Acknowledgements: The PREX, CREX, E158 and MOLLER Collaboration The Accelerator Divisions at SLAC & Jefferson Laboratory V. Cirigliano, J. Erler, C. Horowitz, W. Marciano, M. Ramsey-Musolf, J. Piekerewicz

The PREX, CREX and MOLLER Experiments at Jefferson Lab

Krishna S. Kumar Stony Brook University

Bridging the Standard Model to New Physics with the Parity Violation Program at MESA MITP Workshop Mainz, April 30, 2018

Outline

Introduction to Parity-Violating Electron Scattering Basic introduction

- Relativistic electron scattering and nuclear size
- Neutral weak interactions
- Overview of an electron beam parity violation experiment
- **Elastic Scattering off a Heavy Spinless Nucleus**
- PREX Experimental Overview
- First Physics Run (March-June 2010)
- Preparations for PREX-II and CREX
- **Electron-Electron (Møller) Scattering**
 - Quick review of SLAC E158
 - The MOLLER Experiment
- **Summary and Outlook**

PRL 108 (2012) 112502 PRC 85 (2012) 032501

for practitioners

in other subfields

Krishna S. Kumar

0

PRL 95 (2005) 081601

Introduction to Parity-Violating Electron Scattering

Krishna S. Kumar

NSKIN2016: The PREX-I Result

Relativistic Electron Scattering p

and nuclear size

4-momentum transfer $q^2 = -4 EE' \sin^2 \frac{\theta}{2}$

point-like target

E

Q²: -(4-momentum)² of the virtual photon

$$Q \approx \frac{hc}{\lambda}$$

Differential Cross Section $=\frac{4Z^2\alpha^2 E^2}{a^4}$ $\left(\frac{d\sigma}{d\Omega}\right)$

e

E'

θ

Relativistic Electron Scattering

and nuclear size

4-momentum transfer $q^2 = -4 EE' \sin^2 \frac{\theta}{2}$

point-like target

E

S Q²: -(4-momentum)² of the virtual photon

$$Q \approx \frac{hc}{\lambda}$$

Differential Cross Section $\left(\frac{d\sigma}{d\Omega}\right)_{Mott} = \frac{4Z^2\alpha^2 E^2}{\alpha^4}$

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\rm Mott} \left| F(q) \right|^2$$

As Q increases, nuclear size modifies formula

Neglecting recoil, form factor *F(q)* is the Fourier transform of charge distribution

Krishna S. Kumar

e

E'

θ

Electroweak Scattering

Zel'dovich speculation: Is Electron Scattering Parity-Violating?

Nuclear β Decay

charge and flavor-changing

Krishna S. Kumar

Electroweak Scattering *Zel' dovich speculation: Is Electron Scattering Parity-Violating?*

Glashow, Weinberg and Salam: SU(2)_LX U(1)_Y Neutral Weak Interaction Theory

The Z boson incorporated One free parameter: weak mixing angle θ_W

	Left-	Right-
γ Charge	$0,\pm 1,\pm \frac{1}{3},\pm \frac{2}{3}$	$0,\pm 1,\pm \frac{1}{3},\pm \frac{2}{3}$
W Charge	$T = \pm \frac{1}{2}$	zero
Z Charge	$T-q\sin^2\theta_W$	$-q\sin^2\theta_W$

Glashow, Weinberg and Salam: SU(2)_LX U(1)_Y Neutral Weak Interaction Theory

The Z boson incorporated

	Left-	Right-
γ Charge	$0,\pm 1,\pm \frac{1}{3},\pm \frac{2}{3}$	$0,\pm 1,\pm \frac{1}{3},\pm \frac{2}{3}$
W Charge	$T = \pm \frac{1}{2}$	zero
Z Charge	$T-q\sin^2\theta_W$	$-q\sin^2\theta_W$

Charged Current

Glashow, Weinberg and Salam: $SU(2)_L X U(1)_Y$ **Neutral Weak Interaction Theory** The Z boson incorporated One free parameter: weak mixing angle θ_W

	Left-	Right-
γ Charge	$0,\pm 1,\pm \frac{1}{3},\pm \frac{2}{3}$	$0,\pm 1,\pm \frac{1}{3},\pm \frac{2}{3}$
W Charge	$T = \pm \frac{1}{2}$	zero
Z Charge	$T - q\sin^2\theta_W$	$-q\sin^2\theta_W$

Charged Current

 Z^0

 v_{μ}

Krishna S. Kumar

Glashow, Weinberg and Salam: $SU(2)_L X U(1)_Y$ **Neutral Weak Interaction Theory** The Z boson incorporated One free parameter: weak mixing angle θ_W

	Left-	Right-
γ Charge	$0,\pm 1,\pm \frac{1}{3},\pm \frac{2}{3}$	$0,\pm 1,\pm \frac{1}{3},\pm \frac{2}{3}$
W Charge	$T = \pm \frac{1}{2}$	zero
Z Charge	$T-q\sin^2\theta_W$	$-q\sin^2\theta_W$

Charged Current

Neutral Current

 Z^{0}

 v_{μ}

Do lepton-nucleon neutral current interactions exhibit parity violation?

$$\begin{pmatrix} \nu \\ e \end{pmatrix}_{l} (e)_{r} & Weinberg model \\ Parity is violated \\ A_{PV} \sim 10^{-4} \\ \begin{pmatrix} \nu \\ e \end{pmatrix}_{l} \begin{pmatrix} E^{\circ} \\ e \end{pmatrix}_{r} & Parity is conserved \\ \end{pmatrix}$$

Glashow, Weinberg and Salam: $SU(2)_L X U(1)_Y$ **Neutral Weak Interaction Theory** The Z boson incorporated One free parameter: weak mixing angle θ_W

	Left-	Right-
γ Charge	$0,\pm 1,\pm \frac{1}{3},\pm \frac{2}{3}$	$0,\pm 1,\pm \frac{1}{3},\pm \frac{2}{3}$
W Charge	$T = \pm \frac{1}{2}$	zero
Z Charge	$T-q\sin^2\theta_W$	$-q\sin^2\theta_W$

Charged Current

Neutral Current

 v_{μ}

Do lepton-nucleon neutral current interactions exhibit parity violation?

Weinberg model Parity is violated
$A_{PV} \sim 10^{-4}$
Parity is conserved

First table-top atomic parity violation searches: negative!

Krishna S. Kumar

Glashow, Weinberg and Salam: $SU(2)_L X U(1)_Y$ Neutral Weak Interaction TheoryThe Z boson incorporatedOne free parameter: weak mixing angle θ_W V V_{μ} γ Charge $0,\pm 1,\pm \frac{1}{3},\pm \frac{2}{3}$ $0,\pm 1,\pm \frac{1}{3},\pm \frac{2}{3}$

Vu

W

Charged Current

Do lepton-nucleon neutral current interactions exhibit parity violation?

 $(e)_r$

or

 $\begin{pmatrix} \nu \\ e \end{pmatrix}_i \begin{pmatrix} E^{\circ} \\ e \end{pmatrix}_z$

 $T = \pm \frac{1}{2}$

 $T-q\sin^2\theta_w$

Weinberg model Parity is violated $A_{PV} \sim 10^{-4}$

zero

 $-q\sin^2\theta_w$

Parity is conserved

electron-nucleon deep inelastic scattering

Neutral Current

pressing problem in mid-70's

First table-top atomic parity violation searches: negative!

Krishna S. Kumar

W Charge

Z Charge

Neutral Weak Interaction Theory One free parameter: weak mixing angle θ_W The Z boson incorporated ็น **Right-**Left- $0,\pm 1,\pm \frac{1}{3},\pm \frac{2}{3}$ $0,\pm 1,\pm \frac{1}{3},\pm \frac{2}{3}$ γ Charge v W zero W Charge $T = \pm \frac{1}{2}$ Neutral Current **Charged** Current $-q\sin^2\theta_w$ **Z** Charge $T-q\sin^2\theta_w$ ee-**Do lepton-nucleon neutral current** electron-nucleon interactions exhibit parity violation? deep inelastic 7*? scattering Weinberg model $(e)_r$ Parity is violated N pressing problem in mid-70's $A_{PV} \sim 10^{-4}$ or

Glashow, Weinberg and Salam: $SU(2)_L X U(1)_Y$

 $\begin{pmatrix} \nu \\ e \end{pmatrix}_{I} \quad \begin{pmatrix} E^{\circ} \\ e \end{pmatrix}_{z}$ First table-top atomic parity violation searches: negative!

Parity is conserved

Krishna S. Kumar

Seminal Experimental Measurement: E122

at the Stanford Linear Accelerator Center

Seminal Experimental Measurement: E122 at the Stanford Linear Accelerator Center •Parity Violation in Weak **Neutral Current Interactions** First table-top atomic parity $sin^{2}\theta_{w} = 0.224 \pm 0.020$: same violation searches: negative! as in neutrino scattering The PREX, CREX and MOLLER Experiments at JLab 6

Krishna S. Kumar

Do lepton-nucleon neutral current interactions exhibit parity violation?

Parity is violated $A_{PV} \sim 10^{-4}$ or $\begin{pmatrix} \nu \\ e \end{pmatrix}_{I} \quad \begin{pmatrix} E^{\circ} \\ e \end{pmatrix}_{I}$ Parity is conserved

Weinberg model

electron-nucleon deep inelastic scattering

e-

e-

N

pressing problem in mid-70's

The Z boson incorporated		
	Left-	Right-
γ Charge	$0,\pm 1,\pm \frac{1}{3},\pm \frac{2}{3}$	$0,\pm 1,\pm \frac{1}{3},\pm \frac{2}{3}$
W Charge	$T = \pm \frac{1}{2}$	zero
Z Charge	$T-q\sin^2\theta_W$	$-q\sin^2\theta_W$

Charged Current

Glashow, Weinberg and Salam: $SU(2)_L X U(1)_Y$

Neutral Weak Interaction Theory

The E122 Experiment at the Stanford Linear Accelerator Center

The E122 Experiment at the Stanford Linear Accelerator Center

The E122 Experiment at the Stanford Linear Accelerator Center

The E122 Experiment at the Stanford Linear Accelerator Center

Krishna S. Kumar

The E122 Experiment at the Stanford Linear Accelerator Center

Krishna S. Kumar

4 Decades of Technical Progress

Continuous interplay between probing hadron structure and electroweak physics

Parity-violating electron scattering has become a precision tool

- Beyond Standard Model Searches
- Strange quark form factors
- Neutron skin of a heavy nucleus
- QCD structure of the nucleon

Mainz & MIT-Bates in the mid-80s JLab program launched in the mid-90s E158 at SLAC measured PV Møller scattering

State-of-the-art:

sub-part per billion statistical reach and systematic control
sub-1% normalization control

photocathodes, polarimetry, high power cryotargets, nanometer beam stability, precision beam diagnostics, low noise electronics, radiation hard detectors

Isospin Dependences in Parity-violating Electron Scattering *

Nucl.Phy. A503 (1989) 589 T. W. Donnelly

Center for Theoretical Physics Laboratory for Nuclear Science and Department of Physics Massachusetts Institute of Technology Cambridge, Massachusetts 02139 USA

and

J. Dubach

Department of Physics and Astronomy[†] University of Massachusetts Amherst, Massachusetts 01003 USA

and

Continuous Electron Beam Accelerator Facility 12000 Jefferson Avenue, Newport News, Va. 23606

and

Ingo Sick

Department of Physics University of Basel CH-4056 Basel, Switzerland

Parity Violating Measurements of Neutron Densities

Phys.Rev. C63 (2001) 025501

C. J. Horowitz^{*}

Dept. of Physics and Nuclear Theory Center Indiana University Bloomington, Indiana 47405 USA

S. J. Pollock[†]

Dept. of Physics , CB 390 University of Colorado Boulder, CO 80309 USA

P. A. Souder[‡]

Dept. of Physics Syracuse University Syracuse, N.Y., USA

R. Michaels[§]

Thomas Jefferson National Accelerator Facility Newport News, VA, USA

PREX at Jefferson Lab

Neutron

r (fm)

F_{ch} and *F_W*: Functions of single nucleon form factors *F_p* and *F_n*

$$A_{PV} \approx \frac{G_F Q^2}{4\pi\alpha\sqrt{2}} \frac{F_n(Q^2)}{F_p(Q^2)} + \dots$$

Small corrections involving electric form factors G_E (p,n,s)

Krishna S. Kumar

γ Cleanly Interpretable? Pb-Radius EXperiment

Cleanly Interpretable? Pb-Radius EXperiment

γ

208Pb

carefully for radiative corrections Krishna S. Kumar The PREX, CREX and

PREX Overview

1 GeV electron beam, 50-70 μA high polarization, ~89% helicity reversal at 120 Hz

0.5 mm isotopically pure ²⁰⁸Pb target 5° scattered electrons Q² =0.0088 GeV²/c² new thin quartz detectors

PREX Overview

PREX-I ran from March to May 2010

Polarized Beam at JLab

Record Performance (2012): 180 μA at 89% polarization

$$A_{raw} \sim 500 \text{ ppb}$$

Electron Gun Requirements

- Ultrahigh vacuum
- No field emission
- Maintenance-free

$$A_{corr} = A_{det} - A_Q + \alpha \Delta_E + \Sigma \beta_i \Delta x_i$$

Krishna S. Kumar

Target and Spectrometers

Krishna S. Kumar

Target and Spectrometers

Statistical behavior of data consistent with fluctuations in integrated detector response being dominated by electron counting statistics

Normalization Errors

Goal for total systematic error ~ 2% achieved!

Systematic Error	Absolute (ppm)	Relative (%)
Polarization	0.0083	1.3
Detector Linearity	0.0076	1.2
Beam current normalization	0.0015	0.2
Rescattering	0.0001	0
Transverse Polarization	0.0012	0.2
Q ²	0.0028	0.4
Target Backing	0.0026	0.4
Inelastic States	0	0
TOTAL	0.0140	2.1

STATES STATES	1	A_{sig}
N.S. CARLES	A phys	$\overline{P_{beam}}$

Two independent methods, polarized Møller and Compton Scattering

Both methods achieved ~ 1.5%: expected to reach sub-1% for PREX-II/CREX

Normalization Errors

Goal for total systematic error ~ 2% achieved!

Systematic Error	Absolute (ppm)	Relative (%)
Polarization	0.0083	1.3
Detector Linearity	0.0076	1.2
Beam current normalization	0.0015	0.2
Rescattering	0.0001	0
Transverse Polarization	0.0012	0.2
Q ²	0.0028	0.4
Target Backing	0.0026	0.4
Inelastic States	0	0
TOTAL	0.0140	2.1

$$A_{phys} = \frac{A_{sig}}{P_{beam}}$$

Two independent methods, polarized Møller and Compton Scattering

Both methods achieved ~ 1.5%: expected to reach sub-1% for PREX-II/CREX

calibration

E: spin precession in machine E': NMR in HRS B field scattering angle: survey ~ 1 mr

Q² distribution obtained by low rate runs; trigger on quartz pulse-height

0.006

0.008

0.01

0.002

0.004

0.02

0.018

0.012 0.014 0.016

Normalization Errors

Goal for total systematic error ~ 2% achieved!

Systematic Error	Absolute (ppm)	Relative (%)
Polarization	0.0083	1.3
Detector Linearity	0.0076	1.2
Beam current normalization	0.0015	0.2
Rescattering	0.0001	0
Transverse Polarization	0.0012	0.2
Q ²	0.0028	0.4
Target Backing	0.0026	0.4
Inelastic States	0	0
TOTAL	0.0140	2.1

$$A_{phys} = \frac{A_{sig}}{P_{beam}}$$

Two independent methods, polarized Møller and Compton Scattering

Both methods achieved ~ 1.5%: expected to reach sub-1% for PREX-II/CREX Absolute angle calibration via nuclear recoil variation

Recoil is large for H, small for nuclei

Water	cell	targe	1
δE	$\sim \theta^2$	E	
\overline{E}	$\tilde{2}$	$\overline{M_{A}}$	

4-momentum transfer $Q^2 = 4EE'\sin^2\frac{\theta}{2}$

calibration

E: spin precession in machine E': NMR in HRS B field scattering angle: survey ~ 1 mr

Q² distribution obtained by low rate runs; trigger on quartz pulse-height

Final Result $A_{PV} = 0.656 \ ppm \pm 0.060(stat) \pm 0.014(syst)$

Measured A_{PV}

Krishna S. Kumar

The Neutron Skin

First electroweak indication of a neutron skin of a heavy nucleus (CL ~ 90-95%)

Krishna S. Kumar

The Neutron Skin

First electroweak indication of a neutron skin of a heavy nucleus (CL ~ 90-95%)

Krishna S. Kumar

Krishna S. Kumar

NSKIN2016: The PREX-I Result

CREX Motivation

CREX Motivation

Krishna S. Kumar

PREX/CREX Parameters

	PREX-I	PREX-II	CREX
Ebeam	1.0 GeV	1.0 GeV	2.1 GeV
A _{PV}	0.65 ppm	0.65 ppm	2.5 ppm
Rate	1 GHz	1.5 GHz	40 MHz
$\delta(A_{PV})_{stat}$	9 %	3.5%	4%
δ(R _n)	0.18 fm	0.07 fm	0.02 fm
Charge	0.1%	0.1%	0.1%
Beam	1.1%	0.5%	0.3%
Non-linearity	1.0%	0.3%	0.3%
Transverse	0.2%	0.2%	0.1%
Beam Polarization	1.1%	0.8%	0.8%
Inelastics	0.1%	0.1%	0.2%
Effective Q ²	0.4%	0.4%	0.4%
Total Systematic	2%	1.1%	1%

Krishna S. Kumar

PREX-II and CREX Preparations

Krishna S. Kumar

NSKIN2016: The PREX-I Result

Target Region Redesign

Extensive simulation, design and engineering effort ongoing for robust, efficient and safe operation of these high luminosity experiments

Krishna S. Kumar

Focal Plane Detectors

Mechanical design that combines the "counting" mode "Q² detectors" with the integrating mode main detectors

S

PREX/CREX Schedule & Plans

- Funding profile for US Nuclear Physics in FY '18 & '19 has enabled JLab to propose a healthy beam schedule
- **PREX/CREX installation to begin in March '19**
- Special 1 GeV summer run proposed for June/July 2019
- **PREX requires 2 months of calendar time**
- Fall of 2019: CREX will run at 2.2 GeV along with full 4-Hall JLab program (~ 3 months of calendar time)
- PREX-II and CREX collaboration actively preparing for the run: At least 8 PhD students, likely close to 10 or 11

From past experience: analysis roughly 12 months i.e. expectation of results by end of calendar 2020

Krishna S. Kumar

0

0

.

PREX, CREX and MOLLER at JLab

Physics Beyond the Standard Model with PVES

Krishna S. Kumar

NSKIN2016: The PREX-I Result

Physics down to a length scale of 10⁻¹⁹ m well understood but..... **Modern Electroweak Physics** Many questions still unanswered.... The High Energy Frontier: Collider Physics The Cosmic Frontier: Particle, Nuclear and Gravitational Astrophysics A comprehensive search for clues requires, in addition: The Intensity/Precision Frontier

Physics down to a length scale of 10⁻¹⁹ m well understood but..... **Modern Electroweak Physics** Many questions still unanswered.... **The High Energy Frontier: Collider Physics** The Cosmic Frontier: Particle, Nuclear and Gravitational Astrophysics A comprehensive search for clues requires, in addition: **The Intensity/Precision Frontier** Violation of Accidental (?) Symmetries ★ Neutrinoless Double-Beta Decay, Electric Dipole Moments... Direct Detection of Dark Matter Measurements of Neutrino Masses and Mixing Precise Measurements of SM observables Intense beams, ultra-high precision, exotic nuclei, table-top experiments, rare processes

PREX, CREX and MOLLER at JLab

Krishna Kumar, April 30, 2018

2000's SLAC End Station A

Tree-level prediction: ~ 250 ppb

E158 Implications

3

Tree-level prediction: ~ 250 ppb $A_{PV} = (-131 \pm 14 \pm 10) \times 10^{-9}$

E158 Implications Final E158 Result Phys. Rev. Lett. 95 081601 (2005)

3.

31

31

PREX. CREX and MOLLER at JLab

PREX. CREX and MOLLER at JLab

$A_{PV} = (-131 \pm 14 \pm 10) \times 10^{-9}$ Nature Final E158 Result E158 Implications Vol 435 26 May 2005 Phys. Rev. Lett. 95 081601 (2005) **NEWS AND VIEWS PARTICLE PHYSICS Electrons are not ambidextrous** Andrzej Czarnecki and William J. Marciano Limits on "New" Physics The best low-energy measurement yet obtained of the electroweak mixing angle — a central parameter of the standard model of particle physics — is 95% E158 the last hurrah for Stanford's powerful two-mile linear accelerator. LEP II 0.250 Erler and Ramsey-Musolf (2004) 0.245 16 TeV 17 TeV **SLAC E158 NuTeV** (^ZW)^Mθ_M 0.235 Moller Fermilab v-DIS q Cesium APV 3%

-pole

1000

100

0.8 TeV

doubly charged

scalar exchange

 $0.01 \cdot G_{F}$

Q [GeV]
PREX. CREX and MOLLER at JLab 31

10

0.001 0.01 0.1

0.230

0.225^L

Krishna Kumar, April 30, 2018

1.0 TeV (Z_{γ})

Nature Vol 435 26 May 2005

NEWS AND VIEWS

E158 Implications Phys. Rev. Lett. 95 081601 (2005)

PARTICLE PHYSICS

Electrons are not ambidextrous

Andrzej Czarnecki and William J. Marciano

The best low-energy measurement yet obtained of the electroweak mixing angle — a central parameter of the standard model of particle physics — is the last hurrah for Stanford's powerful two-mile linear accelerator.

Limits on "New" Physics

95%

 $A_{PV} = (-131 \pm 14 \pm 10) \times 10^{-9}$

Final E158 Result

Nature Vol 435 26 May 2005

E158 Implications

NEWS AND VIEWS

Phys. Rev. Lett. 95 081601 (2005)

PARTICLE PHYSICS

Electrons are not ambidextrous

Andrzej Czarnecki and William J. Marciano

The best low-energy measurement yet obtained of the electroweak mixing angle — a central parameter of the standard model of particle physics — is the last hurrah for Stanford's powerful two-mile linear accelerator.

Limits on "New" Physics

95%

 $A_{PV} = (-131 \pm 14 \pm 10) \times 10^{-9}$

Final E158 Result

Nature Vol 435 26 May 2005

E158 Implications

NEWS AND VIEWS

Phys. Rev. Lett. 95 081601 (2005)

PARTICLE PHYSICS

Electrons are not ambidextrous

Andrzej Czarnecki and William J. Marciano

The best low-energy measurement yet obtained of the electroweak mixing angle — a central parameter of the standard model of particle physics — is the last hurrah for Stanford's powerful two-mile linear accelerator.

Limits on "New" Physics

95%

 $A_{PV} = (-131 \pm 14 \pm 10) \times 10^{-9}$

Final E158 Result

34

95% C. L. Reach
Comparison with e⁺e⁻ Collisions
Best reach on purely leptonic contact interaction amplitudes: LEP200

$$\mathcal{L}_{e_{i}e_{2}} = \sum_{i,j=L,R} \frac{g_{ij}^{2}}{2\Lambda^{2}} \bar{e}_{i}\gamma_{\mu}e_{i}\bar{e}_{j}\gamma^{\mu}e_{j}$$

$$g_{ij} = 4\pi\eta_{ij}$$

$$\underline{LL^{\pm} \pm 1 \ 0 \ 0}$$

$$\frac{RR^{\pm} \ 0 \pm 1 \ 0 \ 0}{VV^{\pm} \pm 1 \pm 1 \pm 1 \pm 1} \pm 1$$

$$LEP200 \text{ Reach} \qquad \Lambda_{LL}^{ee} \sim 8.3 \text{ TeV}$$

$$E158 \text{ Reach} \qquad \Lambda_{LL}^{ee} \sim 12 \text{ TeV}$$

$$MOLLER \text{ Reach} \qquad \Lambda_{LL}^{ee} \sim 27 \text{ TeV}$$

$$MOLLER \text{ is accessing discovery space that cannot be reached until the advent of a new lepton collider or neutrino factory}$$

Unique Opportunity: Purely Leptonic Reaction at Q² << M_Z² **New Physics Examples Deviations From Theory Prediction Interpretable as New Physics** Many different scenarios **Lepton Number Violation** give rise to effective 4e $\left|\frac{\Delta \mathbf{Q}_{\mathbf{W}}^{\mathbf{e}}}{\mathbf{Q}_{\mathbf{W}}^{\mathbf{e}}}\right| = 0.14 \frac{|\mathbf{h}_{\mathbf{ee}}|^2}{(\mathbf{M}_{\Delta}/1 \text{ TeV})^2}$ H electron contact interaction amplitudes: significant Doublydiscovery potential e Charged Scalar 5 σ for $h_{ee} \sim 1$ and $M_{\Delta} \sim 1$ TeV

36

See Michael's talk! (and send me the slides!)

PREX. CREX and MOLLER at JLab

36

Unique Opportunity: Purely Leptonic Reaction at Q² << M_Z²

Electroweak Theory

EW Theory Prediction Uncertainty Well Below Projected Experimental Uncertainty

Czarnecki and Marciano (1995)

$$A_{PV}(ee) \propto \rho G_F \left[1 - 4\kappa(0)\sin^2\theta_W(m_Z)_{\overline{\text{MS}}}\right] + \cdots$$

Dominant Contribution at 1-loop

κ(0) known better than 1% of itself Erler and Ramsey-Musolf (2003)

Erler and Ferro-Hernandez (2018)

 $\delta(Q^e_W)$ (theory) = 0.6%, another factor of 2 improvement with full two-loop calculation

See talks by:

- A. Aleksejev
- A. Freitas
- R. Ferro Hernandez
- H. Patel
- M. Ramsey-Musolf

MOLLER $\delta(Q^{e_{W}})$ goal = ± 2.1 % (stat.) ± 1.1 % (syst.)

PREX. CREX and MOLLER at JLab

MOLLER Apparatus

38

hybrid spectrometer coil

Technical Challenges

Evolutionary Improvements from Technology of Third Generation Experiments

- ~ 150 GHz scattered electron rate
- 1 nm control of beam centroid on target
- > 10 gm/cm² liquid hydrogen target
 - 1.5 m: ~ 5 kW @ 85 μA
- Full Azimuthal acceptance w/ θ_{lab} ~ 5 mrad
 - novel toroidal spectrometer pair
 - radiation hard, highly segmented integrating detectors
- Robust & Redundant 0.4% beam polarimetry

Liquid Hydrogen Target

- Most thickness for least radiative losses
- No nuclear scattering background
- Small sensitivity to EM field induced polarization
- Need as much target thickness as technically feasible
 Tradeoff between statistics and systematics
 Default: Same geometry as E158

parameter	value
length	150 cm
thickness	10.7 gm/cm ²
Xo	17.5%
<i>р</i> , Т	35 psia, 20K
power	5000 W

Progressive evolution of sophistication over generations of PVES experiments; most recently, Qweak

Integrating Detector Concept

Old and New Physics with Electron-Electron Scattering

Krishna Kumar, Januar 11, 2016

Old and New Physics with Electron-Electron Scattering

Krishna Kumar, Januar 11, 2016

MOLLER Uncertainty Table

Beam	Assumed	Accuracy of	Required 2 kHz	Required cumulative	Systematic
Property	Sensitivity	Correction	random fluctuations	helicity-correlation	contribution
Intensity	1 ppb / ppb	$\sim 1\%$	< 1000 ppm	< 10 ppb	$\sim 0.1 \ { m ppb}$
Energy	-1.4 ppb / ppb	$\sim 10\%$	< 108 ppm	< 0.7 ppb	$\sim 0.05 \; \mathrm{ppb}$
Position	0.85 ppb / nm	$\sim 10\%$	$< 47~\mu{ m m}$	< 1.2 nm	$\sim 0.05 \; \mathrm{ppb}$
Angle	8.5 ppb / nrad	$\sim 10\%$	$< 4.7 \ \mu \mathrm{rad}$	< 0.12 nrad	$\sim 0.05~{ m ppb}$

Error Source	Fractional Error (%)
Statistical	2.1
Absolute Normalization of the Kinematic Factor	0.5
Beam (second order)	0.4
Beam polarization	0.4
$e + p(+\gamma) \rightarrow e + X(+\gamma)$ All systematics	0.4
Beam (position, angle, energy) required at	0.4
Beam (intensity) sub-1% level	0.3
$e + p(+\gamma) \rightarrow e + p(+\gamma)$	0.3
$\gamma^{(*)} + p \to (\pi, \mu, K) + X$	0.3
Transverse polarization	0.2
Neutral background (soft photons, neutrons)	0.1
Total systematic	1.1

45

Expertise from several generations of successful parity experiments MOLLER Status

46

• MOLLER Collaboration

- 120 authors, 30 institutions, 5 countries
- Experience from SAMPLE, A4, HAPPEX, G0, PREX, Qweak, E158
- 4th generation PVES experiment at JLab
- Science Review: Sep 10, 2014
- by DOE Office of Nuclear Physics

Rigorous review by a panel of two nuclear theorists, two HEP theorists and two fundamental symmetries experimentalists

- Very positive outcome of Science Review
 - Highlighted unique opportunity: strong endorsement for the measurement
 - theoretical cleanliness (purely leptonic!)

- ~25M\$ DOE NP MIE
- goal: construction '19 '22

The US NSAC Long Range Plan highlighted MOLLER in the Fundamental Symmetries chapter. The Plan also calls for new investments in Major Items of Equipment (MIEs)

- JLab Director's Review in December 2016
 - CD-0 granted by DOE-NP on December 21, 2016!
 - Awaiting project start; DOE Office of Science budgets are under heavy stress

Latest indication is that an FY '19 start for the project is likely

MOLLER Context Summary

best contact interaction reach for leptons at low OR high energy: similar to LHC reach with semi-leptonic amplitudes To do better for a 4-lepton contact interaction would require: Giga-Z factory, linear collider, neutrino factory or muon collider

 $\delta(\sin^2 \theta_W) = \pm 0.00024 \ (stat.) \pm 0.00013 \ (syst.) \implies \sim 0.1\%$

Best projected uncertainty among projects being considered over next 10 years

If LHC sees ANY anomaly in Runs 2 or 3 (~2022)

★ The unique discovery space probed by MOLLER will become a pressing need, like other sensitive probes (e.g. g-2 anomaly)

Discovery scenarios beyond LHC signatures

- ★ Purely Leptonic Contact Interactions
- ★ Lepton Number Violating Amplitudes
- ★ Light Dark Matter Mediators
- ★ Lorentz Violation
Summary and Outlook

Parity-Violating Electron Scattering Enabled unique studies of the weak force Technical progress has enabled unprecedented precision flagship experiments at electron accelerators Fundamental Nuclear/Nucleon Physics Neutron RMS radii of heavy nuclei (PREX, CREX, MREX...) valence quark structure of protons and neutrons (SOLID) Fundamental Electroweak Physics Search for new dynamics at the TeV scale (P2, MOLLER, SOLID)

- complementary to colliders; would help interpret potential anomalies
- precision measurement of the weak mixing angle

The next five years promise to be exciting!

Integrating Detectors Background negligible thanks to Hall A HRS spectrometer pair

The PREX, CREX and MOLLER Experiments at JLab

Beam Polarimetry

received recent upgrades

Both methods expected to reach sub-1% for future measurements: ultimate goal is sub-0.5%

- Compton Polarimeter
 - green laser (increased sensitivity at low E)
 - integrating method (analyzing power)^{*}
 - new photon & electron detectors
- Møller Polarimeter
 - electronics and DAQ
 - High field magnet for foil saturation: improved calibration of foil polarization

High Luminosity Target ²⁰⁸Pb

Targets with thin diamond backing (4.5%) degraded fastest

Thick diamond (8%) ran well and did not melt at 70 uA.

Normalized Rate vs. Time

- Pb-Diamond sandwich
- Diamond backing provides conductive cooling
- Active cryo-cooling with available He lines

Integrating Detectors

A_{raw} ~ 500 ppb $A_{corr} = A_{det} - A_Q + \alpha \Delta_E + \Sigma \beta_i \Delta x_i$ Beam Stability Performance PREX-I ran from March to May 2011

Krishna S. Kumar

The PREX, CREX and MOLLER Experiments at JLab

A_{raw} ~ 500 ppb $A_{corr} = A_{det} - A_Q + \alpha \Delta_E + \Sigma \beta_i \Delta x_i$ Beam Stability Performance PREX-I ran from March to May 2011

- Active feedback of charge asymmetry
- Careful laser alignment
- Precision beam position monitoring
- Active calibration of detector slopes

The PREX, CREX and MOLLER Experiments at JLab

$A_{raw} \sim 500 \text{ ppb} \qquad A_{corr} = A_{det} - A_Q + \alpha A_E + \Sigma \beta \Delta x_i$ Beam Stability Performance PREX-I ran from March to May 2011

Modulation Value vs. Time Target x vs Time Target y vs. Time 0.4 -1.25 -1.3 -1.35-1.4 -1.45 **Dispersive Position vs Time Detector segment vs Time** Averaged Detector vs Time 1.5 2.75 1.48

1.46

1.44

1.42

1.4

1.38

Krishna S. Kumar

10

0.6

-0.1

The PREX, CREX and MOLLER Experiments at JLab

2.745

2.74

2.735

$A_{raw} \sim 500 \text{ ppb} \qquad A_{corr} = A_{det} - A_Q + \alpha \Delta_E + \Sigma \beta_i \Delta x_i$ Beam Stability Performance

PREX-I ran from March to May 2011

The PREX, CREX and MOLLER Experiments at JLab

$A_{raw} \sim 500 \text{ ppb} \qquad A_{corr} = A_{det} - A_Q + \alpha \Delta_E + \Sigma \beta_i \Delta x_i$ Beam Stability Performance

2 methods of "slow" reversal

$A_{raw} \sim 500 \text{ ppb} \qquad A_{corr} = A_{det} - A_Q + \alpha \Delta_E + \Sigma \beta_i \Delta x_i$ Beam Stability Performance

2 methods of "slow" reversal

New Beamline Design

PREXII Projection

Presented to JLab PAC in June 2011: Approved with strong endorsement

PREx II improvements

- Metal o-rings
- Radiation hard electronics
- Reduce neutron

 $\frac{\delta(A_{PV})/A_{PV} \sim 3\%}{\delta(R_n)/R_n \sim 1\%}$

 $\delta(\boldsymbol{R}_n) \sim \pm 0.06 \, fm$

JLab has broad program: must continuously reiterate importance of PREX-II!

Recent R_n predictions:

Full precision in 25 additional PAC days

Hebeler et al. Chiral EFT calculation of neutron matter. Correlation of pressure with neutron skin by Brown. Three-neutron forces!

Steiner et al. X-Ray n-star mass and radii observation + Brown correlation. (Ozel et al finds softer EOS, would suggest smaller R_n).

Tamii et al. Measurement of electric dipole polarizability of ²⁰⁸Pb + model correlation with neutron skin.

Tsang et al. Isospin diffusion in heavy ion collisions, with Brown correlation and quantum molecular dynamics transport model.

Input from Vector Analyzing Power

Radiative Corrections

- Coulomb distortions are coherent, order Z α . Important for PREX (Z=82)
 - Sum elastic intermediate states to all orders in Zα by solving Dirac equation for electron moving in coulomb (V) + weak potential (A) of nucleus.
 - Coulomb distortions reduce A_{pv} by ~30%, but accurately calculated (uncertainty estimated to be sub-1% of correction)
- Dispersion corrections are of order α (not $Z\alpha$).
- Note: Both Coulomb distortion and dispersion corrections can be important for Transverse Beam Asymmetry An for ²⁰⁸Pb

A Fundamental Parameter of the Electroweak Theory sin20w

MOLLER Projection: $\delta(sin^2\theta_W) = \pm 0.00024 (stat.) \pm 0.00013 (syst.)$

58

Future projections (similar time scale)

Mainz P2: ~ 0.00032 Final Tevatron: ~ 0.00041 LHC 14 TeV, 300 fb⁻¹ : ~ 0.00036 Note: systematics-dominated (pdf uncertainties)

Old and New Physics with Electron-Electron Scattering

Krishna Kumar, Januar 11, 2016

Signal & Backgrounds parameter value

parameter	value
cross-section	45.1 μBarn
Rate @ 75 µA	135 GHz
pair stat. width (1 kHz)	82.9 ppm
δ(A _{raw}) (6448 hrs)	0.544 ppb
δ(A _{stat})/A (80% pol.)	2.1%
δ(sin²θ w)stat	0.00026

well-understood and testable with data

large EW coupling, 4±0.4% correction

8% dilution, 7.5±0.4% correction

variation of A_{PV} with r and φ

Elastic e-p scattering

Inelastic e-p scattering

sub-1% dilution

photons and neutrons mostly 2-bounce collimation system dedicated runs to measure "blinded" response pions and muons

- real and virtual photo-production and DIS
- prepare for continuous parasitic measurement
- estimate 0.5 ppm asymmetry @ 0.1% dilution

Krishna S. Kumar

Low Energy Standard Model Tests with Parity-Violating Electron Scattering

Initial and final state radiation effects in target

Backgrounds Teleconference

Krishna Kumar, November 24, 2015

Rate and Asymmetry

Backgrounds Teleconference

Krishna Kumar, November 24, 2015

Additional Azimuthal Discrimination

Backgrounds Teleconference

Krishna Kumar, November 24, 2015