Role of Two-Loop EWC in Moller Scattering and Dispersive Approach

A. Aleksejevs and S. Barkanova, Grenfell Campus of Memorial University

Møller scattering at the tree level

The process of electron–electron scattering (Møller process) C. Møller, Annalen der Physik 406, 531 (1932)

$$A_{LR} = \frac{\sigma_{LL} + \sigma_{LR} - \sigma_{RL} - \sigma_{RR}}{\sigma_{LL} + \sigma_{LR} + \sigma_{RL} + \sigma_{RR}} = \frac{\sigma_{LL} - \sigma_{RR}}{\sigma_{LL} + 2\sigma_{LR} + \sigma_{RR}}$$

$$A_{LR}^{0} = \frac{s}{2m_{W}^{2}} \frac{y(1-y)}{1+y^{4}+(1-y)^{4}} \frac{1-4s_{W}^{2}}{s_{W}^{2}}, \quad y = -t/s$$

Møller scattering at one-loop

- Although PV asymmetry ($A_{LR} \sim 10^{-7}$) is very small, the accuracy of modern experiments exceeds the accuracy of the theoretical result in Born approximation.
- One-loop contribution was found to be rather big in the previous works:

A. Czarnecki, W. J. Marciano, Phys. Rev. D53, 1066 (1996)
A. Denner, S. Pozzorini, Eur. Phys. J. C7, 185 (1999)
A. A, S. Barkanova, A. Ilyichev, V. Zykunov, Phys. Rev. D82, 093013 (2010)

First Stage: One-Loop Corrections for MOLLER

$$\sigma = \frac{\pi^{3}}{2s} |M_{0} + M_{1}|^{2} = \frac{\pi^{3}}{2s} (\underbrace{M_{0}M_{0}^{+}}_{\propto \alpha^{2}} + \underbrace{2\text{Re}M_{1}M_{0}^{+}}_{\propto \alpha^{3}} + \underbrace{M_{1}M_{1}^{+}}_{\propto \alpha^{4}}) = \sigma_{0} + \sigma_{1} + \sigma_{Q}$$

$$\sigma_{1} = \sigma_{1}^{BSE} + \sigma_{1}^{Ver} + \sigma_{1}^{Box}$$
(5)

•Calculated in the on-shell renormalization, using both:

- Computer-based approach, with Feynarts, FormCalc, LoopTools and Form
- T. Hahn, Comput. Phys. Commun. 140 418 (2001);
- T. Hahn, M. Perez-Victoria, Comput. Phys. Commun. 118, 153 (1999);
- J. Vermaseren, (2000) [arXiv:math-ph/0010025]
- "On paper", with approximations in small energy region $\frac{\{t,u\}}{m_{Z,W}^2} \ll 1$, for $\sqrt{s} \ll 30~GeV$ and high energy approximation for $\sqrt{s} \gg 500~GeV$

A. Aleksejevs, S. Barkanova, A. Ilyichev, V. Zykunov, Phys. Rev. D82 (2010) 093013

One-Loop Corrections for MOLLER

$$\delta_A = \frac{A_{LR}^C - A_{LR}^0}{A_{LR}^0}$$

The relative weak (solid line in DRC (semi-automated) and dotted line in HRC ("on paper")) and QED (dashed line) corrections to the Born asymmetry A^0_{LR} versus \sqrt{s} at $\theta = 90^\circ$.

The filled circle corresponds to our predictions for the MOLLER experiment.

A. Aleksejevs, S. Barkanova, A. Ilyichev, Y. Kolomensky, V. Zykunov, Phys. Part. Nucl. 44(2013) 161-174

Second Stage: NNLO Corrections for MOLLER

The Next-to-Next-to-Leading Order (NNLO) EWC to the Born ($\sim M_0M_0^+$) cross section can be divided into two classes:

- Q-part induced by quadratic one-loop amplitudes $\sim M_1 M_1^{\ +},$ and
- T-part the interference of Born and two-loop diagrams ~ $2\text{ReM}_0\text{M}_{2\text{-loop}^+}$.

$$\sigma = \frac{\pi^3}{2s} |M_0 + M_1|^2 = \frac{\pi^3}{2s} (\underbrace{M_0 M_0^+}_{\sim \alpha^2} + 2\operatorname{Re} M_1 M_0^+}_{\propto \alpha^3} + \underbrace{M_1 M_1^+}_{\propto \alpha^4} = \sigma_0 + \sigma_1 + \sigma_Q$$

$$\sigma_T = \underbrace{\frac{\pi^3}{s} \operatorname{Re} M_2 M_0^+ \propto \alpha^4}_{\xrightarrow{s^{symmetry}}} \xrightarrow{\frac{\pi^3}{s} \operatorname{Re} M_2 M_0^+ \propto \alpha^4}_{\xrightarrow{s^{symmetry}}} + \dots + \dots$$

Quadratic correction: IR part

Differential quadratic cross section σ_{Q} written as sums of λ -dependent (IRD-terms) and λ -independent (infrared-finite) parts:

Quadratic correction: photon emission

In order to remove the IR-divergent terms in quadratic cross section, wee need to consider:

- 1. Photon emission from one-loop diagrams
- 2. Two photon photon emission

$$\sigma_Q^{\gamma} = \frac{1}{2}\sigma^{\gamma} = \frac{\pi^2}{s} \operatorname{Re} \left[(-\delta_1^{\lambda} + R_1)^* M_1^+ M_0 \right]$$

$$R_1 = -4B \log \frac{\sqrt{s}}{2\omega} - \log^2 \frac{s}{em^2} + 1 - \frac{\pi^2}{3} + \log^2 \frac{u}{t}$$

$$\sigma_Q^{\gamma\gamma} = \frac{1}{2}\sigma^{\gamma\gamma} = \frac{1}{4}\left(\frac{\alpha}{\pi}\right)^2 \left(\left|-\delta_1^{\lambda} + R_1\right|^2 - R_2\right)\sigma_0$$
$$R_2 = \frac{8}{3}\pi^2 \left(\log\frac{tu}{m^2s} - 1\right)^2$$

Quadratic correction: results

 $E_{lab} = 11 \text{ GeV}$

Quadratic correction: results

$$\delta_{A}^{\rm C} = (A_{LR}^{\rm C} - A_{LR}^{\rm 0}) / A_{LR}^{\rm 0}$$

$$\Delta_A = (A_{LR}^{1-\text{loop}+Q} - A_{LR}^{1-\text{loop}})/A_{LR}^0$$

The scale of the Q-part contribution in the low-energy region is approximately constant, but starting from $\sqrt[\gamma]{s} \ge m_z$, where the weak contribution becomes comparable with electromagnetic, the effect of Q-part grows sharply.

This effect of increasing importance of two-loop contribution at higher energies may have a significant effect on the asymmetry measured at the future e^-e^- -colliders.

PV Asymmetry

Two-Loops Contribution

We split the two-loops contribution into subsets of the gauge invariant classes:

• Reducible contribution (BSE + Ver)².

• Irreducible ladder, decorated boxes and boxes with electron self-energies.

• Irreducible two-loops vertex correction (double vertices) and self energy diagrams.

$$\sigma_T = \frac{\pi^3}{s} \operatorname{Re} M_2 M_0^+ \propto \alpha^4$$

(BSE+Ver)² Two-Loops Contribution

Two-loops t-channel diagrams from the gauge-invariant set of vertices and boson self-energies. Here, the circles represent the contributions of selfenergies and vertex functions.

Ladder-Box Diagrams

(Double Boxes)

Decorated-Box Diagrams

Decorated boxes of type I.

(Double Boxes)

Boxes with Lepton Self-Energy and Vertex Insertions

Boxes with vertices (VB), fermion self-energy boxes FSEB and boson self-energy boxes BSEB.

(SE and Ver in boxes)

Double Vertices

Two loops electron vertices (NNLO EW Vert)

Final Expressions

Combining all the terms together, we get the infrared-finite result at oneloop level

$$\sigma_{NLO} = \frac{\alpha}{\pi} \Re[R_1 + \delta_1^f] \sigma_0$$

and NNLO level

$$\sigma_{NNLO} = \sigma_Q + \sigma_T + \sigma^{\gamma} + \sigma^{\gamma\gamma} = \left(\frac{\alpha}{\pi}\right)^2 \Re \left[R_1^* \delta_1^f + \frac{1}{2}|R_1|^2 - \frac{1}{2}R_2 + \delta_Q^f + \delta_T^f\right] \sigma_0$$
$$= \sigma_Q^f + \sigma_B^f + \sigma_Q^f + \sigma_T^f,$$

where:

$$\sigma_{O}^{f} = \frac{\alpha}{\pi} \Re[R_{1}^{*} \sigma_{NLO}] \qquad \qquad \sigma_{B}^{f} = -\frac{1}{2} \left(\frac{\alpha}{\pi}\right)^{2} \Re(|R_{1}|^{2} + R_{2}) \sigma_{0}$$
$$\sigma_{Q}^{f} = \left(\frac{\alpha}{\pi}\right)^{2} \delta_{Q}^{f} \sigma_{0} \qquad \qquad \sigma_{T}^{f} = \left(\frac{\alpha}{\pi}\right)^{2} \delta_{T}^{f} \sigma_{0}$$

$$R_1 = -4B\log\frac{\sqrt{s}}{2\omega} - \left(\log\frac{s}{m^2} - 1\right)^2 + 1 - \frac{\pi^2}{3} + \log^2\frac{u}{t}, \ R_2 = \frac{8}{3}\pi^2 B^2, \ B = \log\frac{tu}{m^2s} - 1 + i\pi$$

Combination of Corrections For the orthogonal kinematics: $\theta = 90^{\circ}$

Type of contribution	$\delta_A{}^C$
NLO	-0.6953
+Q+ BBSE+VVer+	-0.6420
+ double boxes	-0.6534
+NNLO QED	-0.6500
+SE and Ver in boxes	-0.6539
+NNLO EW Ver	-0.6574

Correction to PV asymmetry:

$$\delta_A^C = \frac{A_{LR}^C - A_{LR}^0}{A_{LR}^0}$$

Soft-photon bremsstrahlung cut:

 $\omega = 0.05\sqrt{s}$

"..." means all contributions from the lines above

A. Aleksejevs, S. Barkanova, Y. Kolomensky, E. Kuraev, V. Zykunov, Phys. Rev. D 85 (2012) 013007

A. Aleksejevs, S. Barkanova, Y. Kolomensky, E. Kuraev, V. Zykunov, Nuovo Cim. C035N04 (2012) 192-197

A. Aleksejevs, S. Barkanova, V. Zykunov, Phys. Atom. Nucl., 75(2012) 209-226

A. Aleksejevs, S. Barkanova, Y. Bystritskiy, A. Ilyichev, E. Kuraev, V. Zykunov, Phys. Rev. D 85 (2012) 013007

A. Aleksejevs, S. Barkanova, Y. Bystritskiy, E. Kuraev, V. Zykunov, Phys. Part. Nucl. Lett. 12(2015) 5 645-656

A. Aleksejevs, S. Barkanova, Y. Bystritskiy, E. Kuraev, V. Zykunov, Phys. of Part. and Nucl. Letters, (2016), 13-3, 310-317

Third Stage: Computer Algebra

- The most of the leading two-loop EWC corrections to Moller process has been completed.
- It is essential to apply alternative approaches in two-loop EWC calculations for the cross-check purposes.
- We develop the third stage method which is based on the dispersive representation of many-point Passarino-Veltman functions.
- Advantages include not only cross checking previous results, but also our ability to retain kinematical dependence of two-loop EWC and inclusion of broader sets of two-loops graphs.

Sub-Loop Insertions: Self-Energy

W. Hollik, U. Meier, S. Uccirati, Nucl. Phys. B731 213-224 (2005)

$$L(q^2) = \frac{1}{\pi} \int_{s_0}^{\infty} ds \frac{\Im L(s)}{s - q^2 - i\epsilon}$$

•Replace self-energy insertion by effective propagator

• Dispersive representation of self-energy sub-loop has propagator like structure with mass s

Self-Energy Sub-Loop

Vector boson:
$$\Sigma_{\mu\nu}^{V-V}(q) = \left(g_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{q^2}\right)\Sigma_T^{V-V}\left(q^2\right) + \frac{q_{\mu}q_{\nu}}{q^2}\Sigma_L^{V-V}\left(q^2\right)$$

Fermion:
$$\Sigma^{f}(q) = q\omega_{-}\Sigma_{L}^{f}(q^{2}) + q\omega_{+}\Sigma_{R}^{f}(q^{2}) + m_{f}\Sigma_{S}^{f}(q^{2})$$

Each of the Σ terms are functions of:

$$B_{i,ij,ijk}\left(q^2, m_{\alpha}^2, m_{\beta}^2\right) = \frac{1}{\pi} \int_{\left(m_{\alpha} + m_{\beta}\right)^2}^{\infty} ds \frac{\Im B_{i,ij,ijk}\left(s, m_{\alpha}^2, m_{\beta}^2\right)}{s - q^2 - i\epsilon}$$

Sub-Loop: Vector Boson SE

First loop insertion:

$$\Sigma_{\mu\nu}^{V-V}(q) = \frac{1}{\pi} \sum_{\alpha,\beta} \int_{\left(m_{\alpha}+m_{\beta}\right)^{2}}^{\infty} ds \frac{1}{s-q^{2}-i\epsilon} \left[\left(g_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{q^{2}} \right) \Im \Sigma_{T}^{V-V}\left(s,m_{\alpha}^{2},m_{\beta}^{2}\right) + \frac{q_{\mu}q_{\nu}}{q^{2}} \Im \Sigma_{L}^{V-V}\left(s,m_{\alpha}^{2},m_{\beta}^{2}\right) \right]$$

Second loop integration:

$$I_{\mu_{1}\mu_{2},\nu_{1}...\nu_{R}}^{1,M,1} = \frac{1}{\pi} \frac{\mu^{(4-D)}}{(i\pi^{D/2})} \sum_{\alpha,\beta} \int_{(m_{\alpha}+m_{\beta})^{2}}^{\infty} ds \int d^{D}q_{2} \cdot \frac{q_{2,\nu_{1}}...q_{2,\nu_{R}}}{(s-q_{2}^{2}-i\epsilon) \prod_{j=0}^{M} \left[(q_{2}+k_{j,M})^{2}-m_{j,M}^{2}\right]} F_{\mu_{1}\mu_{2}}\left(q_{2},s,m_{\alpha},m_{\beta}\right)$$

$$F_{\mu_1\mu_2}\left(q_2, s, m_\alpha, m_\beta\right) = \left(g_{\mu_1\mu_2} - \frac{q_{2\mu_1}q_{2\mu_2}}{q_2^2}\right)\Im\Sigma_T^{V-V}\left(s, m_\alpha^2, m_\beta^2\right) + \frac{q_{2\mu_1}q_{2\mu_2}}{q_2^2}\Im\Sigma_L^{V-V}\left(s, m_\alpha^2, m_\beta^2\right)$$

Sub-Loop: Fermion SE

First loop insertion:

Second loop integration:

$$I_{\nu_{1}...\nu_{R}}^{1,M,1} = \frac{1}{\pi} \frac{\mu^{(4-D)}}{(i\pi^{D/2})} \sum_{\alpha,\beta} \int_{(m_{\alpha}+m_{\beta})^{2}}^{\infty} ds \int d^{D}q_{2} \cdot \frac{q_{2,\nu_{1}}...q_{2,\nu_{R}}}{(s-q_{2}^{2}-i\epsilon) \prod_{j=0}^{M} \left[(q_{2}+k_{j,M})^{2}-m_{j,M}^{2}\right]} G\left(q_{2},s,m_{\alpha},m_{\beta}\right)$$

Self-Energy Sub-Loop: General Structure

<u>Vector boson SE sub-loop insertion two-loop result:</u>

$$I_{\mu_{1}\mu_{2},\nu_{1}...\nu_{R}}^{1,M,1} = \frac{1}{\pi} \sum_{\alpha,\beta} \int_{\left(m_{\alpha}+m_{\beta}\right)^{2}}^{\infty} ds \cdot \left[L_{a,\mu_{1}\mu_{2},\nu_{1}...\nu_{R}}^{1,M,1} \left(D,E,F\right) \Im \Sigma_{T}^{V-V} \left(s,m_{\alpha}^{2},m_{\beta}^{2}\right) + \right]$$

 $L^{1,M,1}_{b,\mu_{1}\mu_{2},\nu_{1}...\nu_{R}}\left(D,E,F\right)\Im\Sigma^{V-V}_{L}\left(s,m_{\alpha}^{2},m_{\beta}^{2}\right)$

Fermion SE sub-loop insertion two-loop result:

$$I_{\nu_{1}...\nu_{R}}^{1,M,1} = \frac{1}{\pi} \sum_{\alpha,\beta} \int_{\left(m_{\alpha}+m_{\beta}\right)^{2}}^{\infty} ds \cdot \left[N_{a,\nu_{1}...\nu_{R}}^{1,M,1} \left(D,E,F\right) \Im \Sigma_{L}^{f} \left(s,m_{\alpha}^{2},m_{\beta}^{2}\right) \omega_{-} + \right]$$

 $N_{b,\nu_{1}...\nu_{R}}^{1,M,1}\left(D,E,F\right)\Im\Sigma_{R}^{f}\left(s,m_{\alpha}^{2},m_{\beta}^{2}\right)\omega_{+}+N_{c,\nu_{1}...\nu_{R}}^{1,M,1}\left(D,E,F\right)\Im\Sigma_{S}^{f}\left(s,m_{\alpha}^{2},m_{\beta}^{2}\right)$

Vector Boson SE Subtractions

{Z-Z} or {W-W} mixings:

 $\hat{\Sigma}^{V-V}(q^2) = \Sigma^{V-V}(q^2) - \Sigma^{V-V}(m_V^2) - \frac{\partial}{\partial q^2} \Sigma^{V-V}(q^2) \Big|_{q^2 = m_V^2} \left(q^2 - m_V^2 \right) =$

$$\underbrace{\left(q^2 - m_V^2\right)^2}_{\pi} \int_{\alpha,\beta}^{\infty} \int_{\left(m_\alpha + m_\beta\right)^2}^{\infty} ds \frac{\Im \Sigma^{V-V}(s, m_\alpha, m_\beta)}{\left(s - m_V^2\right)^2 \left(s - q^2 - i\epsilon\right)}$$

<u>Υ-Z mixing:</u>

$$\hat{\Sigma}^{\gamma-Z}(q^2) = \Sigma^{\gamma-Z}(q^2) - \frac{1}{m_Z^2} \left[\Sigma^{\gamma-Z}(0)q^2 - \Sigma^{\gamma-Z}(m_Z^2) \left(q^2 - m_Z^2\right) \right] =$$

$$\underbrace{\frac{q^2\left(q^2-m_Z^2\right)}{\pi}}_{\alpha,\beta}\int_{\left(m_\alpha+m_\beta\right)^2}^{\infty}ds\frac{\Im\Sigma^{\gamma-Z}(s,m_\alpha,m_\beta)}{s\left(s-m_Z^2\right)\left(s-q^2-i\epsilon\right)}$$

<u>Y-Y mixing:</u>

$$\hat{\Sigma}^{\gamma-\gamma}(q^2) = \underbrace{\frac{q^4}{\pi}}_{\alpha,\beta} \int_{\substack{\alpha,\beta \\ \left(m_{\alpha}+m_{\beta}\right)^2}}^{\infty} ds \frac{\Im\Sigma^{\gamma-\gamma}(s,m_{\alpha},m_{\beta})}{s^2\left(s-q^2-i\epsilon\right)}$$

Fermion SE Subtractions

$$\hat{\Sigma}^{f}(q) = \Sigma^{f}(q) - \Sigma^{f}(m_{f}) - \frac{\partial}{\partial q} \Sigma^{f}(q) \Big|_{q=m_{f}} (q-m_{f}) =$$

$$q\omega_{-}(I_{L}+a_{L})+q\omega_{+}(I_{R}+a_{R})+m_{f}(I_{S}+a_{S})$$

$$I_{L,R,S} = \underbrace{\frac{q^2 - m_f^2}{\pi}}_{\alpha,\beta} \int_{\alpha,\beta}^{\infty} \int_{\left(m_\alpha + m_\beta\right)^2}^{\infty} ds \frac{\Im \Sigma_{L,R,S}^f(s, m_\alpha, m_\beta)}{\left(s - m_f^2\right)\left(s - q^2 - i\epsilon\right)}$$

$$a_{L,R} = -2m_f^2 \left(\Sigma_{L,R}' \left(m_f^2 \right) + \Sigma_S' \left(m_f^2 \right) \right)$$

$$a_S = m_f^2 \left(\Sigma_L' \left(m_f^2 \right) + \Sigma_R' \left(m_f^2 \right) + 2\Sigma_S' \left(m_f^2 \right) \right)$$

Effective SE Propagators

<u>Vector boson effective propagator:</u>

 $\Pi_{\mu\nu}^{V-V}(q) = \Pi_{T,\mu\nu}^{V-V} + \Pi_{L,\mu\nu}^{V-V}$

$$\Pi_{T,\mu\nu}^{V-V} = \frac{-ig_{\rho\mu}}{q^2 - m_V^2} \left[\frac{g^{\rho\sigma} - \frac{q^{\rho}q^{\sigma}}{q^2}}{s - q^2 - i\epsilon} \Im \Sigma_T^{V-V} \left(s, m_{\alpha}^2, m_{\beta}^2 \right) \right] \frac{-ig_{\sigma\nu}}{q^2 - m_V^2}$$

$$\Pi_{L,\mu\nu}^{V-V} = \frac{-ig_{\rho\mu}}{q^2 - m_V^2} \left[\frac{\frac{q^{\rho}q^{\sigma}}{q^2}}{s - q^2 - i\epsilon} \Im \Sigma_L^{V-V} \left(s, m_{\alpha}^2, m_{\beta}^2 \right) \right] \frac{-ig_{\sigma\nu}}{q^2 - m_V^2}$$

Fermion effective propagator:

$$\Pi^{f}(q) = \frac{1}{\not q - m_f} \left[\frac{G(q, s, m_{\alpha}, m_{\beta})}{s - q^2 - i\epsilon} \right] \frac{1}{\not q - m_f}$$

Effective Propagators: Subtracted VB

$$\hat{\Pi}_{\mu\nu}^{V-V}(q) = \hat{\Pi}_{T,\mu\nu}^{V-V} + \hat{\Pi}_{L,\mu\nu}^{V-V}$$

$$\hat{\Pi}_{T,\mu\nu}^{V-V} = -T^{V-V}\left(s,m_V^2\right) \left[\frac{g_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{q^2}}{s - q^2 - i\epsilon}\right] \Im \Sigma_T^{V-V}\left(s,m_{\alpha}^2,m_{\beta}^2\right)$$

$$\hat{\Pi}_{L,\mu\nu}^{V-V} = -T^{V-V}\left(s, m_V^2\right) \left[\frac{\frac{q_\mu q_\nu}{q^2}}{s - q^2 - i\epsilon}\right] \Im \Sigma_L^{V-V}\left(s, m_\alpha^2, m_\beta^2\right)$$

$$\begin{array}{|c|c|c|c|c|c|c|c|}\hline & \gamma - \gamma & \{Z,W\} - \{Z,W\} & \gamma - Z \\ \hline T^{V-V} & \frac{1}{s^2} & \frac{1}{\left(s - m_{\{Z,W\}}^2\right)^2} & \frac{1}{s \left(s - m_z^2\right)} \\ \hline \end{array}$$

Effective Propagators: Subtracted FF $\hat{\Pi}^{f}(q) = \hat{\Pi}^{f}_{1}(q) + \hat{\Pi}^{f}_{2}(q)$

$$\hat{\Pi}_{1}^{f}(q) = (q + m_{f}) \left[\frac{y_{L} q \omega_{-} + y_{R} q \omega_{+} + m_{f} y_{S}}{\left(q^{2} - m_{f}^{2}\right) \left(s - q^{2} - i\epsilon\right)} \right] (q + m_{f})$$

$$\hat{\Pi}_{2}^{f}(q) = \frac{1}{\not q - m_{f}} \left[d_{L} \not q \omega_{-} + d_{R} \not q \omega_{+} + m_{f} d_{S} \right] \frac{1}{\not q - m_{f}},$$

$$y_{L,R,S} \equiv y_{L,R,S} \left(s, m_{\alpha}^2, m_{\beta}^2 \right) = \frac{\Im \Sigma_{L,R,S}^f}{s - m_f^2}$$

$$d_{L,R} \equiv d_{L,R} \left(s, m_{\alpha}^2, m_{\beta}^2 \right) = -2m_f^2 \frac{\Im \Sigma_{L,R}^f + \Im \Sigma_S^f}{\left(s - m_f^2 \right)^2}$$

$$d_S \equiv d_S \left(s, m_\alpha^2, m_\beta^2 \right) = m_f^2 \frac{\Im \Sigma_L^f + \Im \Sigma_R^f + 2\Im \Sigma_S^f}{\left(s - m_f^2 \right)^2}$$

Self-Energy Sub-Loop: Subtracted

<u>Vector boson SE sub-loop insertion two-loop result (subtracted):</u>

$$\hat{I}_{\mu_{1}\mu_{2},\nu_{1}...\nu_{R}}^{1,M,1} = \frac{1}{\pi} \sum_{\alpha,\beta} \int_{\left(m_{\alpha}+m_{\beta}\right)^{2}}^{\infty} ds \cdot \left[L_{a,\mu_{1}\mu_{2},\nu_{1}...\nu_{R}}^{1,M,1} \left(\underline{B,C,D}\right) \Im \Sigma_{T}^{V-V} \left(s,m_{\alpha}^{2},m_{\beta}^{2}\right) + L_{b,\mu_{1}\mu_{2},\nu_{1}...\nu_{R}}^{1,M,1} \left(\underline{B,C,D}\right) \Im \Sigma_{L}^{V-V} \left(s,m_{\alpha}^{2},m_{\beta}^{2}\right) \right]$$

Fermion SE sub-loop insertion two-loop result (subtracted):

$$\hat{I}^{1,M,1}_{\nu_1\dots\nu_R} = \frac{1}{\pi} \sum_{\alpha,\beta} \int_{\left(m_\alpha + m_\beta\right)^2}^{\infty} ds \cdot \left[N^{1,M,1}_{a,\nu_1\dots\nu_R} \left(\underline{C,D,E}\right) \Im \Sigma^f_L \left(s,m_\alpha^2,m_\beta^2\right) \omega_- + \right]$$

 $N_{b,\nu_1\dots\nu_R}^{1,M,1} \underbrace{(C,D,E) \Im\Sigma_R^f \left(s, m_\alpha^2, m_\beta^2\right) \omega_+ + N_{c,\nu_1\dots\nu_R}^{1,M,1} \underbrace{(C,D,E) \Im\Sigma_S^f \left(s, m_\alpha^2, m_\beta^2\right)}_{S}}_{S}$

$$C_{0} \equiv C_{0} \left(p_{1}^{2}, p_{2}^{2}, \left(p_{1} + p_{2} \right)^{2}, m_{1}^{2}, m_{2}^{2}, m_{3}^{2} \right) = \frac{\mu^{4-D}}{i\pi^{D/2}} \int d^{D}q \frac{1}{\left[q^{2} - m_{1}^{2} \right] \left[\left(q + p_{1} \right)^{2} - m_{2}^{2} \right] \left[\left(q + p_{1} + p_{2} \right)^{2} - m_{3}^{2} \right]}$$

$$C_{0} = \frac{\mu^{4-D}}{i\pi^{D/2}} \int_{0}^{1} dx \int d^{D}\tau \frac{1}{\left[\left(\tau - (p_{1}\bar{x} + p_{2})\right)^{2} - m_{12}^{2}\right]^{2} \left[\tau^{2} - m_{3}^{2}\right]}, \text{ here } m_{12}^{2} = m_{1}^{2}\bar{x} + m_{2}^{2}x - p_{1}^{2}x\bar{x}$$

Using:
$$\left(\left(\tau - (p_1\bar{x} + p_2)\right)^2 - m_{12}^2\right)^{-2} = \lim_{\lambda \to 0} \frac{\partial}{\partial\lambda} \left(\left(\tau - (p_1\bar{x} + p_2)\right)^2 - (m_{12}^2 + \lambda)\right)^{-1}$$

$$C_{0} = \frac{\mu^{4-D}}{i\pi^{D/2}} \lim_{\lambda \to 0} \frac{\partial}{\partial\lambda} \int_{0}^{1} dx \int d^{D}\tau \frac{1}{\left[\left(\tau - (p_{1}\bar{x} + p_{2})\right)^{2} - (m_{12}^{2} + \lambda)\right] \left[\tau^{2} - m_{3}^{2}\right]} = \lim_{\lambda \to 0} \frac{\partial}{\partial\lambda} \int_{0}^{1} dx \ B_{0}\left(\left(p_{1}\bar{x} + p_{2}\right)^{2}, m_{3}^{2}, m_{12}^{2} + \lambda\right)\right)$$

$$C_{\mu_1\dots\mu_N} = \frac{\mu^{4-D}}{i\pi^{D/2}} \int d^D q \frac{q_{\mu_1}\dots q_{\mu_N}}{\left[q^2 - m_1^2\right] \left[\left(q + p_1\right)^2 - m_2^2\right] \left[\left(q + p_1 + p_2\right)^2 - m_3^2\right]}$$

<u>Vector case:</u>

Applying tensor decomposition to both sides of above equation:

$$p_{1\mu}C_1 + (p_{1\mu} + p_{2\mu})C_2 = \lim_{\lambda \to 0} \frac{\partial}{\partial \lambda} \int_0^1 dx \left[B_\mu - (p_{1\mu} + p_{2\mu})B_0 \right] \\\downarrow \\B_\mu = - (p_{1\mu}\bar{x} + p_{2\mu})B_1$$

Matching coefficients in front of $p_{1,2}$, we get:

$$C_1 = \lim_{\lambda \to 0} \frac{\partial}{\partial \lambda} \int_0^1 dx B_1 x \qquad \qquad C_2 = -\lim_{\lambda \to 0} \frac{\partial}{\partial \lambda} \int_0^1 dx \left[B_0 + B_1 \right]$$

$$\hat{\mathbf{I}}_C = \lim_{\lambda \to 0} \frac{\partial}{\partial \lambda} \int_0^1 dx \dots$$

 $C_{\mu\nu}$:

 $C_{00} = \hat{\mathbf{I}}_C [B_{00}] \qquad C_{12} = -\hat{\mathbf{I}}_C [(B_1 + B_{11})x]$ $C_{11} = \hat{\mathbf{I}}_C [B_{11}x^2] \qquad C_{22} = \hat{\mathbf{I}}_C [B_0 + 2B_1 + B_{11}]$

 $C_{\mu\nu\alpha}$:

$$C_{001} = \hat{\mathbf{I}}_C [B_{001}x] \qquad C_{112} = -\hat{\mathbf{I}}_C [(B_{11} + B_{111})x^2]$$

$$C_{002} = -\hat{\mathbf{I}}_C [B_{00} + B_{001}] \qquad C_{122} = \hat{\mathbf{I}}_C [(B_1 + 2B_{11} + B_{111})x]$$

$$C_{111} = \hat{\mathbf{I}}_C [B_{111}x^3] \qquad C_{222} = -\hat{\mathbf{I}}_C [B_0 + 3(B_1 + B_{11}) + B_{111}]$$

$$B_{i,ij,ijk} \equiv B_{i,ij,ijk} \left[\left(p_1 \bar{x} + p_2 \right)^2, m_3^2, m_{12}^2 + \lambda \right]$$

 $D_0 \equiv D_0 \left(p_1^2, p_2^2, p_3^2, p_4^2, \left(p_1 + p_2 \right)^2, \left(p_2 + p_3 \right)^2, m_1^2, m_2^2, m_3^2, m_4^2 \right) =$

$$\frac{\mu^{4-D}}{i\pi^{D/2}} \int d^D q \frac{1}{\left[q^2 - m_1^2\right] \left[\left(q + p_1\right)^2 - m_2^2\right] \left[\left(q + p_1 + p_2\right)^2 - m_3^2\right] \left[\left(q + p_1 + p_2 + p_3\right)^2 - m_4^2\right]}$$

$$D_0 = 2\frac{\mu^{4-D}}{i\pi^{D/2}} \int_0^1 dx \int_0^{1-x} dy \int d^D \tau \frac{1}{\left[\left(\tau - \left(p_1\left(\bar{x} - y\right) + p_2\bar{y} + p_3\right)\right)^2 - m_{123}^2\right]^3 \left[\tau^2 - m_4^2\right]}$$

$$m_{123}^2 = m_1^2 \left(\bar{x} - y \right) + m_2^2 x + m_3^2 y - p_1^2 x \bar{x} - p_{12}^2 y \bar{y} + 2xy \left(p_1 p_{12} \right)$$

$$\downarrow$$

$$p_{12} = p_1 + p_2$$

$$D_0 = \lim_{\lambda \to 0} \frac{\partial^2}{\partial \lambda^2} \int_0^1 dx \int_0^{\bar{x}} dy B_0 \left[\left(p_1 \left(\bar{x} - y \right) + p_2 \bar{y} + p_3 \right)^2, m_4^2, m_{123}^2 + \lambda \right]$$

$$\hat{\mathbf{I}}_D = \lim_{\lambda \to 0} \frac{\partial^2}{\partial \lambda^2} \int_0^1 dx \int_0^{\bar{x}} dy \dots$$

$$B_{i,ij,ijk,ijkl} \equiv B_{i,ij,ijk,ijkl} \left[\left(p_1 \left(\bar{x} - y \right) + p_2 \bar{y} + p_3 \right)^2, m_4^2, m_{123}^2 + \lambda \right]$$

 D_{μ} :

 $D_{\mu\nu\rho\sigma}$:

 $D_{1} = \hat{\mathbf{I}}_{D} \begin{bmatrix} B_{1}x \end{bmatrix} \qquad D_{0000} = \hat{\mathbf{I}}_{D} \begin{bmatrix} B_{0000} \end{bmatrix} \qquad D_{1123} = -\hat{\mathbf{I}}_{D} \begin{bmatrix} (B_{111} + B_{1111}) x^{2}y \end{bmatrix}$ $D_{2} = \hat{\mathbf{I}}_{D} \begin{bmatrix} B_{1}y \end{bmatrix} \qquad D_{0011} = \hat{\mathbf{I}}_{D} \begin{bmatrix} B_{0011}x^{2} \end{bmatrix} \qquad D_{1133} = \hat{\mathbf{I}}_{D} \begin{bmatrix} (B_{11} + 2B_{111} + B_{1111}) x^{2} \end{bmatrix}$ $D_{3} = -\hat{\mathbf{I}}_{D} \begin{bmatrix} B_{0} + B_{1} \end{bmatrix} \qquad D_{0012} = \hat{\mathbf{I}}_{D} \begin{bmatrix} B_{0011}xy \end{bmatrix} \qquad D_{1222} = \hat{\mathbf{I}}_{D} \begin{bmatrix} B_{1111}xy^{3} \end{bmatrix}$

 $D_{\mu\nu}$:

$$D_{00} = \hat{\mathbf{I}}_{D} [B_{00}] \qquad D_{33} = \hat{\mathbf{I}}_{D} [B_{0} + 2B_{1} + B_{11}]$$
$$D_{11} = \hat{\mathbf{I}}_{D} [B_{11}x^{2}] \qquad D_{12} = \hat{\mathbf{I}}_{D} [B_{11}xy]$$
$$D_{22} = \hat{\mathbf{I}}_{D} [B_{11}y^{2}] \qquad D_{13} = -\hat{\mathbf{I}}_{D} [(B_{1} + B_{11})x]$$
$$D_{23} = -\hat{\mathbf{I}}_{D} [(B_{1} + B_{11})y].$$

$$\begin{split} D_{0011} &= \hat{\mathbf{I}}_D \left[B_{0011} x^2 \right] & D_{1133} = \hat{\mathbf{I}}_D \left[(B_{11} + 2B_{111} + B_{1111}) x^2 \right] \\ D_{0012} &= \hat{\mathbf{I}}_D \left[B_{0011} xy \right] & D_{1222} = \hat{\mathbf{I}}_D \left[B_{1111} xy^3 \right] \\ D_{0013} &= -\hat{\mathbf{I}}_D \left[(B_{001} + B_{1111}) x \right] & D_{1223} = -\hat{\mathbf{I}}_D \left[(B_{111} + B_{1111}) xy^2 \right] \\ D_{0022} &= \hat{\mathbf{I}}_D \left[B_{0011} x^2 \right] & D_{1233} = \hat{\mathbf{I}}_D \left[(B_{11} + 2B_{111} + B_{1111}) xy \right] \\ D_{0023} &= -\hat{\mathbf{I}}_D \left[(B_{001} + B_{1111}) y \right] & D_{1333} = -\hat{\mathbf{I}}_D \left[(B_1 + 3 (B_{11} + B_{111}) + B_{1111}) x \right] \\ D_{0033} &= \hat{\mathbf{I}}_D \left[B_{00} + 2B_{001} + B_{0011} \right] & D_{2222} = \hat{\mathbf{I}}_D \left[B_{1111} y^4 \right] \\ D_{1111} &= \hat{\mathbf{I}}_D \left[B_{1111} x^4 \right] & D_{2223} = -\hat{\mathbf{I}}_D \left[(B_{111} + B_{1111}) y^3 \right] \\ D_{1112} &= \hat{\mathbf{I}}_D \left[B_{1111} x^3 y \right] & D_{2333} = \hat{\mathbf{I}}_D \left[(B_{11} + 2B_{111} + B_{1111}) y^2 \right] \\ D_{1122} &= \hat{\mathbf{I}}_D \left[B_{1111} x^2 y^2 \right] & D_{3333} = \hat{\mathbf{I}}_D \left[(B_0 + 4 (B_1 + B_{111}) + 6B_{111} + B_{1111}) \right] \end{aligned}$$

 $D_{\mu\nu\rho}$:

$$\begin{aligned} D_{001} &= \hat{\mathbf{I}}_{D} \left[B_{001} x \right] & D_{122} = \hat{\mathbf{I}}_{D} \left[B_{111} x y^{2} \right] \\ D_{002} &= \hat{\mathbf{I}}_{D} \left[B_{001} y \right] & D_{123} = -\hat{\mathbf{I}}_{D} \left[(B_{11} + B_{111}) x y \right] \\ D_{003} &= -\hat{\mathbf{I}}_{D} \left[B_{00} + B_{001} \right] & D_{222} = \hat{\mathbf{I}}_{D} \left[B_{111} y^{3} \right] \\ D_{111} &= \hat{\mathbf{I}}_{D} \left[B_{111} x^{3} \right] & D_{223} = -\hat{\mathbf{I}}_{D} \left[(B_{11} + B_{111}) y^{2} \right] \\ D_{112} &= \hat{\mathbf{I}}_{D} \left[B_{111} x^{2} y \right] & D_{233} = \hat{\mathbf{I}}_{D} \left[(B_{1} + 2B_{11} + B_{111}) y \right] \\ D_{113} &= -\hat{\mathbf{I}}_{D} \left[(B_{11} + B_{111}) x^{2} \right] & D_{333} = -\hat{\mathbf{I}}_{D} \left[B_{0} + 3 \left(B_{1} + B_{11} \right) + B_{111} \right] \end{aligned}$$

 $E_0 \equiv E_0 \left(p_1^2, p_2^2, p_3^2, p_4^2, p_5^2, p_{12}^2, p_{23}^2, p_{34}^2, p_{45}^2, p_{51}^2, m_1^2, m_2^2, m_3^2, m_4^2, m_5^2 \right) =$

$$\lim_{\lambda \to 0} \frac{\partial^3}{\partial \lambda^3} \int_0^1 dx \int_0^{\bar{x}} dy \int_0^{x-y} dz B_0 \left[\left(p_1 \left(\bar{x} - y - z \right) + p_2 \left(\bar{y} - z \right) + p_3 \bar{z} + p_4 \right)^2, m_5^2, m_{1234}^2 + \lambda \right]$$

$$p_{ij} = (p_i + p_j)^2, \, p_{ijk} = (p_i + p_j + p_k)^2$$

and $m_{1234}^2 = m_1^2 (\bar{x} - y - z) + m_2^2 x + m_3^2 y + m_4^2 z - m_4^2 z + m_4^$

 $p_1^2 \bar{x}x - p_{12}^2 \bar{y}y - p_{123}^2 \bar{z}z + 2xy (p_1 p_{12}) + 2xz (p_1 p_{123}) + 2yz (p_{12} p_{123})$

$$\hat{\mathbf{I}}_E = \lim_{\lambda \to 0} \frac{\partial^3}{\partial \lambda^3} \int_0^1 dx \int_0^{\bar{x}} dy \int_0^{\bar{x}-z} dz \dots$$

$$B_{i,ij,ijk,ijkl} \equiv B_{i,ij,ijk,ijkl} \left[\left(p_1 \left(\bar{x} - y - z \right) + p_2 \left(\bar{y} - z \right) + p_3 \bar{z} + p_4 \right)^2, m_5^2, m_{1234}^2 + \lambda \right]$$

 $E_1 = \hat{\mathbf{I}}_E \left[B_1 x \right]$ $E_2 = \hat{\mathbf{I}}_E \left[B_1 y \right]$ $E_3 = \hat{\mathbf{I}}_E \left[B_1 z \right]$ $E_3 = -\hat{\mathbf{I}}_E \left[B_0 + B_1 \right]$ $E_{23} = \hat{\mathbf{I}}_E \left[B_{11} y z \right]$ $E_{00} = \hat{\mathbf{I}}_E \left[B_{00} \right]$ $E_{11} = \hat{\mathbf{I}}_E \left[B_{11} x^2 \right]$ $E_{24} = -\hat{\mathbf{I}}_E \left[(B_1 + B_{11}) y \right]$ $E_{12} = \hat{\mathbf{I}}_E \left[B_{11} x y \right]$ $E_{33} = \hat{\mathbf{I}}_E \left[B_{11} z^2 \right]$ $E_{13} = \hat{\mathbf{I}}_E \left[B_{11} x z \right]$ $E_{34} = -\hat{\mathbf{I}}_E \left[(B_1 + B_{11}) z \right]$ $E_{14} = -\hat{\mathbf{I}}_E \left[(B_1 + B_{11}) \, x \right]$ $E_{44} = \hat{\mathbf{I}}_E [B_0 + 2B_1 + B_{11}]$ $E_{22} = \hat{\mathbf{I}}_E \left[B_{11} y^2 \right]$ $E_{1224} = -\hat{\mathbf{I}}_E \left[(B_{111} + B_{1111}) x y^2 \right]$ $E_{0000} = \hat{\mathbf{I}}_E \left[B_{0000} \right]$ $E_{0011} = \hat{\mathbf{I}}_E \left[B_{0011} x^2 \right]$ $E_{1233} = \hat{\mathbf{I}}_E \left[B_{1111} xyz^2 \right]$ $E_{0012} = \hat{\mathbf{I}}_E \left[B_{0011} x y \right]$ $E_{1234} = -\hat{\mathbf{I}}_E \left[(B_{111} + B_{1111}) xyz \right]$ $E_{1244} = \hat{\mathbf{I}}_E \left[(B_{11} + 2B_{111} + B_{1111}) \, xy \right]$ $E_{0013} = \hat{\mathbf{I}}_E \left[B_{0011} x z \right]$ $E_{0014} = -\hat{\mathbf{I}}_E \left[(B_{001} + B_{1111}) x \right]$ $E_{1333} = \hat{\mathbf{I}}_E \left[B_{1111} x z^3 \right]$ $E_{0022} = \hat{\mathbf{I}}_E \left[B_{0011} y^2 \right]$ $E_{1334} = -\hat{\mathbf{I}}_E \left[(B_{111} + B_{1111}) x z^3 \right]$ $E_{1344} = \hat{\mathbf{I}}_E \left[(B_{11} + 2B_{111} + B_{1111}) xz \right]$ $E_{0023} = \hat{\mathbf{I}}_E \left[B_{0011} yz \right]$ $E_{1444} = -\hat{\mathbf{I}}_{E} \left[(B_1 + 3 (B_{11} + B_{111}) + B_{1111}) x \right]$ $E_{0024} = -\hat{\mathbf{I}}_E \left[(B_{001} + B_{1111}) y \right]$ $E_{0033} = \hat{\mathbf{I}}_E \left[B_{0011} z^2 \right]$ $E_{2222} = \hat{\mathbf{I}}_E \left[B_{1111} y^4 \right]$ $E_{0034} = -\hat{\mathbf{I}}_E \left[(B_{001} + B_{1111}) z \right]$ $E_{2223} = \hat{\mathbf{I}}_E \left[B_{1111} y^2 z \right]$ $E_{2224} = -\hat{\mathbf{I}}_E \left[(B_{111} + B_{1111}) y^3 \right]$ $E_{0044} = \hat{\mathbf{I}}_E \left[B_{00} + 2B_{001} + B_{0011} \right]$ $E_{1111} = \hat{\mathbf{I}}_E \left[B_{1111} x^4 \right]$ $E_{2233} = \hat{\mathbf{I}}_E \left[B_{1111} y^2 z^2 \right]$

$$\begin{array}{lll} E_{001} = \hat{\mathbf{I}}_{E} \left[B_{001} x \right] & E_{134} = -\hat{\mathbf{I}}_{E} \left[(B_{11} + B_{111}) x z \right] \\ E_{002} = \hat{\mathbf{I}}_{E} \left[B_{001} y \right] & E_{144} = \hat{\mathbf{I}}_{E} \left[(B_{1} + 2B_{11} + B_{111}) x \right] \\ E_{003} = \hat{\mathbf{I}}_{E} \left[B_{001} z \right] & E_{222} = \hat{\mathbf{I}}_{E} \left[B_{111} y^{3} \right] \\ E_{004} = -\hat{\mathbf{I}}_{E} \left[B_{00} + B_{001} \right] & E_{223} = \hat{\mathbf{I}}_{E} \left[B_{111} y^{2} z \right] \\ E_{111} = \hat{\mathbf{I}}_{E} \left[B_{111} x^{3} \right] & E_{224} = -\hat{\mathbf{I}}_{E} \left[(B_{11} + B_{111}) y^{2} \right] \\ E_{112} = \hat{\mathbf{I}}_{E} \left[B_{111} x^{2} z \right] & E_{233} = \hat{\mathbf{I}}_{E} \left[B_{111} y^{2} z \right] \\ E_{112} = \hat{\mathbf{I}}_{E} \left[B_{111} x^{2} z \right] & E_{234} = -\hat{\mathbf{I}}_{E} \left[(B_{11} + B_{111}) y^{2} \right] \\ E_{112} = \hat{\mathbf{I}}_{E} \left[B_{111} x^{2} z \right] & E_{234} = -\hat{\mathbf{I}}_{E} \left[(B_{11} + B_{111}) y^{2} \right] \\ E_{122} = \hat{\mathbf{I}}_{E} \left[B_{111} xy^{2} \right] & E_{333} = \hat{\mathbf{I}}_{E} \left[B_{111} z^{3} \right] \\ E_{123} = \hat{\mathbf{I}}_{E} \left[B_{111} xy^{2} \right] & E_{334} = -\hat{\mathbf{I}}_{E} \left[(B_{11} + B_{111}) z^{2} \right] \\ E_{133} = \hat{\mathbf{I}}_{E} \left[B_{111} x^{2} \right] & E_{2244} = \hat{\mathbf{I}}_{E} \left[(B_{11} + B_{111}) z^{2} \right] \\ E_{133} = \hat{\mathbf{I}}_{E} \left[B_{111} x^{3} z \right] & E_{2244} = -\hat{\mathbf{I}}_{E} \left[(B_{11} + B_{111}) z^{2} \right] \\ E_{1132} = \hat{\mathbf{I}}_{E} \left[B_{111} x^{3} z \right] & E_{2244} = \hat{\mathbf{I}}_{E} \left[(B_{11} + B_{111}) z^{2} \right] \\ E_{1133} = \hat{\mathbf{I}}_{E} \left[B_{111} x^{3} z \right] & E_{2244} = \hat{\mathbf{I}}_{E} \left[(B_{11} + B_{111}) y^{2} \right] \\ E_{1112} = \hat{\mathbf{I}}_{E} \left[B_{111} x^{3} z \right] & E_{2234} = -\hat{\mathbf{I}}_{E} \left[(B_{11} + B_{111}) y^{2} \right] \\ E_{1123} = \hat{\mathbf{I}}_{E} \left[B_{111} x^{3} z \right] & E_{2334} = -\hat{\mathbf{I}}_{E} \left[(B_{11} + B_{111}) yz^{2} \right] \\ E_{1123} = \hat{\mathbf{I}}_{E} \left[B_{111} x^{2} z^{2} \right] & E_{3333} = \hat{\mathbf{I}}_{E} \left[B_{111} z^{4} \right] \\ E_{1133} = \hat{\mathbf{I}}_{E} \left[B_{111} x^{2} z^{2} \right] & E_{3334} = -\hat{\mathbf{I}}_{E} \left[(B_{11} + B_{111}) + B_{1111} yz^{2} \right] \\ E_{1133} = \hat{\mathbf{I}}_{E} \left[B_{111} x^{2} z^{2} \right] & E_{3334} = -\hat{\mathbf{I}}_{E} \left[(B_{11} + B_{111}) z^{3} \right] \\ E_{1144} = -\hat{\mathbf{I}}_{E} \left[(B_{111} + B_{111}) x^{2} z^{2} \right] & E_{3344} = \hat{\mathbf{I}}_{E} \left[(B_{11} + B_{111}) + B_{1111} z^{2} \right] \\ E_{12$$

Triangle Insertion: Dispersive Approach

join two propagators without q_2

$$\underline{C_0\left(m^2, q_2^2, (q_2 - k)^2, m_0^2, m^2, m^2\right)}_{\lambda \to 0} = \lim_{\lambda \to 0} \frac{\partial}{\partial \lambda} \int_0^1 dx \int_0^1 dx \int_0^{\Lambda^2} ds \frac{\Im B_0\left(s, m_3^2, m_{12}^2 + \lambda\right)}{s - (q_2 - k\bar{x})^2 - i\epsilon}$$

 $m_{12}^2 = m_0^2 \bar{x} + m^2 x^2$

Triangle Insertion: Dispersive Approach

 $m_0 = 1.2 \text{ GeV}, m = 0.1 \text{ GeV} \text{ and } (k \cdot q_2) = -3.4 \text{ GeV}^2$

Triangle Insertion: Dispersive Approach

$$\hat{\mathbf{D}} = \lim_{\lambda \to 0} \frac{\partial}{\partial \lambda} \int_0^1 dx \int_{\left(m_3 + \left(m_{12}^2 + \lambda\right)^{1/2}\right)^2}^{\Lambda^2} ds... \qquad \Gamma = \hat{\mathbf{D}} \left[\frac{\Im F\left(s, m_3^2, m_{12}^2 + \lambda\right)}{s - (p_2 + p_1 \bar{x})^2 - i\epsilon} \right]$$

$$m_{12}^2 = m_1^2 \bar{x} + m_2^2 x - p_1^2 x \bar{x}$$

Subtracted vertex at zero momentum: $\hat{\Gamma} = \hat{\mathbf{D}} \left[\frac{\Im F \left(s, m_3^2, m_{12}^2 + \lambda \right) \left[\left(p_2 + p_1 \bar{x} \right)^2 - p_1^2 \bar{x}^2 \right]}{\left[s - \left(p_2 + p_1 \bar{x} \right)^2 - i\epsilon \right] \left[s - p_1^2 \bar{x}^2 \right]} \right]$

Numerical Examples

$$I_a = -\frac{1}{\pi^4} \int \frac{d^4 q_1 d^4 q_2}{\left[q_1^2 - m_1^2\right] \left[\left(q_1 - p\right)^2 - m_2^2\right] \left[\left(q_1 + q_2\right)^2 - m_3^2\right] \left[q_2^2 - m_4^2\right] \left[\left(q_2 + p\right)^2 - m_5^2\right]}$$

$$I_{a} = \frac{i}{\pi^{3}} \lim_{\lambda \to 0} \frac{\partial}{\partial \lambda} \int_{0}^{1} dx \int_{\left(m_{3} + \left(m_{12}^{2} + \lambda\right)^{1/2}\right)^{2}}^{\Lambda^{2}} ds \Im B_{0}\left(s, m_{3}^{2}, m_{12}^{2} + \lambda\right) \int d^{4}q_{2} \frac{1}{\left[q_{2}^{2} - m_{4}^{2}\right] \left[\left(q_{2} + xp\right)^{2} - s\right] \left[\left(q_{2} + p\right)^{2} - m_{5}^{2}\right]}}{\left(m_{3} + \left(m_{12}^{2} + \lambda\right)^{1/2}\right)^{2}}$$

$$I_{a} = -\frac{1}{\pi} \lim_{\{\lambda,\xi\}\to 0} \frac{\partial^{2}}{\partial\lambda\partial\xi} \int_{0}^{1} dx dy \int_{0}^{\Lambda^{2}} \int_{0}^{\Lambda^{2}} ds \,\Im B_{0}\left(s, m_{3}^{2}, m_{12}^{2} + \lambda\right) B_{0}\left(p^{2}\left(x-y\right)^{2}, s, m_{45}^{2} + \xi\right) \\ \left(m_{3} + \left(m_{12}^{2} + \lambda\right)^{1/2}\right)^{2} ds \,\Im B_{0}\left(s, m_{3}^{2}, m_{12}^{2} + \lambda\right) B_{0}\left(p^{2}\left(x-y\right)^{2}, s, m_{45}^{2} + \xi\right) \\ m_{12}^{2} = m_{1}^{2}\bar{x} + m_{2}^{2}x - p^{2}\bar{x}x$$

 $m_{45}^2 = m_4^2 \bar{y} + m_5^2 y - p^2 \bar{y} y$

Numerical Examples

$p^2 (\text{GeV})^2$	This work	[1]
-5.0	-0.22174	-
-1.0	-0.26925	_
-0.5	-0.27708	_
-0.1	-0.28371	_
0.1	-0.28706	-0.28701
0.5	-0.29450	-0.29479
1.0	-0.30439	-0.30493
5.0	-0.45231	-0.45241

[1] S. Bauberger, M. Bohm, Nucl. Phys. B 445, 25-46 (1995)[This work] A. A, arXiv:1804.08914

 $m_1^2 = 1, m_2^2 = 2, m_3^2 = 3, m_4^2 = 4 \text{ and } m_5^2 = 5 \text{ (GeV)}^2$

Numerical Examples $q_1 (m_1)$

$$I_{b} = -\frac{1}{\pi} \lim_{\{\lambda,\xi\}\to 0} \frac{\partial^{2}}{\partial\lambda\partial\xi} \int_{0}^{1} dx dy \int_{(m_{4} + (m_{12}^{2} + \lambda)^{1/2})^{2}}^{\Lambda^{2}} ds \Im B_{0} \left(s, m_{4}^{2}, m_{12}^{2} + \lambda\right) B_{0} \left(p^{2} \left(\bar{x} - y\right)^{2}, s, m_{35}^{2} + \xi\right)$$

$$m_{12}^2 = m_1^2 \bar{x} + m_2^2 x - p^2 \bar{x} x$$

$$m_{35}^2 = m_3^2 \bar{y} + m_5^2 y - p^2 \bar{y} y$$

$$m_1^2 = 1, m_2^2 = 2, m_3^2 = 3, m_4^2 = 4 \text{ and } m_5^2 = 5 \text{ (GeV)}^2$$

$p^2 (\text{GeV})^2$	Eq.(38)
-5.0	-0.22415
-1.0	-0.26911
-0.5	-0.28071
-0.1	-0.28760
0.1	-0.29346
0.5	-0.29908
1.0	-0.30945
5.0	-0.48510

Conclusion

• We are now in the last stage of the NNLO EWC calculations for the MOLLER experiment.

• Automatization of the NNLO EWC calculations for MOLLER is currently under way.

• Our next goal is a full gauge-invariant set of two-loop EW graphs with SE and triangles insertions.

• Results to be obtained will be cross checked with our previous calculations and other literature.

• We are looking for additional collaborative projects in two-loops calculations for various processes.

Additional Slides

Sensitivity to effective mixing angle

Sensitivity of Asymmetry to effective mixing angle

Representation of effective Born amplitude:

$$\mathfrak{M}_{\gamma} = \frac{\alpha(t)Q_e^2}{t} \left(\bar{u}_e \gamma_{\mu} u_e \right) \left(\bar{u}_e \gamma^{\mu} u_e \right),$$

D. Binosi, J. Papavassiliou, arXiv:0909.2536 D. Kennedy, B. Lynn, Nucl. Phys. B322 (1989)1 W. Hollik, DESY Report, DESY 88-188 (1988)

$$\mathfrak{M}_{Z} = \frac{G_{\mu}}{\sqrt{2}} \kappa \frac{m_{Z}^{2}}{t - m_{Z}^{2} + i\frac{t}{m_{Z}}\Gamma_{Z}} \left(\bar{u}_{e}\gamma_{\mu} \left[I_{3}^{e} - 2\bar{s}_{W}^{2}(t)Q_{e} - I_{3}^{e}\gamma_{5} \right] u_{e} \right) \left(\bar{u}_{e}\gamma^{\mu} \left[I_{3}^{e} - 2\bar{s}_{W}^{2}(t)Q_{e} - I_{3}^{e}\gamma_{5} \right] u_{e} \right).$$

$$\kappa = \frac{1 - \Delta r}{1 + \Re \left[\frac{\partial}{\partial t} \hat{\Sigma}_{ZZ}(t)\right]} \qquad \qquad \alpha(t) = \frac{\alpha}{1 + \Re \left[\hat{\Sigma}_{\gamma\gamma}(t)\right]/t}$$

$$\Delta r = \frac{\Re[\hat{\Sigma}_{WW}(0)]}{m_W^2} + \frac{\alpha}{4\pi s_W^2} \left(6 + \frac{7 - 4s_W^2}{2s_W^2} \ln c_W^2 \right) + \frac{c_W^2}{m_Z^2 s_W^2} \Re\left[\frac{\hat{\Sigma}_{\gamma Z}^2(m_Z^2)}{m_Z^2 + \hat{\Sigma}_{\gamma \gamma}(m_Z^2)} \right]$$

Sensitivity of Asymmetry to effective mixing angle

Effective Weinberg mixing angle up to NLO:

$$\bar{s}_W^2(t) = s_W^2 - s_W c_W \frac{\Re \left[\hat{\Sigma}_{\gamma Z}(t) \right]}{t + \Re \left[\hat{\Sigma}_{\gamma \gamma}(t) \right]}.$$

$$\sin^2 \theta_W \equiv s_W^2 = 1 - \frac{m_W^2}{m_Z^2} \qquad m_W^2 = \frac{\pi \alpha}{\sqrt{2}G_\mu \sin^2 \theta_W (1 - \Delta r)}$$

$Q^2(GeV^2)$	$\left \bar{s}^2_{W(ON-SHELL)} \right $	$\left \bar{s}^2_{W(\bar{MS}-PT)}[1]\right $	$\left \bar{s}^2_{W(\bar{MS})}$ PDG(2015)
0	0.2383	0.2387	0.2386
m_z	0.2313	0.2320	0.2313

[1] A. Ferroglia, G. Ossola, A. Sirlin, EPJC., 10.1140, July, (2003).

Sensitivity of Polarization Asymmetry to effective mixing angle

