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(would be) outline

1. Context —
Standard Model, E158 / MOLLER experiments

2. Theory history —
(tree-level) Derman & Marciano
(one loop) Marciano & Czarnecki

3. Status of the NNLO calculation:
Organization:
(closed fermion loops) + (rest)
Methods/techniques:
(Expansion by regions, integration by parts,
dispersion relations)

4. Result
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(would be) outline

1. Context — Already covered by:

Standard Model, E158 / MOLLER experiments
(K.K. and others)

2. Theory history —
(tree-level) Derman & Marciano (A. Freitas,
(one loop) Marciano & Czarnecki A. Aleksejevs)

3. Status of the NNLO calculation:

Organization:
(closed fermion loops) + (rest)
Methods/techniques:
(Expansion by regions, integration by parts, (A. Freitas.)
dispersion relations) (A. Aleksejevs)
4. Result

None that are meaningful yet...
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Thank You

Any questions?
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Behavior of a perturbation series
Perturbation series
O =a’+ a4( )
+ a® (

+ ...
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Behavior of a perturbation series

Perturbation series two scales

1 M2
0 =a?+a*( +In(~~ )

a”+a| o+ n( ; )
1 M2 M2
6 — 1 1?24 In(—<
+a(10+n(8) +n(zs

+ ...
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Behavior of a perturbation series

Perturbation series two scales ~15.0

(secular term)
1 M2 e

O = a? 4( In(2 )
a® + a 6—|—n(8)
1 M2 M2
6 — 12—Z 1 Mz
-I-a(10+n(s) _|_n(8
4+ ...
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Behavior of a perturbation series

Perturbation series two scales ~15.0

(secular term)
e

O = g2 4( In( 22 )
a*+a 6+11($)

1 M2
6 — 12_Z
+a(1o+n(s)

+ ...

Secular terms threaten uniformity of perturbative series w.r.t. to
kinematic variables.
Two (three) options —
— If log 1s small, do nothing.
— If ais large, resum logs. Classical RG analysis a — a(s)
— If a1s small, use large logs to guess dominant terms,
and est. theory errors.
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Behavior of a perturbation series

Perturbation series two or more scales

2 2
O=a’+a (é —|—1n(M )+ n("2))
2 2 2
+ a6(110 +n (MZ) + ln(mb)ln(MZ) 4 In( Z))
+ ...
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Behavior of a perturbation series

Perturbation series two or more scales

O =a’+a (615 +111(M2) ln(mlz’))

S
M2

MZ) 4 1n("8) 1n( M2

+a6(110+1n( Z) | In 5))

+ ...

Can get complicated.

EFT 1s the organizing principle for handling the logs.
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Energy Theory Experiment A. FALKOWSKI

Scale
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10 S \a,k\alFEmEeo-rIy-LEFT WET) i
myy
1 GeV
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10 MeV eQED
nrQED >

Euler-
Heisenberg

1 MeV

Assumption: below ~1 TeV scale, no new degrees of freedom beyond those of the SM




Energy Theory Experiment A FALKOWSKI

Scale

P. SOUDER
1 TeV o E

! 100 GeV

WEFT

10 GeV
(aka Fermi theory, LEFT, WET)
mw
1 GeV
| 1PT E
L 100 MeV A7 fr

10 MeV eQED
nrQED >

Euler-
Heisenberg

1 MeV

Assumption: below ~1 TeV scale, no new degrees of freedom beyond those of the SM



Energy Theory Experiment A FALKOWSKI
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Energy Theory Experiment A FALKOWSKI

Scale

P. SOUDER
1 TeV o E

PRV o W W )

- 10 GeV
mw
| E
. 100 MeV 47Tf7r
10 MeV
1 MeV E
Me

Heisenberg

Assumption: below ~1 TeV scale, no new degrees of freedom beyond those of the SM



Energy Theory Experiment A. FALKOWSKI

P. SOUDER

1 TeV v o
9%, [EvPysel [Fvuf]
REC o0 [277] [Fyusf]
measurements
+ proposed
Q(p)
100 MeV IQW(APV)
MOLLER: improve
10 MeV Qwf{e) by afacto; of 5
MOLLER =
Mainz-P2 T T SoLID
1 MeV

0.0001  0.001 0.01 0.1 1 100

Heisenberg u [GeV]

Assumption: below ~1 TeV scale, no new degrees of freedom beyond those of the SM




But 1s this correct?

I question current practice of connecting EW and low energy scales.
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But 1s this correct?

I question current practice of connecting EW and low energy scales.

1. Strictly speaking, the concept of weak mixing angle does not

exist below the Z/W pole (EW scale).

After all, the Fermai theory 1s not a gauge theory.
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But 1s this correct?

I question current practice of connecting EW and low energy scales.

1. Strictly speaking, the concept of weak mixing angle does not

exist below the Z/W pole (EW scale).

After all, the Fermai theory 1s not a gauge theory.

2. The correct RG analysis requires whole Wilson coefficients to
run rather than the parameters on which they depend.

R, = 3 — 2|QyIsin? (p) QZJ\E/(,U:) [ev*ysel [fyuf]
gSh = 5 —2sin28(p) gf/fA( 'u,) [evFe] [fyuvsf]
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But 1s this correct?

I question current practice of connecting EW and low energy scales.

1. Strictly speaking, the concept of weak mixing angle does not

exist below the Z/W pole (EW scale).

After all, the Fermi theory is not a gauge theory.

2. The correct RG analysis requires whole Wilson coefficients to
run rather than the parameters on which they depend.

g/ 14 ) (v vsel [Fyu]
oUA( ) el [Fyuvs ]
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Advantages

g/ 14 ) [Er*vsel [Fyuf]
g\e/;\( 'u,) [ev"e] [Fyuvs ]

1. Gapture all logs 1n a systematic manner

-
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Advantages

9 ) [Ev*sel [Fyuf]
90 ) [Erel [P ]

1. Gapture all logs 1n a systematic manner

p)

“Running sin*0)’

¢
\ Y% %Z
/

f

In(m?/s)  In(m2/s)

all accounted missed
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Advantages

9 ) [Ev*sel [Fyuf]
90 ) [Erel [P ]

1. Gapture all logs 1n a systematic manner

“Running sin*(9)” “Strict EF 17
e
e
R
Y V
Z Tt
f
In(m?/s)  In(m2/s) In(m?%/s)+1n(m%/s)
all accounted missed all accounted
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Advantages

ngv(u) [Ev*vse] [Fuf]
gVA( 'u,) [eve] [Fryuvsf

2. Less prone to making silly mistakes —
Anapole moment 1s gauge dependent.

One loop matching generates
(apparently gauge-dependent Wilson coetlicients)

2 Gnswa e+ 2L Gy o) )
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Advantages

g,ifv(u) [Ev*vse] [Fuf]
gVA( 'u,) [eve] [Fryuvsf

2. Less prone to making silly mistakes —
Anapole moment 1s gauge dependent.

One loop matching generates
(apparently gauge-dependent Wilson coetlicients)

2 Gnswa e+ 2L Gy o) )

tree-level EOM: 8,F* — 9vy,9

tot

e e UMEDICRY

Ramsey-Musolt—Holstein mechanism in EFT
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Advantages
1. Gapture all logs 1n a systematic manner
2. Less prone to making silly mistakes —

QA\/(,U:) [evHvse] [f?’,uf]

g\/;( ,U’) [evPe]l [fyuvsf]

3. Easier to calculate. After the EF1 1s set up.
All radiative corrections are pure QED.

Can focus on the relevant degrees of freedom without
getting caught up in the complications of the heavy W/Z bosons.
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Advantages
1. Gapture all logs 1n a systematic manner
2. Less prone to making silly mistakes —

QA\/(,U:) [evHvse] [f’Y,Mf]

g\/;( ,U') [evPe]l [fyuvsf]

3. Easier to calculate. After the EF1 1s set up.
All radiative corrections are pure QED.

Can focus on the relevant degrees of freedom without
getting caught up in the complications of the heavy W/Z bosons.

Fe| = ue|N|  (EFT)

VS
% atomic motions (incl. W/ Z)
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Advantages
1. Gapture all logs 1n a systematic manner
2. Less prone to making silly mistakes —

QA\/(,U:) [evHvse] [f’Y,Mf]

g\/;( ,U') [evPe]l [fyuvsf]

3. Easier to calculate. After the EF1 1s set up.
All radiative corrections are pure QED.

Can focus on the relevant degrees of freedom without
getting caught up in the complications of the heavy W/Z bosons.

% VS
atomic motions (incl. W/ Z)

4. ...and many more (see A. Falkowski’s talk)
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To summarize

Strictly speaking, shouldn’t talk about sin*8) below the W/Z scale.

0.245

measurements
+ .y 2posed

da factor o L Tevatron LEP1 ILHC

N
0:230 MOLLER = N
o ¥
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Instead, we should really discuss the various Wilson coetficients.
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Instead, we should really discuss the various Wilson coetficients.

gAV( ,u) [ev*vse] [Fyuf]
gVA( y,) [evPe] [Fryuvsf
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Thank you

Special thanks to
Jens Erler,
Vincenzo Cirigliano,

Ayres Freitas,
Jordy De Vries

with whom I discussed by objections, and who confirm
that I have not gone completely insane!

Any questions?
Discussions—
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