Higher-order electroweak corrections for PV asymmetries

A. Freitas University of Pittsburgh

MITP Workshop PVES 2018

- **1.** Z and W boson physics
- **2.** Calculational challenges and techniques
- 3. Low-energy parity violation

Z and W boson physics

W mass

LEP EWWG '05 ALEPH DELPHI L3 OPAL

 $\sigma_{had} \left[nb \right]$

40

30

20

10

e

Deconvolution of initial-state QED radiation:

 $\sigma[e^+e^- \to f\bar{f}] = \mathcal{R}_{\text{ini}}(s,s') \otimes \sigma_{\text{hard}}(s')$

Kureav, Fadin '85 Berends, Burgers, v. Neerven '88 Kniehl, Krawczyk, Kühn, Stuart '88 Beenakker, Berends, v. Neerven '89 Skrzypek '92 Montagna, Nicrosini, Piccinini '97

• Deconvolution of initial-state QED radiation: $\sigma[e^+e^- \to f\bar{f}] = \mathcal{R}_{\text{ini}}(s, s') \otimes \sigma_{\text{hard}}(s')$

Subtraction of γ -exchange, γ -Z interference, box contributions:

 $\sigma_{\text{hard}} = \sigma_{\text{Z}} + \sigma_{\gamma} + \sigma_{\gamma\text{Z}} + \sigma_{\text{box}}$

• Deconvolution of initial-state QED radiation: $\sigma[e^+e^- \to f\bar{f}] = \mathcal{R}_{\text{ini}}(s, s') \otimes \sigma_{\text{hard}}(s')$

Subtraction of γ -exchange, γ -Z interference, box contributions:

 $\sigma_{\text{hard}} = \sigma_{\text{Z}} + \sigma_{\gamma} + \sigma_{\gamma\text{Z}} + \sigma_{\text{box}}$

■ *Z*-pole contribution:

$$\sigma_{\mathsf{Z}} = \frac{R}{(s - \overline{M}_{\mathsf{Z}}^2)^2 + \overline{M}_{\mathsf{Z}}^2 \overline{\Gamma}_{\mathsf{Z}}^2} + \sigma_{\mathsf{non-res}}$$

• Deconvolution of initial-state QED radiation: $\sigma[e^+e^- \to f\bar{f}] = \mathcal{R}_{\text{ini}}(s, s') \otimes \sigma_{\text{hard}}(s')$

Subtraction of γ -exchange, γ -Z interference, box contributions:

 $\sigma_{\text{hard}} = \sigma_{\text{Z}} + \sigma_{\gamma} + \sigma_{\gamma\text{Z}} + \sigma_{\text{box}}$

■ *Z*-pole contribution:

$$\sigma_{\mathsf{Z}} = \frac{R}{(s - \overline{M}_{\mathsf{Z}}^2)^2 + \overline{M}_{\mathsf{Z}}^2 \overline{\Gamma}_{\mathsf{Z}}^2} + \sigma_{\mathsf{non-res}}$$

In experimental analyses:

$$\sigma \sim \frac{1}{(s - M_Z^2)^2 + s^2 \Gamma_Z^2 / M_Z^2}$$

$$\overline{M}_{Z} = M_{Z} / \sqrt{1 + \Gamma_{Z}^{2} / M_{Z}^{2}} \approx M_{Z} - 34 \text{ MeV}$$

$$\overline{\Gamma}_{Z} = \Gamma_{Z} / \sqrt{1 + \Gamma_{Z}^{2} / M_{Z}^{2}} \approx \Gamma_{Z} - 0.9 \text{ MeV}$$

Relevant pseudo-observables:

- Total width $\overline{\Gamma}_Z$
- Partial widths $\overline{\Gamma}_f = \Gamma[Z \to f\bar{f}]_{s=\overline{M}_7^2}$
- Peak cross-section $\sigma_{had}^0 = \sigma_Z(s = \overline{M}_Z^2)$
- Branching ratios:
 - $\begin{aligned} R_q &= \Gamma_q / \Gamma_{had} & (q = b, c, \text{ probes heavy quark generations}) \\ R_\ell &= \Gamma_{had} / \Gamma_\ell & (\ell = e, \mu, \tau) \end{aligned}$

Effective weak mixing angle:

Z-pole asymmetries:

$$A_{\mathsf{FB}}^{f} \equiv \frac{\sigma(\theta < \frac{\pi}{2}) - \sigma(\theta > \frac{\pi}{2})}{\sigma(\theta < \frac{\pi}{2}) + \sigma(\theta > \frac{\pi}{2})} = \frac{3}{4} \mathcal{A}_{e} \mathcal{A}_{f}$$
$$A_{\mathsf{LR}} \equiv \frac{\sigma(\mathcal{P}_{e} > 0) - \sigma(\mathcal{P}_{e} < 0)}{\sigma(\mathcal{P}_{e} > 0) + \sigma(\mathcal{P}_{e} < 0)} = \mathcal{A}_{e}$$
$$\frac{q_{Vf}/q_{Af}}{1 - 4|Q_{f}| \sin^{2} \theta_{\mathsf{off}}^{f}}$$

$$\mathcal{A}_{f} = 2 \frac{g_{Vf}/g_{Af}}{1 + (g_{Vf}/g_{Af})^{2}} = \frac{1 - 4|Q_{f}|\sin^{2}\theta_{\text{eff}}^{f} + 8(|Q_{f}|\sin^{2}\theta_{\text{eff}}^{f})^{2}}{1 - 4|Q_{f}|\sin^{2}\theta_{\text{eff}}^{f} + 8(|Q_{f}|\sin^{2}\theta_{\text{eff}}^{f})^{2}}$$

Most precisely measured for $f = \ell$ (also f = b, c)

Current status of electroweak precision tests

Standard Model after Higgs discovery:

- Good agreement between measured mass and indirect prediction
- Very good agreement over large number of observables

Current status of SM loop results

Hollik, Meier, Uccirati '05,07; Degrassi, Gambino, Giardino '14 Freitas '13,14; Dubovyk, Freitas, Gluza, Riemann, Usovitsch '16,18

• Partial 3/4-loop corrections to ρ/T -parameter $\mathcal{O}(\alpha_t \alpha_s^2), \mathcal{O}(\alpha_t^2 \alpha_s), \mathcal{O}(\alpha_t \alpha_s^3)$

Chetyrkin, Kühn, Steinhauser '95 Faisst, Kühn, Seidensticker, Veretin '03 Boughezal, Tausk, v. d. Bij '05 Schröder, Steinhauser '05; Chetyrkin et al. '06 Boughezal, Czakon '06

$$(\alpha_{\rm t} \equiv \frac{y_{\rm t}^2}{4\pi})$$

	Experiment	Theory error	Main source
M_{W}	$80.385\pm0.015~\text{MeV}$	4 MeV	$\alpha^3, \alpha^2 \alpha_s$
Γ_Z	2495.2 \pm 2.3 MeV	0.4 MeV	$\alpha^{3}, \alpha^{2} \alpha_{s}, \alpha \alpha_{s}^{2}$
$\sigma_{\sf had}^{\sf 0}$	$41540\pm37~{ m pb}$	6 pb	$\alpha^3, \alpha^2 \alpha_s$
$R_b\equiv \Gamma^b_{\sf Z}/\Gamma^{\sf had}_{\sf Z}$	0.21629 ± 0.00066	0.0001	$\alpha^3, \alpha^2 \alpha_s$
$\sin^2 heta_{ ext{eff}}^\ell$	0.23153 ± 0.00016	$4.5 imes 10^{-5}$	$\alpha^3, \alpha^2 \alpha_s$

Theory error estimate is not well defined, ideally $\Delta_{th} \ll \Delta_{exp}$

- Common methods: Count prefactors (α , N_c , N_f , ...)
 - Extrapolation of perturbative series
 - Renormalization scale dependence
 - Renormalization scheme dependence

Also parametric error from external inputs (m_t , m_b , α_s , $\Delta \alpha_{had}$, ...)

Calculational challenges and techniques

Full SM corrections at \geq 2-loop:				
Large number of diagrams and tensor integrals, $\mathcal{O}(100) - \mathcal{O}(10000)$				
Many different scales (masses and ext. momenta)				
Computer algebra methods:				
Generation of diagrams with FeynArts, QGraf,				
Küblbeck, E	ck, Mertig '92, Hahn '01 Nogueira '93			
Dirac/Lorentz algebra with Form, FeynCalc,	Vermaseren '89,00 Mertig '93			
Evaluation of loop integrals:				
In general not possible analytically				

- Numerical methods must be automizable, stable, fastly converging
- Need procedure for isolating divergent pieces

Asymptotic expansions

- Exploit large mass ratios, $e. g. M_Z^2/m_t^2 \approx 1/4$
- Evaluate coeff. integrals analytically
- Fast numerical evaluation

Current status:

Two-scale problems: $\mathcal{O}(\alpha \alpha_s^n)$ for $\Delta \rho$, Δr

 \rightarrow Several expansion terms up to 3-loop, leading term up to 4-loop

> Djouadi, Verzegnassi '87; Bardin, Chizhov '88 Chetyrkin, Kühn, Steinhauser '95 Faisst, Kühn, Seidensticker, Veretin '03; ...

Three-scale problems: $Zf\overline{f}$ vertex at 2-loop Barbieri et al. '92,93 Fleischer, Tarasov, Jegerlehner '93,95 Degrassi, Gambino, Sirlin '97 Awramik, Czakon, Freitas, Weiglein '04

Extendability: Promising, limited by computing/algorithms General form of Feynman integral:

$$I = \int_0^1 dx_1 \dots dx_n \, \delta(1 - \sum_i x_i) \frac{N(x_i)}{D(x_i)^{r+\varepsilon}}$$

 \rightarrow Can be integrated numerically (if finite)

Alternatives: Integration in momentum space, Mellin-Barnes space

Treatment of divergencies:

 Sector decomposition: Sub-divide integration space such that divergent terms factorize Binoth, Heinrich '00,03

 Subtraction terms: Remove divergencies with simple terms that can be integrated analytically
 Nagy, Soper '03

Becker, Reuschle, Weinzierl '10; Freitas '12

After removal of singularities through sector decomposition:

$$I_{\text{reg}}^{(1)} = \int_0^1 dx_1 \dots dx_{n-1} \ (A - i\epsilon)^{-k}$$

Physical thresholds: A changes sign in ingration region

- → Problematic for numerical integrators
- \rightarrow Deform integration into complex plane:

$$x_i = z_i - i\lambda z_i(1 - z_i) \frac{\partial A}{\partial z_i}, \qquad 0 \le z_i \le 1.$$

$$A(\vec{x}) = A(\vec{z}) - i\lambda \sum_{i} z_i (1 - z_i) \left(\frac{\partial A}{\partial z_i}\right)^2 + \mathcal{O}(\lambda^2).$$

Typical choice: $\lambda \sim 0.5 - 1$

Potential issues:

- $\rightarrow \partial A/\partial z_i$ may vanish in certain sub-spaces
- → Thresholds may be at edge of integration region

Nagy, Soper '06

Transform Feynman integral with Mellin-Barnes representation

$$\frac{1}{(A_0 + \ldots + A_m)^Z} = \frac{1}{(2\pi i)^m} \int_{\mathcal{C}_1} dz_1 \cdots \int_{\mathcal{C}_m} dz_m$$

$$\times A_1^{z_1} \cdots A_m^{z_m} A_0^{-Z - z_1 - \ldots - z_m}$$

$$\times \frac{\Gamma(-z_1) \cdots \Gamma(-z_m) \Gamma(Z + z_1 + \ldots + z_m)}{\Gamma(Z)},$$

12/27

 For \$\varepsilon \rightarrow 0\$: residues from pole crossings \$\top 1/\varepsilon^k\$ terms Czakon '06 Anastasiou, Daleo '06
 Do remaining \$\mathcal{C}_i\$ integrations numerically Poles of \$\varepsilon(Z + z_1 + \ldots + z_m)\$

• α_{s} : Most precise determination using Lattice QCD from v spectroscopy: $\alpha_{s} = 0.1184 \pm 0.0006$ HPQCD '10 But $e^{+}e^{-}$ event shapes and DIS prefer $\alpha_{s} \sim 0.114$ Alekhin, Blümlein, Moch '12; Abbate et al. '11; Gehrmann et al. '13 • Impact on EWPOs: $\delta \alpha_{s} = 0.005 \Rightarrow \delta M_{W} \approx 3.5 \text{ MeV}$ $\delta \sin^{2} \theta_{eff}^{\ell} \approx 2 \times 10^{-5}$

Currently not dominant, but similar order of magnitude as intrinsic theory error

Renormalization scheme dependence

Use of \overline{MS} renormalization for m_t reduces h.o. QCD corrections of $\mathcal{O}(\alpha_t \alpha_s^n)$: $\Delta \rho_{(n)}^{OS} / \left(\frac{3G_F m_t^2}{8\sqrt{2} - 2}\right)$ $\left(\frac{3G_F\overline{m}_t^2}{8\sqrt{2}\pi^2}\right)$ loops (n+1) $-0.193\left(\frac{\alpha_{s}}{\pi}\right)$ $-3.970\left(\frac{\alpha_s}{\pi}\right)$ 2 Djouadi, Verzegnassi '87 Kniehl '90 $-2.860\left(\frac{\alpha_{s}}{\pi}\right)^{2}$ $-14.59\left(\frac{\alpha_s}{\pi}\right)^2$ 3 Avdeev, Fleischer, et al. '94 Chetyrkin, Kühn, Steinhauser '95 $-1.680\left(\frac{\alpha_s}{\pi}\right)^3$ $-93.15\left(\frac{\alpha_{s}}{\pi}\right)^{3}$ 4 Schröder, Steinhauser '05 Chetyrkin, Faisst, Kühn, et al. '06 Boughezal, Czakon '06

No clear pattern of this kind known for $\mathcal{O}(\alpha^n)$ \rightarrow Only few results available that allow direct comparison e.g. Faisst, Kühn, Seidensticker, Veretin '03

Shift of finestructure constant

•
$$\Delta \alpha \equiv 1 - \frac{\alpha(0)}{\alpha(M_Z)} \approx 0.059 = 0.0315_{\text{lept}} + 0.0276_{\text{had}}$$

- Hadronic effects from $e^+e^- \rightarrow had$. data
- Last 5 years: new data from BaBar, VEPP, BES
- No significant improvement from including τ data
- Robust precision $\sim 10^{-4}$

Davier et al. '17; Jegerlehner '17 Keshavarzi, Nomura, Teubner '18

Shift of finestructure constant

•
$$\Delta \alpha \equiv 1 - \frac{\alpha(0)}{\alpha(M_Z)} \approx 0.059 = 0.0315_{\text{lept}} + 0.0276_{\text{had}}$$

- Hadronic effects from $e^+e^- \rightarrow had$. data
- Last 5 years: new data from BaBar, VEPP, BES
- No significant improvement from including τ data
- Robust precision $\sim 10^{-4}$

Davier et al. '17; Jegerlehner '17 Keshavarzi, Nomura, Teubner '18

Low-energy parity violation

17/27

 $g_{\mathsf{AV}}^{ef} \left[\bar{e} \gamma^{\mu} \gamma_{5} e \right] \left[\bar{f} \gamma_{\mu} f \right]$ $g_{\mathsf{VA}}^{ef} \left[\bar{e} \gamma^{\mu} e \right] \left[\bar{f} \gamma_{\mu} \gamma_{5} f \right]$

$$g_{\text{AV}}^{ef} = \frac{1}{2} - 2|Q_f| \sin^2 \bar{\theta}(\mu)$$
$$g_{\text{VA}}^{ef} = \frac{1}{2} - 2\sin^2 \bar{\theta}(\mu)$$

Electroweak corrections to Møller scattering

• e^-e^- PV scattering is very clean channel with minimal hardonic effects • EW corrections to ee and ep scattering are similar (except box graphs) • LR asymmetry: $A_{LR} = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} = \frac{G_{\mu}(-q^2)}{\sqrt{2}\pi\alpha} \frac{1 - y}{1 + y^4 + (1 - y)^4} (1 - 4\sin^2\theta_W)$ $y \approx \frac{1}{2}\cos\theta$

One-loop correction $\delta_{1|}A_{LR} \sim 40\%$ $\delta_{1|}\sin^2\theta_W \sim 3\%$ Czarnecki, Marciano '96

- IR radiation cancels in A_{LR}
 → No real emission corrections
- MOLLER exp. target: $\delta_{exp} \sin^2 \theta_W \sim 0.1\%$ \rightarrow 2-loop corrections needed

Electroweak corrections to Møller scattering

- As first step: EW 2-loop corrections with closed fermion loops
 - \rightarrow Enhanced by N_f
 - \rightarrow Experience from Z-pole EWPO:
 - $\mathcal{O}(lpha_{\mathsf{ferm}}^2) \, / \, \mathcal{O}(lpha_{\mathsf{bos}}^2) \gtrsim 5$
- Computer tools to handle many diagrams and large expressions
 - Diagram generation
 - Lorentz and Dirac algebra
 - Integral simplication and expansion
 - Numerical integration of final set of loop functions

EW corrections to Møller scattering: Scales

- At Z pole: $s = M_Z^2 \sim M_W^2 \sim M_H^2 \sim m_t^2 \gg m_f^2$ $(f \neq t)$ \rightarrow Neglect all light fermion masses (except in $\Delta \alpha$)
- Low-energy ee scattering: $|q^2| \sim m_f^2 \ll M_{weak}^2$ \rightarrow Expansion in large M_{weak}^2

• Techical realization: expansion by regions Beneke, Smirnov '97 \rightarrow Expansion in integrand, different categories for loop momenta $k_{1,2}$

 \rightarrow Here only soft+hard regions needed:

hard-hard: $|k_1| \sim |k_2| \sim M_{\text{weak}} \gg Q, m_f$ $Q = \sqrt{|q^2|}$ soft-soft: $|k_1| \sim |k_2| \sim Q, m_f \ll M_{\text{weak}}$ soft-hard: $|k_1| \sim Q, m_f \ll |k_2| \sim M_{\text{weak}}$ (and permutations)

 Coefficients are simpler integrals: hard-hard: 2-loop vacuum soft-hard: (1-loop) × (1-loop) soft-soft: 2-loop with fewer masses Form of one-loop result:

Czarnecki, Marciano '96

$$A_{\text{LR}} = \frac{\rho G_{\mu} q^2}{\sqrt{\pi} \alpha} \frac{-1+y}{1+y^4 + (1-y)^4} \Big[1 - 4\kappa (q^2) \,\hat{s}^2 (M_{\text{Z}}^2) + \text{boxes, QED} \Big]$$

• G_{μ} absorbs dependence on $\Delta \alpha$

• Corrections to G_{μ} known at 2-loop

Freitas, Hollik, Walter, Weiglein '00 Awramik, Czakon '02; Onishchenko, Veretin '02

•
$$\hat{s}^2(M_Z^2) \equiv \sin^2 \theta_W^{\overline{\text{MS}}} \Big|_{\mu^2 = M_Z^2}$$
 numerically close to $\sin^2 \theta_{\text{eff}}^f$
 \rightarrow Connection to Z-pole EWPOs

 \bullet ρ contains remaining renormalization (Z mass)

EW corrections to Møller scattering: Renormalization

- At 2-loop level: need sub-loop renormalization
- **Dependence** $\Delta \alpha$ re-enters
- Also need renormalization of M_W , but since \hat{s}^2 is used as input, M_W is computed from \hat{s}^2 and M_Z

$$A_{\rm LR} = \frac{\rho G_{\mu} q^2}{\sqrt{\pi} \alpha} \frac{-1+y}{1+y^4 + (1-y)^4} \Big[1 - 4\kappa (q^2) \, \hat{s}^2 (M_Z^2) + \text{boxes, QED} + \dots \Big]$$

- Sensitivity to m_q : non-perturbative hadron physics
- $\Delta_{\gamma Z}$ described running of $\hat{s}^2(\mu^2)$ from $\mu = M_Z$ to 0

Determination of $\Delta_{\gamma Z} = \sum_f (I_{3f}Q_f - 2s^2Q_f^2) \ln m_f^2/M_Z^2$:

a) Directly from e^+e^- data using reweighting of different flavors [SU(3)_{u,d,s} symmetry, pQCD for u, d, s at c, b thrsh.] Wetzel '81; Marciano, Sirlin '84 Jegerlehner '86,17

Determination of $\Delta_{\gamma Z} = \sum_f (I_{3f}Q_f - 2s^2Q_f^2) \ln m_f^2/M_Z^2$:

a) Directly from e^+e^- data using reweighting of different flavors [SU(3)_{*u*,*d*,*s*} symmetry, pQCD for *u*, *d*, *s* at *c*, *b* thrsh.] Wetzel '81; Marciano, Sirlin '84 Jegerlehner '86,17

b) Determine "threshold masses" $\bar{m}_{u,ds,c,b}$ from $\Delta \alpha(q^2)$; pQCD RG running btw. thresholds Erler, Ramsey-Musolf '04 Erler, Ferro-Hernández '17

Determination of $\Delta_{\gamma Z} = \sum_f (I_{3f}Q_f - 2s^2Q_f^2) \ln m_f^2/M_Z^2$:

a) Directly from e^+e^- data using reweighting of different flavors [SU(3)_{*u*,*d*,*s*} symmetry, pQCD for *u*, *d*, *s* at *c*, *b* thrsh.] Wetzel '81; Marciano, Sirlin '84 Jegerlehner '86,17

b) Determine "threshold masses" $\bar{m}_{u,ds,c,b}$ from $\Delta \alpha(q^2)$; pQCD RG running between thresholds Erler, Ramsey-Musolf '04 Erler, Ferro-Hernández '17

c) Lattice QCD

 \rightarrow talk by K. Ottnad

Two-loop contributions to γ -Z self-energy:

- Quark loops with photon or gluon
 → Already contained in hadronic Δ_{γZ}
- Quark loops with W/Z boson
- In $\gamma\gamma$ SE:
 - \rightarrow For $\Delta \alpha$ ($\gamma \gamma$ SE) limit $m_q \rightarrow 0$ is safe due to QED Ward id.

• In γZ SE:

 \rightarrow Sensitive to low-energy hadron physics

Perform expansion by regions \rightarrow Factorization into $\Delta_{\gamma Z}^{1-loop} \times W/Z$ -loop (except for terms $\propto m_t^2 \log m_b^2$)

γ_5 and mass regulators

- Vertex diagrams with sub-loop triangles are sensitive to γ_5 problem
- DREG with naively anti-commuting γ_5 : Tr{ $\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}\gamma_5$ } = 0
- Contributions $\propto \text{Tr}\{\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}\gamma_{5}\}$ are UV finite \rightarrow DREG not needed
- IR singularities from photon propagators (in individual diagrams, cancel in sum)
 → Use mass regulator (m_γ ≠ 0) in D = 4

Summary

- Sensitivity for Z-pole EWPOs and future low-energy EWPOs requires 2-loop SM corrections
- No fully automated procedure for 2-loop calculations
 - \rightarrow Each process requires new work
 - \rightarrow Combination of analytic and numerical methods
 - \rightarrow Interesting subtleties around definition of input quantities & renormalization
- Evaluation of different methods for including hadronic effects?

 \rightarrow Work is in progress and useful pheno results in \lesssim 1 year