Low-Energy Atomic Probes of Dark Bosons and Neutrino-Mediated Forces

Yevgeny Stadnik

Humboldt Fellow

Johannes Gutenberg University, Mainz, Germany

Collaborators (Theory):

Victor Flambaum

Collaborators (Experiment):

nEDM collaboration at PSI and Sussex BASE collaboration at CERN and RIKEN CASPEr collaboration at Mainz

MITP Scientific Program, Mainz, May 2018

New forces

Atomic spectroscopy:

Leefer, Gerhardus, Budker, Flambaum, Stadnik, *PRL* **117**, 271601 (2016) Ficek, Fadeev, Flambaum, Kimball, Kozlov, Stadnik, Budker, 1801.00491, *PRL* (In press)

Atomic PNC:

Dzuba, Flambaum, Stadnik, PRL 119, 223201 (2017)

Atomic and molecular EDMs:

Stadnik, Dzuba, Flambaum, PRL 120, 013202 (2018)

New forces

Atomic spectroscopy:

Leefer, Gerhardus, Budker, Flambaum, Stadnik, *PRL* **117**, 271601 (2016) Ficek, Fadeev, Flambaum, Kimball, Kozlov, Stadnik, Budker, 1801.00491, *PRL* (In press)

Atomic PNC:

Dzuba, Flambaum, Stadnik, PRL 119, 223201 (2017)

Atomic and molecular EDMs:

Stadnik, Dzuba, Flambaum, PRL 120, 013202 (2018)

Parity violation in weak neutral current interactions first discovered in bismuth optical rotation experiments in Novosibirsk

[Barkov, Zolotorev, JETP Lett. 27, 357 (1978); Pis'ma Zh. Eksp. Teor. Fiz. 27, 379 (1978)]

Parity violation in weak neutral current interactions first discovered in bismuth optical rotation experiments in Novosibirsk [Barkov, Zolotorev, JETP Lett. 27, 357 (1978); Pis'ma Zh. Eksp. Teor. Fiz. 27, 379 (1978)]

Parity violation in weak neutral current interactions first discovered in bismuth optical rotation experiments in Novosibirsk [Barkov, Zolotorev, JETP Lett. 27, 357 (1978); Pis'ma Zh. Eksp. Teor. Fiz. 27, 379 (1978)]

 $Q_W(^{133}Cs) = -72.58(29)_{exp}(32)_{theory}$ c.f. $Q_W(^{133}Cs)_{SM} = -73.23(2)$ Experiment: [Wood *et al.*, *Science* 275, 1759 (1997)] Theory: [Dzuba, Berengut, Flambaum, Roberts, *PRL* 109, 203003 (2012)]

• Atomic PNC dominated by Z-boson exchange between valence electron and the nucleus at distance $r \sim R_{nucl}$ (equivalently momentum transfer $q \sim 1/R_{nucl} >> m_e$)

- Atomic PNC dominated by Z-boson exchange between valence electron and the nucleus at distance $r \sim R_{nucl}$ (equivalently momentum transfer $q \sim 1/R_{nucl} >> m_e$)
- Bound-state valence electron ($|E_{bind}| << m_e$) has definite energy: $E \approx m_e$

- Atomic PNC dominated by Z-boson exchange between valence electron and the nucleus at distance $r \sim R_{nucl}$ (equivalently momentum transfer $q \sim 1/R_{nucl} >> m_e$)
- Bound-state valence electron (|E_{bind}| << m_e) has definite energy: E ≈ m_e
- BUT *indefinite* momentum!

- Atomic PNC dominated by Z-boson exchange between valence electron and the nucleus at distance $r \sim R_{nucl}$ (equivalently momentum transfer $q \sim 1/R_{nucl} >> m_e$)
- Bound-state valence electron ($|E_{bind}| << m_e$) has definite energy: $E \approx m_e$
- BUT *indefinite* momentum!
- At $r \sim R_{nucl}$, $|\mathbf{p}|^2 >> E^2 \approx m_e^2 =>$ Highly off-mass-shell electron!

- Atomic PNC dominated by Z-boson exchange between valence electron and the nucleus at distance $r \sim R_{nucl}$ (equivalently momentum transfer $q \sim 1/R_{nucl} >> m_e$)
- Bound-state valence electron ($|E_{bind}| << m_e$) has definite energy: $E \approx m_e$
- BUT *indefinite* momentum!
- At $r \sim R_{nucl}$, $|\mathbf{p}|^2 >> E^2 \approx m_e^2 =>$ Highly off-mass-shell electron!
- **Example:** $< ns_{1/2}|H_{weak}|n'p_{1/2}>$ in Cs

- Atomic PNC dominated by Z-boson exchange between valence electron and the nucleus at distance $r \sim R_{nucl}$ (equivalently momentum transfer $q \sim 1/R_{nucl} >> m_e$)
- Bound-state valence electron ($|E_{bind}| << m_e$) has definite energy: $E \approx m_e$
- BUT *indefinite* momentum!
- At $r \sim R_{nucl}$, $|\mathbf{p}|^2 >> E^2 \approx m_e^2 =>$ Highly off-mass-shell electron!
- **Example:** $< ns_{1/2}|H_{weak}|n'p_{1/2}>$ in Cs
- If $q_{\text{typical}} \sim 1/R_{\text{nucl}} >> m_e$, then $K_{\text{rel}} \approx 3$

[Bouchiat, Bouchiat, J. de Phys. 35, 899 (1974)]

- Atomic PNC dominated by Z-boson exchange between valence electron and the nucleus at distance $r \sim R_{nucl}$ (equivalently momentum transfer $q \sim 1/R_{nucl} >> m_e$)
- Bound-state valence electron ($|E_{bind}| << m_e$) has definite energy: $E \approx m_e$
- BUT *indefinite* momentum!
- At $r \sim R_{nucl}$, $|\mathbf{p}|^2 >> E^2 \approx m_e^2 =>$ Highly off-mass-shell electron!
- **Example:** $< ns_{1/2}|H_{weak}|n'p_{1/2}>$ in Cs
- If $q_{\text{typical}} \sim 1/R_{\text{nucl}} >> m_e$, then $K_{\text{rel}} \approx 3$ [Bouchiat, Bouchiat, J. de Phys. 35, 899 (1974)]
- If $q_{\text{typical}} << m_e$ (like, e.g., in *Z*-boson exchange between valence electron and 1*s* electrons), then $K_{\text{rel}} \approx 1$

Basics of Atomic EDMs

Electric Dipole Moment (EDM) = parity (P) and time-

reversal-invariance (T) violating electric moment

Basics of Atomic EDMs

Electric Dipole Moment (EDM) = parity (P) and time-

reversal-invariance (T) violating electric moment

[Dzuba, Flambaum, Stadnik, PRL 119, 223201 (2017)]

$$\mathcal{L}_{\text{int}} = Z'_{\mu} \bar{f} \gamma^{\mu} \left(g_f^V + g_f^A \gamma_5 \right) f$$
$$V(r) \approx -\frac{g_1^A g_2^V}{8\pi m_1} \left\{ \boldsymbol{\sigma} \cdot \boldsymbol{p} \;,\; \frac{e^{-m_{Z'}r}}{r} \right\}$$

[Dzuba, Flambaum, Stadnik, PRL 119, 223201 (2017)]

P-violating forces => Atomic parity-nonconserving effects and nuclear anapole moments

[Dzuba, Flambaum, Stadnik, PRL 119, 223201 (2017)]

P-violating forces => Atomic parity-nonconserving effects and nuclear anapole moments

Atomic PNC experiments: Cs, Yb, TI

Constraints on Vector-Pseudovector Nucleon-Electron Interaction

PNC constraints: [Dzuba, Flambaum, Stadnik, PRL 119, 223201 (2017)]

Many orders of magnitude improvement!

Constraints on Vector-Pseudovector Nucleon-Proton Interaction

PNC constraints: [Dzuba, Flambaum, Stadnik, PRL 119, 223201 (2017)]

[Stadnik, Dzuba, Flambaum, PRL 120, 013202 (2018)]

[Stadnik, Dzuba, Flambaum, PRL 120, 013202 (2018)]

P,*T*-violating forces => Atomic and Molecular EDMs

[Stadnik, Dzuba, Flambaum, PRL 120, 013202 (2018)]

$$\mathcal{L}_{int} = a\bar{f}\left(g_{f}^{s} + ig_{f}^{p}\gamma_{5}\right)f$$

$$\downarrow a$$

$$\downarrow a$$

$$V(r) \approx \frac{g_{1}^{p}g_{2}^{s}}{8\pi m_{1}}\boldsymbol{\sigma}\cdot\boldsymbol{\hat{r}}\left(\frac{m_{a}}{r} + \frac{1}{r^{2}}\right)e^{-m_{a}r}$$

P,*T*-violating forces => Atomic and Molecular EDMs

Atomic EDM experiments: Cs, Tl, Xe, **Hg** Molecular EDM experiments: YbF, **HfF⁺**, **ThO**

Constraints on Scalar-Pseudoscalar Nucleon-Electron Interaction

EDM constraints: [Stadnik, Dzuba, Flambaum, PRL 120, 013202 (2018)]

Many orders of magnitude improvement!

Constraints on Scalar-Pseudoscalar Electron-Electron Interaction

EDM constraints: [Stadnik, Dzuba, Flambaum, PRL 120, 013202 (2018)]

Many orders of magnitude improvement!

Dark matter

Spectroscopy, interferometry, cavities, BBN, CMB: Stadnik, Flambaum, *PRL* **114**, 161301 (2015); *PRL* **115**, 201301 (2015); *PRA* **93**, 063630 (2016); *PRA* **94**, 022111 (2016)

Spin-precession effects, EDMs:

Stadnik, Flambaum, *PRD* **89**, 043522 (2014) nEDM collaboration, *PRX* **7**, 041034 (2017)

Dark matter

Spectroscopy, interferometry, cavities, BBN, CMB:

Stadnik, Flambaum, *PRL* **114**, 161301 (2015); *PRL* **115**, 201301 (2015); *PRA* **93**, 063630 (2016); *PRA* **94**, 022111 (2016)

Spin-precession effects, EDMs:

Stadnik, Flambaum, PRD 89, 043522 (2014)

nEDM collaboration, PRX 7, 041034 (2017)

Overwhelming astrophysical evidence for existence of **dark matter** (~5 times more dark matter than ordinary matter).

Traditional "scattering-off-nuclei" searches for heavy WIMP dark matter particles ($m_{\chi} \sim \text{GeV}$) have not yet produced a strong positive result.

Traditional "scattering-off-nuclei" searches for heavy WIMP dark matter particles ($m_{\chi} \sim \text{GeV}$) have not yet produced a strong positive result.

 $\mathcal{M} \propto \left(e'
ight)^2$

Traditional "scattering-off-nuclei" searches for heavy WIMP dark matter particles ($m_{\chi} \sim \text{GeV}$) have not yet produced a strong positive result.

 $\mathcal{M} \propto \left(e'
ight)^2$

 $\sum N => \frac{d\sigma}{d\Omega} \propto |\mathcal{M}|^2 \propto (e')^4$

Traditional "scattering-off-nuclei" searches for heavy WIMP dark matter particles ($m_{\chi} \sim \text{GeV}$) have not yet produced a strong positive result.

<u>Challenge</u>: Observable is <u>fourth power</u> in a small interaction constant (e' << 1)!

Traditional "scattering-off-nuclei" searches for heavy WIMP dark matter particles ($m_{\chi} \sim \text{GeV}$) have not yet produced a strong positive result.

Question: Can we instead look for effects of dark matter that are **first power** in the interaction constant?

Low-mass Spin-0 Dark Matter

• Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $<\rho_{\varphi}> \approx m_{\varphi}^2 \varphi_0^2/2 \ (\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3)$

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $<\rho_{\varphi}> \approx m_{\varphi}^2 \varphi_0^2/2 \ (\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3)$
- Coherently oscillating field, since *cold* ($E_{\varphi} \approx m_{\varphi}c^2$)

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $<\rho_{\varphi}> \approx m_{\varphi}^2 \varphi_0^2/2 \ (\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3)$
- Coherently oscillating field, since *cold* ($E_{\varphi} \approx m_{\varphi}c^2$)
- Classical field for $m_{\varphi} \leq 0.1 \text{ eV}$, since $n_{\varphi} (\lambda_{\mathrm{dB},\varphi}/2\pi)^3 >> 1$

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $<\rho_{\varphi}> \approx m_{\varphi}^2 \varphi_0^2/2 \ (\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3)$
- Coherently oscillating field, since *cold* ($E_{\varphi} \approx m_{\varphi}c^2$)
- Classical field for $m_{\varphi} \leq 0.1 \text{ eV}$, since $n_{\varphi} (\lambda_{\mathrm{dB},\varphi}/2\pi)^3 >> 1$
- Coherent + classical DM field = "Cosmic laser field"

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $<\rho_{\varphi}> \approx m_{\varphi}^2 \varphi_0^2/2 \ (\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3)$
- Coherently oscillating field, since *cold* ($E_{\varphi} \approx m_{\varphi}c^2$)
- Classical field for $m_{\varphi} \leq 0.1 \text{ eV}$, since $n_{\varphi}(\lambda_{\mathrm{dB},\varphi}/2\pi)^3 >> 1$
- Coherent + classical DM field = "Cosmic laser field"
- $10^{-22} \text{ eV} \leq m_{\varphi} \leq 0.1 \text{ eV} \leq > 10^{-8} \text{ Hz} \leq f \leq 10^{13} \text{ Hz}$ \uparrow $\lambda_{\text{dB},\varphi} \leq L_{\text{dwarf galaxy}} \sim 1 \text{ kpc}$ Classical field

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $<\rho_{\varphi}> \approx m_{\varphi}^2 \varphi_0^2/2 \ (\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3)$
- Coherently oscillating field, since *cold* ($E_{\varphi} \approx m_{\varphi}c^2$)
- Classical field for $m_{\varphi} \leq 0.1 \text{ eV}$, since $n_{\varphi}(\lambda_{\mathrm{dB},\varphi}/2\pi)^3 >> 1$
- Coherent + classical DM field = "Cosmic laser field"
- $10^{-22} \text{ eV} \leq m_{\varphi} \leq 0.1 \text{ eV} \iff 10^{-8} \text{ Hz} \leq f \leq 10^{13} \text{ Hz}$ \uparrow $\lambda_{\text{dB},\varphi} \leq L_{\text{dwarf galaxy}} \sim 1 \text{ kpc}$ Classical field

• $m_{\varphi} \sim 10^{-22} \text{ eV} \iff T \sim 1 \text{ year}$

• Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $<\rho_{\varphi}> \approx m_{\varphi}^2 \varphi_0^2/2 \ (\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3)$

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $<\rho_{\varphi}> \approx m_{\varphi}^2 \varphi_0^2/2 \ (\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3)$
- $10^{-22} \text{ eV} \leq m_{\varphi} \leq 0.1 \text{ eV}$ inaccessible to traditional "scatteringoff-nuclei" searches, since $|\mathbf{p}_{\varphi}| \sim 10^{-3}m_{\varphi}$ is extremely small => recoil effects of *individual particles* suppressed

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $<\rho_{\varphi}> \approx m_{\varphi}^2 \varphi_0^2/2 \ (\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3)$
- $10^{-22} \text{ eV} \leq m_{\varphi} \leq 0.1 \text{ eV}$ inaccessible to traditional "scatteringoff-nuclei" searches, since $|\mathbf{p}_{\varphi}| \sim 10^{-3}m_{\varphi}$ is extremely small => recoil effects of *individual particles* suppressed
- BUT can look for *coherent effects of a low-mass DM field* in low-energy atomic and astrophysical phenomena that are <u>first power</u> in the interaction constant κ:

$$\mathcal{L}_{\text{eff}} = \kappa \phi^n X_{\text{SM}} X_{\text{SM}} \implies \mathcal{O} \propto \kappa$$

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $<\rho_{\varphi}> \approx m_{\varphi}^2 \varphi_0^2/2 \ (\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3)$
- $10^{-22} \text{ eV} \leq m_{\varphi} \leq 0.1 \text{ eV}$ inaccessible to traditional "scatteringoff-nuclei" searches, since $|\mathbf{p}_{\varphi}| \sim 10^{-3}m_{\varphi}$ is extremely small => recoil effects of *individual particles* suppressed
- BUT can look for *coherent effects of a low-mass DM field* in low-energy atomic and astrophysical phenomena that are <u>first power</u> in the interaction constant κ:

$$\mathcal{L}_{\text{eff}} = \kappa \phi^n X_{\text{SM}} X_{\text{SM}} \implies \mathcal{O} \propto \kappa$$

First-power effects => Improved sensitivity to certain DM interactions by up to <u>15 orders of magnitude</u> (!)

→ Time-varying fundamental constants

→ Time-varying spindependent effects

1000-fold improvement

QCD axion resolves strong CP problem

Pseudoscalars (Axions): $\varphi \xrightarrow{P} - \varphi$

→ Time-varying spindependent effects

1000-fold improvement

"Axion Wind" Spin-Precession Effect

[Flambaum, talk at *Patras Workshop*, 2013], [Graham, Rajendran, *PRD* **88**, 035023 (2013)], [Stadnik, Flambaum, *PRD* **89**, 043522 (2014)]

 $D_{-}(f)$

Oscillating Electric Dipole Moments

Nucleons: [Graham, Rajendran, *PRD* 84, 055013 (2011)] Atoms and molecules: [Stadnik, Flambaum, *PRD* 89, 043522 (2014)]

Electric Dipole Moment (EDM) = parity (P) and time-

reversal-invariance (T) violating electric moment

Proposals: [Flambaum, talk at *Patras Workshop*, 2013; Stadnik, Flambaum, *PRD* **89**, 043522 (2014); arXiv:1511.04098; Stadnik, PhD Thesis (2017)]

Use *spin-polarised sources*: Atomic magnetometers, ultracold neutrons, torsion pendula

Proposals: [Flambaum, talk at *Patras Workshop*, 2013; Stadnik, Flambaum, *PRD* **89**, 043522 (2014); arXiv:1511.04098; Stadnik, PhD Thesis (2017)]

Use *spin-polarised sources*: Atomic magnetometers, ultracold neutrons, torsion pendula

Experiment (n/Hg): [nEDM collaboration, PRX 7, 041034 (2017)]

$$\frac{\nu_n}{\nu_{\rm Hg}} = \left| \frac{\gamma_n B}{\gamma_{\rm Hg} B} \right| + R(t)$$

$$\uparrow$$

$$f$$

$$f$$

$$B$$
-field Axion DW effect effect

Proposals: [Flambaum, talk at *Patras Workshop*, 2013; Stadnik, Flambaum, *PRD* **89**, 043522 (2014); arXiv:1511.04098; Stadnik, PhD Thesis (2017)]

Use *spin-polarised sources*: Atomic magnetometers, ultracold neutrons, torsion pendula

Experiment (n/Hg): [nEDM collaboration, PRX 7, 041034 (2017)]

$$\frac{\nu_n}{\nu_{\rm Hg}} = \left| \frac{\gamma_n R}{\gamma_{\rm Hg} R} \right| + R(t)$$

$$\uparrow$$

$$f$$

$$B$$
-field Axion DW effect effect

Proposals: [Flambaum, talk at *Patras Workshop*, 2013; Stadnik, Flambaum, *PRD* **89**, 043522 (2014); arXiv:1511.04098; Stadnik, PhD Thesis (2017)]

Use *spin-polarised sources*: Atomic magnetometers, ultracold neutrons, torsion pendula

Experiment (n/Hg): [nEDM collaboration, PRX 7, 041034 (2017)]

$$\frac{\nu_n}{\nu_{\rm Hg}} = \left| \frac{\gamma_n R}{\gamma_{\rm Hg} R} \right| + R(t)$$

$$E \sigma B$$

$$R_{\rm EDM}(t) \propto \cos(m_a t)$$

Proposals: [Flambaum, talk at *Patras Workshop*, 2013; Stadnik, Flambaum, *PRD* **89**, 043522 (2014); arXiv:1511.04098; Stadnik, PhD Thesis (2017)]

Use *spin-polarised sources*: Atomic magnetometers, ultracold neutrons, torsion pendula

Experiment (n/Hg): [nEDM collaboration, PRX 7, 041034 (2017)]

 $\omega_1 =$

$$\frac{\nu_n}{\nu_{\rm Hg}} = \left| \frac{\gamma_n R}{\gamma_{\rm Hg} R} \right| + R(t)$$

$$R_{\rm EDM}(t) \propto \cos(m_a t)$$

$$R_{\rm wind}(t) \propto \sum_{i=1,2,3} A_i \sin(\omega_i t)$$

$$m_a, \ \omega_2 = m_a + \Omega_{\rm sidereal}, \ \omega_3 = |m_a - \Omega_{\rm sidereal}|$$

$$Earth's rotation$$

Proposals: [Budker, Graham, Ledbetter, Rajendran, A. O. Sushkov, *PRX* 4, 021030 (2014); CASPEr collaboration, *Quantum Sci. Technol.* 3, 014008 (2018)]

Use nuclear magnetic resonance

Proposals: [Budker, Graham, Ledbetter, Rajendran, A. O. Sushkov, *PRX* 4, 021030 (2014); CASPEr collaboration, *Quantum Sci. Technol.* 3, 014008 (2018)]

Use nuclear magnetic resonance

Experiment (Formic acid): [CASPEr collaboration, In preparation]

Proposals: [Budker, Graham, Ledbetter, Rajendran, A. O. Sushkov, *PRX* 4, 021030 (2014); CASPEr collaboration, *Quantum Sci. Technol.* 3, 014008 (2018)]

Use nuclear magnetic resonance

Experiment (Formic acid): [CASPEr collaboration, In preparation]

Traditional NMR

Resonance: $2\mu B_{ext} = \omega$

Proposals: [Budker, Graham, Ledbetter, Rajendran, A. O. Sushkov, *PRX* 4, 021030 (2014); CASPEr collaboration, *Quantum Sci. Technol.* 3, 014008 (2018)]

Use nuclear magnetic resonance

Experiment (Formic acid): [CASPEr collaboration, In preparation]

Traditional NMR

Dark-matter-driven NMR

Resonance: $2\mu B_{ext} \approx m_a$

Measure transverse magnetisation

Resonance: $2\mu B_{ext} = \omega$

Constraints on Interaction of Axion Dark Matter with Gluons

nEDM constraints: [nEDM collaboration, PRX 7, 041034 (2017)]

3 orders of magnitude improvement!

Constraints on Interaction of Axion Dark Matter with Nucleons

v_n/v_{Hq} constraints: [nEDM collaboration, *PRX* 7, 041034 (2017)]

40-fold improvement (laboratory bounds)!

Constraints on Interaction of Axion Dark Matter with Nucleons

v_n/v_{Hq} constraints: [nEDM collaboration, *PRX* 7, 041034 (2017)]

40-fold improvement (laboratory bounds)!

Constraints on Interaction of Axion Dark Matter with Nucleons

v_n/v_{Hg} constraints: [nEDM collaboration, *PRX* **7**, 041034 (2017)] Formic acid NMR constraints: [CASPEr collaboration, In preparation]

3 orders of magnitude improvement (laboratory bounds)!

Electroweak Theory $\int U(1)_{EM} \times SU(2)_{Weak}$ $\gamma (m = 0)$ { Z, W^+, W^- } ($m \approx 100 \text{ GeV}$)

Interaction	Process	Range	<i>V</i> (<i>r</i>)
EM	γ	∞	1/ <i>r</i>
Weak	Z	1/ <i>m_z ∼</i> 10 ⁻¹⁸ m	δ(r)

Electroweak Theory $\int U(1)_{EM} \times SU(2)_{Weak}$ $\gamma (m = 0)$ { Z, W^+, W^- } ($m \approx 100 \text{ GeV}$)

Interaction	Process	Range	<i>V</i> (<i>r</i>)
EM	γ	∞	1/ <i>r</i>
Weak	Z	1/ <i>m_z ∼</i> 10 ⁻¹⁸ m	δ(r)
Weak	v ↓ v ≥ z	1/(2 <i>m</i> _v) ≳ 10 ⁻⁷ m	1/r ⁵

$$V_{\nu}(r) \sim \frac{G_F^2}{r^5} + \text{spin-dependent terms} [1/m_{z,w} << r << 1/(2m_{\nu})]$$

[Stadnik, arXiv:1711.03700]

[Stadnik, arXiv:1711.03700]

Enormous enhancement of energy shift in *s*-wave atomic states (*I* = 0, no centrifugal barrier)!

[Stadnik, arXiv:1711.03700]

 $\overline{\wedge}$

$$\underbrace{ v \left(\right) v}_{\nu \left(r \right)} = V_{\nu}(r) \sim \frac{G_F^2}{r^5} + \text{spin-dependent terms}$$

Enormous enhancement of energy shift in *s*-wave atomic states (*I* = 0, no centrifugal barrier)!

$$\Delta E_{s\text{-wave}} \sim \left(\frac{a_{\rm B}}{r_c}\right)^2 \frac{G_F^2}{a_{\rm B}^5} \qquad r_{\rm c} = \text{``cutoff" radius}$$

Finite-sized nucleus: $(a_{\rm B}/r_c)^2 \approx (a_{\rm B}/R_{\rm nucl})^2 \sim 10^9$

Point-like nucleus: $(a_{\rm B}/r_c)^2 \approx (a_{\rm B}/\lambda_{Z,W})^2 \sim 10^{15}$

[Stadnik, arXiv:1711.03700]

$$\underbrace{ v \left(\right) v}_{\nu \left(r \right)} = V_{\nu}(r) \sim \frac{G_F^2}{r^5} + \text{spin-dependent terms}$$

Spectroscopy measurements of and calculations in:

• Simple atoms (H, D)

 $\overline{\Lambda}$

- Exotic atoms (e^-e^+ , $e^-\mu^+$)
- Simple nuclei (*np*)
- Heavy atoms (Ca⁺)

[Stadnik, arXiv:1711.03700]

$$v \left(\begin{array}{c} v \\ \hline \end{array} \right) v \qquad V_{\nu}(r) \sim \frac{G_F^2}{r^5} + \text{spin-dependent terms}$$

Spectroscopy measurements of and calculations in:

• Simple atoms (H, D)

 $\overline{\wedge}$

- Exotic atoms (e⁻e⁺, e⁻μ⁺)
- Simple nuclei (*np*)
- Heavy atoms (Ca⁺)

Muonium ground-state hyperfine interval:

v_{exp} = 4463302776(51) Hz

 $v_{\text{theor}} = 4463302868(271)^* \text{ Hz}$

 $\Delta v_{\text{neutrinos + other fermions}} \approx 2 \text{ Hz}$

$$\Delta v_{\text{neutrinos}} \approx 0.5 \text{ Hz}$$

* $u[v_{theor}(m_e/m_\mu)] \approx 260 \text{ Hz}, u[v_{theor}(4^{th}-order \text{ QED})] \approx 85 \text{ Hz}, u[v_{theor}(others)] \leq \text{Hz}$

Summary

- Improved limits on dark bosons from atomic experiments (independent of $\rho_{\rm DM}$)
- New classes of dark matter effects that are <u>first power</u> in the underlying interaction constant => Up to <u>15 orders of magnitude improvement</u>
- <u>18 orders of magnitude improvement</u> on "long-range" neutrino-mediated forces from atomic spectroscopy (Can we test the SM prediction?)
- More details in full slides (also on ResearchGate)