
NuTeV v _µ N	0.2356(16)	3-4GeV

 $\frac{\text{NuTeV}}{\text{A}_{\text{RL}}(\text{ee}) = -131(14)(10) \times 10^{-9} \ \alpha \ (1-4 \sin^2 \theta_{\text{W}})$ Best Low Q² Determination $\sin^2 \theta_{\text{W}}(m_z)_{\text{MS}} = 0.2329(13)$ Waiting for Qweak

E158 at SLAC Pol ee→ee Moller)

E_e≈50GeV on fixed target, Q²=0.02GeV²

 $A_{IR}(ee) = -131(14)(10) \times 10^{-9} \alpha (1 - 4 \sin^2 \theta_W)$ EW Radiative Corrections ~-40%! (Czarnecki &WJM 1996) More $sin^2 \theta_W$ Sensitivity! Measured to $\pm 12\% \rightarrow \sin^2\theta_W$ to $\pm 0.6\%$ (20 to 1) \rightarrow sin² $\theta_{W}(m_{z})_{MS} = 0.2329(13)$ slightly high Best Low Q² Determination of $sin^2\theta_w$ $A_{LR}(ee)^{exp} = A_{LR}(ee)^{SM}(1+0.13T-0.20S+7(m_Z/m_{Zy})^2...)$ <u>Constrains</u> "New Physics" eq m_{Zy}>0.6TeV, H⁻⁻,S, Anapole Moment, ... Together APV(Cs) & E158 \rightarrow sin² θ_{W} (Q²) running $sin^2\theta_W(m_7)_{MS} = 0.232(1)$ Good agreement with Z Pole

1 loop contributions to $sin^2\theta_w(Q^2)$ running

Fig. 2. $\gamma - Z$ mixing diagrams and W-loop contribution to the anapole moment.

Box Diagrams (tend to cancel) \rightarrow very small 2 loop uncertainty ($\Delta A_{RL}/A_{RL} \sim \pm 0.3\%$)

EW Radiative Corrections to Moller A_{RL}(-40%) A. Czarnecki & WJM PRD(1996)

A_{RL}(ee)= α (1-4sin²θ_W) sin²θ_W(m_Z)_{MS}= <u>0.23124(6)</u> or running + 3.01(25)_{hadronic}% sin²θ_W(Q=0) = <u>0.23820(60)</u> + WWbox (+3.6%) γZbox...(-5.5%) partial cancellation + other small 1 loop corrections → -40(3)% reduction!

E158 $\Delta A_{RL}/A_{RL} = \pm 12.5\%$ vs Running unc. $\pm 6\%$?

Erler & Ramsey-Musolf \rightarrow factor of 8.6 error reduction! +3.01(25)% \rightarrow +2.99(3)% <u>Theory ±0.6% vs Moller exp ±2.4%</u> $\Delta sin^2 \theta_W^{RC} \sim \pm 0.00007!$ Pristine Potentially another factor of 2 reduction via lattice

Measurements of running $\sin^2\theta_W(Q^2)$

Goals of Future Low Q² Experiments

 High Precision: Δsin²θ_W~±0.0002 - 0.0004 or better Low Q² Sensitivity to "New Physics" (eg Dark PV)

SUSY Loops Sensitivity in Moller vs SM & Z pole (Ramsey-Musolf)

S~0.7T?, Confirm Z Pole Ave/m_W determination? Z pole implies $|0.25T-0.34S| \le 10^{-3}$; <u>TRUE?</u>, If so, Charge radius X(Q²), Z' ... of prime importance Heavy $m_{Z'} > 1-8$ TeV, Model Dependent Sensitivities (Do not interfere at Z Pole) *Light $m_{Z'} < 10$ GeV (Dark Parity Violation) Sensitivity

$sin^2\theta_W(Q^2)$ Measurements & expected Future Sensitivities

Z' Boson Sensitivity (extra U(1)' gauge symmetry

Conesquences of $A_{RL}(ee \rightarrow ee)$ to ±2.4% $\Delta sin^2 \theta_W(m_z)_{MS} = \pm 0.00027!$ $A_{RL}(ee)^{exp} = A_{RL}(ee)^{SM}(1+0.25T-0.34S+7(m_z/m_{Z\chi})^2 ...$ $+0.7R(0) + SUSY + H^{-}...)$ Z pole $sin^2 \theta_W(m_z)_{MS} \rightarrow 0.25T-0.34S$ very small. <u>Is it?</u>

SM agreement significantly constrains BSM **Deviation Implies New Physics** (Many Z' Examples) **Complements LHC Z' Direct Discovery 1-8TeV** (LHC Requires relatively large Z' production & I⁺I⁻ BR) (Potentially) Watered down by BSM decay modes

Examples

U(1)_χ, U(1)_ψ of E₆ GUT (Mix) ≤2TeV sensitivity Much Stronger coupling → Better Sensitivity → O(8TeV)

 $U(1)_{B-L}$, $U(1)_{Le-L\mu}$, $U(1)_{SUSY}$... Many Heavy Z' Examples

LHC Sensitivity may be diluted by reduced I⁺I⁻ BRs

Light Z' bosons with very weak SM couplings ~ 10⁻³-10⁻⁶g I will illustrate **dark Z** model of (DAVOUDIASL, LEE, MARCIANO) GENERALIZATION OF DARK PHOTON MODEL

The Dark Boson – A Portal to Dark Matter

What if some U(1)_d gauge symmetry from the Dark or some Other Sector contains a "Light" *Dark Photon, U Boson, Hidden Boson... Dark Z (Z_d)*

Introduced for: 1) Sommerfeld Enhancement D+D \rightarrow Z_d+Z_d

- 2) $Z_d \rightarrow e^+e^-$ (source of positrons, γ -rays)
- 3) Cosmic Dark Matter Stability via global U(1)_d
- ^{*}4) Light Dark Matter Abundance
- *5) <u>Muon Anomalous Magnetic Moment</u>

Can we find direct evidence for such a light boson in the laboratory?

Dark Photon & Dark Z

Interacts with our particle world via

1) Kinetic Mixing U(1)_YxU(1)_d $\epsilon eZ_d^{\mu}J_{\mu}^{em}$ $\epsilon \approx \alpha/\pi \approx 2x10^{-3}$ $\Delta a_{\mu} = a_{\mu}^{exp} - a_{\mu}^{SM} = 288(80)x10^{-11} (\underline{3.6\sigma \, discrepancy!})$ $\approx \frac{1}{4}(\alpha/\pi)\epsilon^2 m_{Zd}\approx 20-300 MeV \text{ (see figure)}$

2) Z-Z_d Mass Mixing: ε_zg/2cosθ_WZ_d^µJ_µ^{NC} ε_z=m_{zd}/m_zδ δ≈<u>10⁻³</u> (~v₁²/v₂v_s) Induced by extended Higgs (2 doublets + sing.) Portal Rare Higgs →ZZ_d, K → πZ_d & B→KZ_d decays ~ δ², <u>Dark Parity Violation</u> (probes δ≈2x<u>10⁻³</u> ε≈ 2x10⁻³) (DAVOUDIASL, LEE, MARCIANO) Enhanced Phenomenology

3) Small direct coupling eg. U(1)_{Le-Lµ} ~ few x10⁻³e

Example

One Loop gamma- γ_d Kinetic Mixing $\epsilon F_{\mu\nu}D^{\mu\nu}$ (eg Through Heavy Charged Leptons) That also carry U(1)_d charge Expect $\epsilon \sim eg_d QQ_d/8\pi^2 \leq O(10^{-3})$

Muon Anomalous Magnetic Moment

 $a_{\mu}^{Zd} = \alpha/2\pi\epsilon^{2}F(m_{Zd}/m_{\mu}), F(0)=1$ solves $(g_{\mu}-2)/2$ discrepancy $\approx 288(80)\times10^{-11}$ for $\epsilon^{2} \approx 10^{-6}-10^{-4}$ & $m_{Zd} \approx 10-300$ (see figure)

NA48/2 Updated Bounds on Dark Photon Simple g_{μ} -2 discrepancy solution ruled out Assumes BR($\gamma_d \rightarrow e+e-$) ~1

Dark Parity Violation H. DAVOUDIASL, H-S LEE, W. MARCIANO

Effect of $\varepsilon \& \varepsilon_z$ together: (at low Q²<<m₂²)

 $\Delta sin^2 \theta_W(Q^2) = -0.42ε \delta m_Z m_{Zd} / (Q^2 + m_{Zd}^2)$ For δ≈m_{Zd}/m_Z, $\Delta sin^2 \theta_W(Q^2) = \pm 0.42ε m_{Zd}^2 / (Q^2 + m_{Zd}^2)$ Shift largest at small Q²<m_{Zd}² (≈O(1%)! Eg APV)

(1.5 sigma APV deviation) fit → $\varepsilon \delta = 4 \times 10^{-6}$ or $\varepsilon \approx \delta \approx 2 \times 10^{-3}$ for $(g_{\mu} - 2) \& APV \rightarrow m_{Zd} \approx 50 MeV$ region $\sin^2 \theta_W (Q \approx 75 MeV)$ shift by $\pm O(0.5 - 1\%)!!$ $\varepsilon \delta$ down to $\approx 10^{-6}$ Potentially Observable A_{RL} (ee) at low Q² very Important <u>Dark Z Effect on electron scattering</u> Photon-Z Mixing through Z_d from H-S Lee

Effect of "Light" Z_d on Running H. DAVOUDIASL, H-S LEE, W. MARCIANO

<u>Potential 300MeV Dark Z Effects on Running</u> **0**<|**sin²θ_W(0)**|<**0.002 Start to show up in Qweak**

The Dark Z_d Model

DAVOUDIASL, LEE, MARCIANO $\gamma_d - Z \underline{Mass Mixing} \Rightarrow Z_d (dark Z) \& Z$ Add second SU(2)_L Dark Higgs Doublet H₂ Three Higgs Multiplets H₁, H₂ & φ_d Vacuum expectation values v₁, v₂ & v_d Mixing $\epsilon_z = m_{Zd}/m_Z \delta$ $\delta = v_2^2/v_1 v_d$ small ~ O(m_{Zd}/m_Z)~O(10⁻³)

Find $\Delta \sin^2 \theta_W / \sin^2 \theta_W \approx -2\epsilon (m^2 \gamma_d / Q^2 + m^2 \gamma_d)$ <u>Potentially of order 10⁻³ for low Q²</u>

$$\gamma_d$$
-Z Mass Mixing $\rightarrow \varepsilon_z = \delta m_{Zd}/m_Z$

- Potentially Observable Effects, for δ~O(10⁻³), over a range of 10MeV<m_{zd}<15GeV in
- *Weak mixing angle running at low <Q>

BR(B**→**KZ_d) ≈0.1δ²

 $^{*}\Gamma(H \rightarrow ZZ_{d})/\Gamma_{H}(125 \text{GeV})_{SM}=16\delta^{2}$

<u>δ roughly probed to <10-3</u>

Z_d Discovery would revolutionize particle physics

Measurements of running $\sin^2\theta_W(Q^2)$ Pre New Qweak

Possible A_{RL} Measurements

<u>Dark Z Effect on electron scattering</u> Photon-Z Mixing through Z_d Kinetic + Mass Mixing

Pre- 2017 Qweak 15GeV Dark Z Fit to Low Energy Data

Examples of the effect of "Light" Z_d on Running H. DAVOUDIASL, H-S LEE, W. MARCIANO

Present & Future

Precise, $sin^2\theta_W(Q^2)$ PV Experiments at low Q^2

 $Q_{weak} sin^2 \theta_W(m_z)_{MS} = 0.2319(9)$ (with LQCD input) Deviation of average low energy from pole: 0.0012(6)

Next PVES(¹²C) MESA at Mainz elastic eC scattering $\Delta sin^2 \theta_W(m_z)_{MS} = \pm 0.0007$ (Pol. Uncertainty!)

Future (Z pole competitive) P2 in Mainz (A_{RL}(ep)) ∆sin²θ_w(m_z)_{MS}=±0.00037

<u>Moller at JLAB Goal</u> $\Delta sin^2 \theta_w(m_z)_{MS} = \pm 0.00027!$

"New Physics" in form of Light (150MeV -15GeV) Z_d 5+ sigma Discovery Potential

Non PV sin² θ_{W} at very low Q²

Eg. Vector – Like gauged B-L No Parity Violating Effect Reactor v_ebar-e scattering Q~2MeV Goal ±0.5% in sin² θ_W Currently ~ +/-10% Explore low mass bosons & g_{B-L} of O(10⁻⁷) Down to low masses ~ 5MeV

Long Term "Crazy" Challenge Based on Jet Lag

What prevents doing polarized A_{RL}
e⁺p scattering at MESAII?
(Similar to Moller) "*I said it couldn't be done"*(Different than P2 at loop level) *Rate, polarization, polarimetry etc Worthwhile R&D Project?*