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New forces 

Atomic spectroscopy: 
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Basics of Atomic PNC 

+ 
–   

QW (
133Cs) = -72.58(29)exp(32)theory  c.f.  QW (

133Cs)SM = -73.23(2)    

Experiment: [Wood et al., Science 275, 1759 (1997)] 

Theory: [Dzuba, Berengut, Flambaum, Roberts, PRL 109, 203003 (2012)] 

[Barkov, Zolotorev, JETP Lett. 27, 357 (1978); Pis’ma Zh. Eksp. Teor. Fiz. 27, 379 (1978)] 

Parity violation in weak neutral current interactions first discovered 

in bismuth optical rotation experiments in Novosibirsk 
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• If q typical << me (like, e.g., in Z-boson exchange between 

valence electron and 1s electrons), then Krel ≈ 1 

Basics of Atomic PNC 

[Bouchiat, Bouchiat, J. de Phys. 35, 899 (1974)] 
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[Dzuba, Flambaum, Stadnik, PRL 119, 223201 (2017)] 
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P-violating forces => Atomic parity-nonconserving 

effects and nuclear anapole moments 

[Dzuba, Flambaum, Stadnik, PRL 119, 223201 (2017)] 

Atomic PNC experiments: Cs, Yb, Tl 

Non-Cosmological Sources of Dark Bosons 



Constraints on Vector-Pseudovector 

Nucleon-Electron Interaction 
PNC constraints: [Dzuba, Flambaum, Stadnik, PRL 119, 223201 (2017)] 

 Many orders of magnitude improvement!  



Constraints on Vector-Pseudovector 

Nucleon-Proton Interaction 
PNC constraints: [Dzuba, Flambaum, Stadnik, PRL 119, 223201 (2017)] 

 

Yan, Snow, PRL 110, 082003 (2013) 
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 P,T-violating forces => Atomic and Molecular EDMs 

[Stadnik, Dzuba, Flambaum, PRL 120, 013202 (2018)] 

Atomic EDM experiments: Cs, Tl, Xe, Hg 

Molecular EDM experiments: YbF, HfF+, ThO 

Non-Cosmological Sources of Dark Bosons 



Constraints on Scalar-Pseudoscalar 

Nucleon-Electron Interaction 
EDM constraints: [Stadnik, Dzuba, Flambaum, PRL 120, 013202 (2018)] 

 Many orders of magnitude improvement!  



Constraints on Scalar-Pseudoscalar 

Electron-Electron Interaction 
EDM constraints: [Stadnik, Dzuba, Flambaum, PRL 120, 013202 (2018)] 

Many orders of magnitude improvement!  



Manifestations of Dark Bosons 

Spectroscopy, interferometry, cavities, BBN, CMB: 

Stadnik, Flambaum, PRL 114, 161301 (2015); PRL 115, 201301 (2015); 

PRA 93, 063630 (2016); PRA 94, 022111 (2016)  

Dark matter 

Spin-precession effects, EDMs: 

Stadnik, Flambaum, PRD 89, 043522 (2014) 

nEDM collaboration, PRX 7, 041034 (2017) 



Manifestations of Dark Bosons 

Spectroscopy, interferometry, cavities, BBN, CMB: 

Stadnik, Flambaum, PRL 114, 161301 (2015); PRL 115, 201301 (2015); 

PRA 93, 063630 (2016); PRA 94, 022111 (2016)  

Dark matter 

Spin-precession effects, EDMs: 

Stadnik, Flambaum, PRD 89, 043522 (2014) 

nEDM collaboration, PRX 7, 041034 (2017) 



Motivation 
 Overwhelming astrophysical evidence for existence 

of dark matter (~5 times more dark matter than 

ordinary matter).                                                          

ρDM ≈ 0.4 GeV/cm3 

vDM ~ 300 km/s 
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 Challenge: Observable is fourth power in a small                  

interaction constant (e1 >> י)! 
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 Question: Can we instead look for effects of dark matter 

that are first power in the interaction constant? 
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• First-power effects  => Improved sensitivity to certain DM 

interactions by up to 15 orders of magnitude (!) 

 



Low-mass Spin-0 Dark Matter 

Dark Matter 

Scalars 

(Dilatons):  

φ → +φ 

 

Pseudoscalars                

(Axions):  

φ → -φ 

→ Time-varying spin-

dependent effects 

→ Time-varying 

fundamental constants 

P P 

1015-fold improvement 1000-fold improvement 



Low-mass Spin-0 Dark Matter 

Dark Matter 

Pseudoscalars                

(Axions):  

φ → -φ 

→ Time-varying spin-

dependent effects 

P 

QCD axion resolves 

strong CP problem 

1000-fold improvement 



“Axion Wind” Spin-Precession Effect 
[Flambaum, talk at Patras Workshop, 2013], [Graham, Rajendran, PRD 88, 035023 (2013)], 

[Stadnik, Flambaum, PRD 89, 043522 (2014)] 

Pseudo-magnetic field 



Oscillating Electric Dipole Moments 

 Electric Dipole Moment (EDM) = parity (P) and time-

reversal-invariance (T) violating electric moment 

Nucleons: [Graham, Rajendran, PRD 84, 055013 (2011)] 

Atoms and molecules: [Stadnik, Flambaum, PRD 89, 043522 (2014)] 
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Searching for Spin-Dependent Effects 

 Use nuclear magnetic resonance 

Proposals: [Budker, Graham, Ledbetter, Rajendran, A. O. Sushkov, PRX 4, 021030 (2014); 

CASPEr collaboration, Quantum Sci. Technol. 3, 014008 (2018)] 

Experiment (Formic acid): [CASPEr collaboration, In preparation] 

Resonance: 2μBext = ω 
Resonance: 2μBext ≈ ma 

Traditional NMR Dark-matter-driven NMR 

Measure transverse magnetisation 



 nEDM constraints: [nEDM collaboration, PRX 7, 041034 (2017)] 

3 orders of magnitude improvement! 

Constraints on Interaction of Axion          

Dark Matter with Gluons 
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Constraints on Interaction of Axion          

Dark Matter with Nucleons 
 νn/νHg constraints: [nEDM collaboration, PRX 7, 041034 (2017)] 

3 orders of magnitude improvement (laboratory bounds)! 

 Formic acid NMR constraints: [CASPEr collaboration, In preparation] 
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“Long-Range” Neutrino-Mediated Forces 

[1/mZ,W << r << 1/(2mν)] 



[Stadnik, arXiv:1711.03700] 

Probing “Long-Range” Neutrino-Mediated Forces 
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 Enormous enhancement of energy shift in s-wave           

atomic states (l = 0, no centrifugal barrier)! 

Probing “Long-Range” Neutrino-Mediated Forces 

rc = “cutoff ” radius 

 Finite-sized nucleus:  (aB/rc)
2 ≈ (aB/Rnucl)

2 ~ 109 

 Point-like nucleus:  (aB/rc)
2 ≈ (aB/λZ,W)2 ~ 1015 



[Stadnik, arXiv:1711.03700] 
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• Simple atoms (H, D) 
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• Simple nuclei (np) 

• Heavy atoms (Ca+) 
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[Stadnik, arXiv:1711.03700] 

 Spectroscopy measurements of and calculations in:  

• Simple atoms (H, D) 

• Exotic atoms (e-e+, e-μ+) 

• Simple nuclei (np) 

• Heavy atoms (Ca+) 

 Muonium ground-state hyperfine interval: 

 νexp = 4463302776(51) Hz 

 νtheor = 4463302868(271)* Hz 

 Δνneutrinos + other fermions ≈ 2 Hz 

Probing “Long-Range” Neutrino-Mediated Forces 

* u[νtheor(me /mμ)] ≈ 260 Hz, u[νtheor(4
th-order QED)] ≈ 85 Hz, u[νtheor(others)] ๅ Hz 

 Δνneutrinos ≈ 0.5 Hz 



[Stadnik, arXiv:1711.03700] 

Constraints on “Long-Range”                     
Neutrino-Mediated Forces 

18 orders of magnitude improvement!  



Summary 

• Improved limits on dark bosons from atomic 

experiments (independent of ρDM) 

• New classes of dark matter effects that are                  

first power in the underlying interaction constant      

=> Up to 15 orders of magnitude improvement 

• 18 orders of magnitude improvement on            

“long-range” neutrino-mediated forces from atomic 

spectroscopy (Can we test the SM prediction?) 

• More details in full slides (also on ResearchGate) 


