Parity-Violating and Parity-Conserving Asymmetries in Aluminum Scattering in the Qweak Experiment

Wouter Deconinck, for the Qweak Collaboration

May 3, 2018 – MITP PVES 2018 Bridging the Standard Model to New Physics with the Parity Violation Program at MESA

CHARTERED 1693

Supported by the National Science Foundation under Grant Nos. PHY-1405857, PHY-1714792.

Overview

Determination of the Weak Charge of the Proton

- Quick recap from David Armstrong's talk last week
- Highlight the reasons for aluminum and other measurements
- Explanation for non-ideal conditions of these measurements

Parity-Violating Ancillary Asymmetries

- Elastic scattering on aluminum at $E = 1.165 \,\text{GeV}$
- Inelastic scattering on hydrogen with $W = 2.2 \,\text{GeV}$

Parity-Conserving Transverse Asymmetries

- Elastic scattering on hydrogen
- Elastic scattering on aluminum, carbon

Thanks to numerous contributors/collaborators

Kurtis Bartlett, Jim Dowd, Chuck Horowitz, Farrukh Fattoyev, Zidu Lin

Qweak Experiment

- First experiment with direct access to proton's weak charge
- Experiment collected data between 2010 and 2012 with toroidal spectrometer and integrating quartz detectors

First determination based on subset of data

Preliminary results were published in 2013 based on commissioning data¹ (4% compared to the independent full data set)

Long awaited final results are now here

- Final publication² in Nature on May 10, 2018
- Shocker! No disagreement with Standard Model

¹First Determination of the Weak Charge of the Proton, Phys. Rev. Lett. 111, 141803 (2013) ²Precision Measurement of the Weak Charge of the Proton, Nature 558 (2018)

¹The Qweak Apparatus, NIM A 781, 105 (2015)

¹The Qweak Apparatus, NIM A 781, 105 (2015)

¹*The Qweak Apparatus, NIM A 781, 105 (2015)*

Pushing the envelope of intensity (more detected electrons)

- Higher beam current (180 μ A versus usually < 100 μ A)
- Longer cryo-target (35 cm versus 20 cm, 2.5 kW in 20 K LH2)
- Higher event rates up to 800 MHz (integrating mode)
- Typical luminosity of $1.7 imes 10^{39} \, {
 m cm^{-2} \, s^{-1}}$, $\int {\cal L} dt = 1 \, {
 m ab^{-1}}$

Pushing the envelope of precision (better measurements)

- Electron beam polarimetry precision of 1% at 1 GeV
- Helicity-correlated asymmetries at ppb level (beam position at nm level)
- Precise determination of Q^2 since $A_{PV} \propto Q^2$
- Isolate elastic scattering from background processes (f_i, A_i)
 - This is why we must measure various background asymmetries

time

 Each event individually detected, digitized and read-out

- Selection or rejection possible based on event characteristics
- 100 ns pulse separation limits rate to 10 MHz per detector segment; at least 1 day for 1 ppm precision

Integrating or current mode

- Very high event rates possible, as long as detectors are linear
- But no rejection of background events possible after the fact
- *Q_{Weak}* segment rates 800 MHz; MOLLER segment rates up to 2.5 GHz; P2 up to 0.5 THz

 $0\,100\,ns$

Background treatment in integrating experiments

- Measured asymmetry A_{msr} corrected for all background contributions
 - with their own parity-violating asymmetry A_i (ppm-level)
 - and their dilution in the measured asymmetry f_i (%-level)

$$A_{PV} = R_{total} \frac{\frac{A_{msr}}{P} - \sum f_i A_i}{1 - \sum f_i}$$

- Unprecedented precision comes with inevitable surprises
 - Discovered qualitatively new "beamline background"
 - Generated by scattering of helicity-dependent beam halo on clean-up collimator downstream of target and into detector acceptance
 - Discovered qualitatively new "rescattering bias"
 - Spin precession of scattered electrons in spectrometer, followed by nuclear transverse spin azimuthal asymmetry when scattering in lead pre-radiators

All uncertainties in ppb	Run 1	Run 2	Combined
Charge Normalization: A _{BCM}	5.1	2.3	
Beamline Background: A _{BB}	5.1	1.2	
Beam Asymmetries: A _{beam}	4.7	1.2	Note:
Rescattering bias: A _{bias}	3.4	3.4	correlations
Beam Polarization: P	2.2	(1.2)	between
Al target windows: A _{b1}	(1.9)	1.9	factors
Kinematics: R_{Q^2}	(1.2)	1.3	
Total of others $< 5\%$, incl ()	3.4	2.5	
Total systematic uncertainty	10.1	5.6	5.8
Total statistical uncertainty	15.0	8.3	7.3
Total combined uncertainty	18.0	10.0	9.3 (p = 86%)

 $A_{PV}(4\%) = -279 \pm 31(\text{syst}) \pm 35(\text{stat}) = -279 \pm 47(\text{total})$

 $A_{PV}(\text{full}) = -226.5 \pm 5.8(\text{syst}) \pm 7.3(\text{stat}) = -226.5 \pm 9.3(\text{total})$

Intercept of A_{PV} at $Q^2
ightarrow 0$ gives weak charge ($Q^2 = 0.025 \, {
m GeV^2}$)

$$\overline{A_{PV}} = rac{A_{PV}}{A_0} = Q_W^p + Q^2 \cdot B(Q^2, heta = 0) \quad ext{with} \quad A_0 = -rac{G_F Q^2}{4\pi a \sqrt{2}}$$

Global fit¹ of all parity-violating electron scattering with full data set²

- Fit of parity-violating asymmetry data on H, D, ${}^{4}\text{He},~Q^{2}<0.63\,\text{GeV}^{2}$
- = Free parameters were C_{1u} , C_{1d} , strange charge radius ρ_s and magnetic moment μ_s ($G_{E,M}^s \propto G_D$), and isovector axial form factor $G_A^{Z,T=1}$
- $= Q_W^p(PVES)) = 0.0719 \pm 0.0045, \sin^2 \theta_W(Q^2) = 0.2382 \pm 0.0011$
- $\rho_s = 0.19 \pm 0.11$, $\mu_s = -0.18 \pm 0.15$, $G_A^{Z,T=1} = -0.67 \pm 0.33$
- After combination with atomic parity-violation on Cs:
 - $C_{1u} = -0.1874 \pm 0.0022$
 - $C_{1d} = 0.3389 \pm 0.0025$

¹R. Young, R. Carlini, A.W. Thomas, J. Roche, Phys. Rev. Lett. 99, 122003 (2007) ²Precision Measurement of the Weak Charge of the Proton, Nature 558 (2018)

Ancillary Measurements: Borne of Paranoia

Whatever could affect A_{PV} was measured and corrected for:

- Each background has asymmetry A_i and dilution f_i
- Non-hydrogen scattering: aluminum alloy of target windows
- Non-elastic contributions besides elastic $ep: N o \Delta$, Møller
- Non-longitudinal polarization: horizontal, vertical transverse
- Non-electron particles reaching detector: π production
- Particles not originating from target: blocked octants
- Particles not reaching main detectors: superelastic region

Priorities driven by weak charge needs until final publication

- First: corrections on $A_{PV}(p)$ due to $A_{PV}(AI alloy)$, $B_n(H + AI alloy)$
- Then: turn Al alloy into ²⁷Al for $A_{PV}(^{27}Al)$, extract $B_n(H)$
- Then: corrections due to $B_n(AI \text{ alloy})$, extract $B_n(^{27}AI)$

Ancillary Measurements: Overview

Parity-Violating Ancillary Asymmetries

- Elastic scattering on aluminum at E = 1.165 GeV
- Inelastic scattering on hydrogen with $W = 2.2 \,\text{GeV}$

Parity-Conserving Transverse Asymmetries

- Elastic scattering on hydrogen
- Elastic scattering on aluminum, carbon

Predictions of $A_{PV}(AI)$ using Distorted Wave calculation¹

At Qweak's average acceptance, expect $A_{PV}(AI) \approx 2.1$ ppm ($E_{beam} = 1.16$ GeV).

¹C. J. Horowitz Phys. Rev. C 89, 045503 (2014)

MITP PVES 2018

Available world data

- According to Horowitz a 4% measurement of the A_{PV} of pure ²⁷Al is sensitive to 2% changes in R_n .
- ²⁷Al's R_n (neutron distribution radius) helps benchmark theory that is important for other nuclei and astrophysics.

Exp.	Target	R_p [fm]	R_n [fm]	R_{ch} [fm]	$R_n - R_p$ [fm]	Ref
Q_{weak}	²⁷ AI	2.904	2.913	3.013	0.009 est.	1
PREx	²⁰⁸ Pb	5.45	$5.78^{+0.16}_{-0.18}$	5.50	$0.33^{+0.16}_{-0.18}$	2
CREx	⁴⁸ Ca	3.438	3.594	3.526	0.156 est.	3

Predicted Qweak ²⁷Al results compared to PREx and CREx:

¹Phys. Rev. C89, 045503 (2014) ²PRL 108, 112502 (2012) ³CC Calculations [CREx Proposal (2013)]

Experimental Conditions

- ²⁷Al data taken during two periods of Q_{weak} running:
 - Run 1: February–May 2011
 - Run 2: November 2011–May 2012
- Targets:
 - ²⁷Al alloy: 4.2 % X₀ (3.68 mm) thick
- Beam Conditions:
 - E = 1.16 GeV
 - I = 60-70 μA
 - $P_L = 88\%$
- Spectrometer Conditions:
 - $<\! heta\!>=7.6^\circ$, $5.8^\circ\leq heta\leq11.6^\circ$
 - $< Q^2 > \approx 0.024 \text{ GeV}^2$
 - pprox 150 MeV energy acceptance

Uncorrected asymmetries with $\partial A_{msr}/A_{msr} = 4.7\%$ (stat. only)

MITP PVES 2018

Extraction of $A_{PV}(^{27}AI)$

- Measurement/apparatus false asymmetry corrections typically on the order few ppb to 10s of ppb.
- Measurement/apparatus false asymmetry uncertainties of order few ppb. $A_{msr} = A_{raw} + A_{BCM} + A_{beam} + A_{BB} + A_L + A_T + A_{bias}$
- Largest uncertainties come from background asymmetries that dilute the elastic aluminum asymmetry.
 - Examples: quasi-elastic, inelastic ($N \rightarrow \Delta$), alloy elements (Zn, Mg,...), discrete excitations,...

$$A_{PV} = R_{tot} \frac{\frac{A_{msr}}{P} - \sum_{i} f_{i} A_{i}}{1 - \sum_{i} f_{i}}$$

 Background corrected asymmetry requires additional small corrections for acceptance, radiative energy loss, and light collection bias.

Preliminary Result of $A_{PV}(AI)$

 $A_{PV} = 1.924 \pm 0.180$ (tot.)[0.090(stat.) ± 0.156 (sys.)]ppm $\partial A/A = 9.4$ %(tot.)

MITP PVES 2018

Statistical and Systematic Uncertainties

Only A_{inelastic} is larger than the statistical (red) uncertainty.

Top five largest uncertainty contributions

Quantity	Error [ppm]
Statistics	0.090
A _{IN} : Inelastic Asym.	0.121
A _{QE} : Quasi-elastic Asym.	0.061
f _{QE} : Quasi-elastic Fraction	0.037
A _{Zn} : Zinc Asym.	0.031
A _{Mg} : Magnesium Asym.	0.030
	÷
Combined (quadrature)	0.180

Large Energy Acceptance

Non-elastic scattering processes that dilute the asymmetry measurement.

Quasi-Elastic and Inelastic Systematic Corrections

f_i: Background Fraction

$$f_i = \frac{y_i}{\sum_i y_i}$$

where y_i is the detector signal yield.

- Using Geant4 Monte Carlo simulation to determine y_i.
- Cross-section parameterization in simulation from empirical fit to data by P. Bosted and V. Mamyan (arXiv:1203.2262v2).

Process	f[%]	$\partial f[\%]$	$\partial f/f$ [%]
Quasi	12.75	1.14	8.91
Inelastic	7.38	0.70	9.50

- A_i: Background Asymmetry
 - Quasi-elastic:
 - Theoretical support from Horowitz and Lin.
 - Initial calculation agrees well with "free nucleon" estimate.

$$A_{\textit{QE}} = -0.34 \pm 0.34 \text{ ppm}$$

- Inelastic:
 - Have statistics dominated $(\partial A/A = 71 \%)$ measurement of this asymmetry.

 $A_{\text{IN}} = 1.61 \pm 1.15 \text{ ppm}$

Possible theoretical calculation?

Aluminum Alloy Elements

Aluminum Alloy Elements			
Element	Run 1	Run 2	
Al	89.53	89.23	
Zn	5.90	5.87	
Mg	2.60	2.63	
Cu	1.50	1.81	
Cr	0.19	0.19	
Fe	0.14	0.11	
Si	0.08	0.09	
Mn	0.04	0.04	
Ti	0.02	0.03	
(Units: [w%])			

- Considering only elastic scattering from alloy elements.
- Modifies the luminosity calculation.
- Zidu Lin has calculated the cross-sections and asymmetries using distorted wave model (for Zn, Mg, Cu, Cr, Fe, Si).
- Consider only common isotopes of Zn, Mg, Cu, Cr, Fe, and Si.
- Mn and Ti uses a Born approx. cross-section model, with Fourier-Bessel form factor fit.

Aluminum Alloy Elements

Rates/Yields Contributions:

Asymmetry:

For Mn and Ti: using the Born approximation asymmetry: $A_{PV} = -\frac{G_F Q^2}{4\pi\alpha\sqrt{2}} (Q_p + \frac{N}{Z}Q_n) \approx 2\text{ppm}$

- Cross section uncertainty: 10% Zn-Si, 50% Mn and Ti
- Asymmetry uncertainty: 50%

Extraction of R_n

• Chuck, Farrukh, and Zidu calculated the correlation between R_n and A_{pv} . Using "ten distinct relativistic mean-field interactions". At a $Q^2 = 0.0235$ or $\approx 7.6^{\circ}$, assuming E = 1.160 GeV.

$$A_{pv} = -1.6555R_n + 6.9347$$

- Extract R_n by inverting equation then use our A_{pv} as input.
- Relative uncertainty on *R_n* extracted with In derivative.

$$\frac{\partial R_n}{R_n} = \frac{\partial A_{pv}}{A_{pv}} \div \frac{\partial \ln A_{pv}}{\partial \ln R_n} \quad \text{where } \frac{\partial \ln A_{pv}}{\partial \ln R_n} = 2.23252$$
$$R_n = 3.027 \pm 0.127 \text{fm} \quad \frac{\partial R_n}{R_n} = 4.2 \text{ [\%]}$$

Note: models very sensitive to kinematics (Q^2) . Need final kinematics before this plot can be truly interpreted.

Skin Thickness, $R_n - R_p$

 Using a value of R_p = 2.932 fm from the set of relativistic mean field models.

$$R_n - R_p = (3.027 \pm 0.127) - (2.932)$$

= 0.095 ± 0.127 [fm]

- Consistent with zero, which physically makes sense. Aluminum (Z = 13, N = 14) doesn't have a tremendous neutron excess.
- $A_{inelastic}$ contribution to A_{pv} is the reason for the large uncertainty in R_n and thus the skin thickness.
- Chuck's models predict a range of skin thicknesses: 0.004 fm 0.024 fm.

Ancillary Measurements: PV Asymmetry at W = 2.2 GeV

$$\begin{array}{l} A_{meas}^{ij} = A_{calc}^{ij} = \left(1 - f_{\pi}^{i}\right) \left(A_{e}^{I} \cos \theta_{Pol}^{j} + A_{e}^{T} \sin \theta_{Pol}^{j} \sin \phi^{i}\right) \\ \text{Iany-Worlds' Monte} \\ \text{Carlo Minimization} \end{array} + \begin{array}{l} f_{\pi}^{i} \left(A_{\pi}^{L} \cos \theta_{Pol}^{j} + A_{\pi}^{T} \sin \theta_{Pol}^{j} \sin \phi^{i}\right) \\ \delta^{2} = \sum \left(A_{meas}^{ij} - A_{calc}^{ij}\right)^{2} \end{array}$$

• Parameterize asymmetries

i = detector number

j = spin angle

4 extracted raw asymmetry components

Preliminary, not for quotation!

APS DNP Oct. 25-28, 2017	James Dowd	WILLIAM & MARY 13

MITP PVES 2018

Ancillary Measurements: PV Asymmetry at W = 2.2 GeV

MITP PVES 2018

Ancillary Measurements: Transverse Asymmetry

Transverse single spin asymmetries

- Some transverse polarization, slightly broken azimuthal symmetry
- Measure with transversely polarized beam (H or V)
- Parity-conserving T-odd transverse asymmetry of order ppm

$$B_{n} = \frac{\sigma_{\uparrow} - \sigma_{\downarrow}}{\sigma_{\uparrow} + \sigma_{\downarrow}} = \frac{2\Im(T^{1\gamma*} \cdot AbsT^{2\gamma})}{|T^{1\gamma}|^{2}} \approx \mathcal{O}(\alpha \frac{m}{E}) \approx \text{ppm}$$
$$T_{f\,i} = \underbrace{\xrightarrow{T_{f\,i}^{1\gamma}}}_{\mathcal{O}(\alpha_{em})} + \underbrace{\xrightarrow{T_{f\,i}^{2\gamma}}}_{\mathcal{O}(\alpha_{em}^{2})} + \cdots$$

Ancillary Measurements: Transverse Asymmetry

Azimuthal asymmetries

$$A_{T}(\phi) = \frac{N^{\uparrow}(\phi) - N^{\downarrow}(\phi)}{N^{\uparrow}(\phi) + N^{\downarrow}(\phi)} = B_{n}S\sin(\phi - \phi_{S}) = B_{n}(P_{V}\cos\phi + P_{H}\sin\phi)$$

with $P_V = S \sin \phi_S$ and $P_H = S \cos \phi_S$

Available transverse single spin asymmetries

- Elastic $\vec{e}p$ in H, C, Al at $E = 1.165 \,\text{GeV}$
- Inelastic $\vec{e}p
 ightarrow \Delta$ in H, C, Al at E = 0.877 GeV and 1.165 GeV
- Elastic *e* in H at *E* = 0.877 GeV
- Deep inelastic $\vec{e}p$ in H at $W = 2.5 \,\text{GeV}$
- Pion photoproduction in H at E = 3.3 GeV

Ancillary Measurements: Transverse Asymmetry on H

Two hours of data taking in H: $A_T(oct) = A \sin \phi$

Two hours of data taking in V: $A_T(oct) = A \cos \phi$

Ancillary Measurements: Transverse Asymmetry on H

Cancellation with slow helicity reversal for H

Cancellation with slow helicity reversal for H

Ancillary Measurements: Transverse Asymmetry on H

- 90 degrees phase difference between H and V as expected
- Not corrected for polarization, backgrounds, acceptance,...
Ancillary Measurements: Transverse Asymmetry on H

Background corrections (as for main experiment):

$$B_n = R_{total} rac{rac{A}{P} - \sum f_i A_i}{1 - \sum f_i}$$

- Measured corrections f_i and A_i for aluminum windows, $N \to \Delta$
- R_{total} includes radiative corrections, acceptance averaging, Q^2 variation with ϕ in each octant
- Most precise transverse asymmetry in *ep* in hydrogen (50 hours of data): $B_n = -5.35 \pm 0.07(\text{stat}) \pm 0.15(\text{syst}) \text{ ppm}$
- = $\langle E
 angle = 1.155 \pm 0.003 \, {
 m GeV}, \; \langle heta
 angle = 7.9 \pm 0.3 \, {
 m degrees}$

Ancillary Measurements: Transverse Asymmetry on H

Theoretical models:

- Pasquini, Vanderhaeghen, Phys. Rev. C 70, 045206 (2004)
- Afanasev, Merenkov, Phys. Lett. B 599, 48 (2004)
- Gorchtein, Phys. Rev. C 73, 055201 (2006)

Ancillary Measurements: Transverse Asymmetry on AI, C

Q_{Weak} wasn't made for this

- Large energy acceptance of spectrometer (150 MeV at 1.165 GeV)
- Nuclei are hardly ideal with low-lying levels

$B_n \approx -11\,\mathrm{ppm}$ in elastic scattering off C

- Analysis complete but no result released yet by collaboration
- Dissertation of Martin McHugh (GWU) is available on UMI and consistent with PREX at $1\,\sigma$
- Target is 99% ¹²C, no significant contaminations
- Correction for contribution from quasi-elastic scattering
- No attempts at separation of nuclear excited states and GDR from elastic scattering
- $B_n(C)$ is a quantity that does not correspond to a purely elastic state

Ancillary Measurements: Transverse Asymmetry on Al, C

$B_n \approx [-11, -14]$ ppm in elastic scattering off 27 Al

- Some figures released by collaboration, no numbers, analysis nearing completion
- Alloy is a mixture with up to 10% other elements
- Attempts to treat quasi-elastic nuclear excited states and GDR more appropriately
- $B_n(^{27}AI)$ will be interpretable as referring to a purely elastic state
- Work in progress by Kurtis Bartlett (W&M)

Ancillary Measurements: Transverse Asymmetry on Al

Aluminum azimuthal asymmetry is non-zero (uncorrected data)

- Aluminum alloy with pprox 10% contaminations
- Corrections needed for quasielastic, $N \rightarrow \Delta$, nuclear excited states

Ancillary Measurements: Transverse Asymmetry on Al

Quasi-elastic scattering

- Free nucleon approximation and some heuristics related to isoscalar/isovector impact on sign of asymmetry
- More detailed quasi-elastic implementation per Horowitz, Phys. Rev. C 47, 826 (1992), which his grad student Zidu Lin has adapted to ²⁷Al

Contaminants in Al alloy

- Similar approach as Horowitz, Phys. Rev. C89, 045503 (2014)
- Implementation into Q_{Weak} Monte Carlo to determine contributions

Nuclear excited states

- Fitted nuclear excited state form factors using MIT Bates data
 - R.S. Hicks, A. Hotta, J.B. Flanz, H. deVries, Phys. Rev. C21, 2177 (1980)
 - P.J Ryan, R.S. Hicks, A. Hotta, J. Dubach, G.A. Peterson, D.V. Webb, Phys. Rev. C27, 2515 (1983)

Ancillary Measurements: Transverse Asymmetry on C, Al

Projected uncertainties for B_n for C and Al

B_n ∝ AQ/Z: Gorchtein, Horowitz, Phys. Rev. C77, 044606 (2008)
 HAPPEX, PREX: Abrahamyan *et al.*, PRL 109, 192501 (2012)

Ancillary Measurements: Transverse Asymmetry in $N \rightarrow \Delta$

Access to the $\gamma^*\Delta\Delta$ form factor

- Large asymmetries in the forward region
- Several possible intermediate states N, Δ

Before any background corrections

After background corrections

- Large radiative tail from elastic scattering as dilution with small asymmetry
- $B_n(N
 ightarrow \Delta) = 43 \pm 16$ at $\langle heta
 angle = 8.3$ degrees
- Nuruzzaman, CIPANP2015, arXiv:1510.00449 [nucl-ex]

Ancillary Measurements: Transverse Asymmetry in $N \rightarrow \Delta$

Includes N and $\Delta(1232)$

Ancillary Measurements: Transverse Asymmetry in $N \rightarrow \Delta$

Includes N, Δ(1232), S11(1535), and D13(1520)

Carlson, Pasquini, Pauk, Vanderhaeghen, arXiv:1708.05316 [hep-ph]

Ancillary Measurements: Transverse Asymmetry in Møller

Dixon, Schreiber, Phys. Rev. D 69, 113001 (2004)

Qweak: More than the Proton's Weak Charge

Many ancillary measurements for which data is available:

- A_{PV} helicity asymmetries:
 - Elastic ²⁷Al
 - $N \rightarrow \Delta$ (*E* of 1.16 GeV, 0.877 GeV)
 - Near $W = 2.5 \, ext{GeV}$ (for $\Box_{\gamma Z}$)
 - Pion photoproduction (*E* of 3.3 GeV)

- B_n transverse asymmetries:
 - Elastic *ep*, ²⁷Al, C
 - $N \to \Delta$
 - Near $W = 2.5 \,\text{GeV}$
 - Pion photoproduction (*E* of 3.3 GeV)
 - Møller

Topics for Discussion

Prioritization of ancillary analyses

- Currently in progress (or preliminary results):
 - B_n for ep
 - A_{PV} for $N \to \Delta$
 - A_{PV} for ²⁷Al
 - = B_n for ²⁷Al, C

Additional Material

Uncertainties

Parity-Violating and Parity-Conserving Nuclear Asymmetries

Tracking Detectors Beam Polarimetry Helicity-Correlated Beam Properties Data Quality

Precision Polarimetry

Atomic Hydrogen Polarimetry

Radiative Corrections

The *Q_{Weak}* Experiment: Kinematics in Event Mode

Reasons for a tracking system?

- = Determine Q^2 , note: $A_{meas} \propto Q^2 \cdot \left(Q_W^p + Q^2 \cdot B(Q^2)\right)$
- Main detector light output and Q² position dependence
- Contributions from inelastic background events

Instrumentation of only two octants

- Horizontal drift chambers for front region (Va Tech)
- Vertical drift chambers for back region (W&M)
- Rotation allows measurements in all eight octants

Track reconstruction

- Straight tracks reconstructed in front and back regions
- Front and back partial tracks bridged through magnetic field

The Q_{Weak} Experiment: Improved Beam Polarimetry

Requirements on beam polarimetry

- Largest experimental uncertainty in Q_{Weak} experiment
- Systematic uncertainty of 1% (on absolute measurements)

Upgrade existing Møller polarimeter $(\vec{e} + \vec{e} \rightarrow e + e)$

- Scattering off atomic electrons in magnetized iron foil
- Limited to separate, low current runs ($I \approx 1 \, \mu A$)

Construction new Compton polarimeter $(\vec{e} + \vec{\gamma} \rightarrow e + \gamma)$

- Compton scattering of electrons on polarized laser beam
- Continuous, non-destructive, high precision measurements

The *Q_{Weak}* Experiment: Improved Beam Polarimetry

Compton polarimeter

- Beam: 150 μA at 1.165 GeV
- Chicane: interaction region 57 cm below straight beam line
- Laser system: 532 nm green laser
 - 10 W CW laser with low-gain cavity
- Photons: PbWO₄ scintillator in integrating mode
- Electrons: Diamond strips with 200 μ m pitch

Data Quality: Slow Helicity Reversal

$\lambda/2\text{-plate}$ and Wien filter changes

- Insertable $\lambda/2$ -plate (IHWP) in injector allows 'analog' flipping helicity frequently
- Wien filter: another way of flipping helicity (several weeks)
- Each 'slug' of 8 hours consists of same helicity conditions

Helicity-Correlated Beam Properties Are Understood

Measured asymmetry depends on beam position, angle, energy

- Well-known and expected effect for PVES experiments
- "Driven" beam to check sensitivities from "natural" jitter

However, Some Beamline Background Correlations Remain

After regression, correlation with background detectors

- Luminosity monitors & spare detector in super-elastic region
- Background asymmetries of up to 20 ppm (that's huge!)

MITP PVES 2018

Beamline Background Correlations Remain

Hard work by grad students: now understood, under control

- Partially cancels with slow helicity reversal (half-wave plate)
- Likely caused by large asymmetry in small beam halo or tails
- Scattering off the beamline and/or "tungsten plug"

Qualitatively new background for PVES experiments at JLab

- Second regression using asymmetry in background detectors
- Measurements with blocked octants to determine dilution factor $(f_{b_2}^{MD} = 0.19\%)$

Data Quality: Understanding the Asymmetry Width

Asymmetry width

Measurement

- 240 Hz helicity quartets
 (+ -+ or + +-)
- Uncertainty = RMS/\sqrt{N}
- 200 ppm in 4 milliseconds
- < 1 ppm in 5 minutes</p>

Battery width

Asymmetry width

- Pure counting statistics pprox 200 ppm
- + detector resolution pprox 90 ppm
- + current monitor pprox 50 ppm
- + target boiling pprox 57 ppm
- = observed width pprox 233 ppm

Data Quality: Helicity-Correlated Beam Properties

Natural beam motion

- Measured asymmetry correlated with beam position and angles
- Linear regression: $A_{c} = \sum_{i} \frac{\partial A}{\partial x_{i}} \Delta x_{i}$ i = x, y, x', y', E

Data Quality: Helicity-Correlated Beam Properties

Natural beam motion

- Measured asymmetry correlated with beam position and angles
- Linear regression: $A_c = \sum_i \frac{\partial A}{\partial x_i} \Delta x_i$ i = x, y, x', y', E

Driven beam motion

Deliberate motion

Helicity-Correlated Beam Properties Are Understood

Excellent agreement between natural and driven beam motion

Run2 measured asymmetry

- Figure includes about 50% of total dataset for Q_{Weak} experiment
- No other corrections applied to this data

Lower bound on new physics (95% CL)

Constraints from

• Atomic PV: $\frac{\Lambda}{g} > 0.4 \ TeV$

Lower bound on new physics (95% CL)

Constraints from

- Atomic PV: $\frac{\Lambda}{g} > 0.4 \ TeV$
- PV electron scattering: $\frac{\Lambda}{g} > 0.9 TeV$

Lower bound on new physics (95% CL)

Constraints from

- Atomic PV: $\frac{\Lambda}{g} > 0.4 \ TeV$
- PV electron scattering: $\frac{\Lambda}{g} > 0.9 \ TeV$
- Projection Q_{Weak} = $\frac{\Lambda}{g} > 2 TeV$ = 4% precision

Different experiments sensitive to different extensions

MITP PVES 2018

Parity-Violating Electron Scattering: Quark Couplings

Weak vector charge uud

 $Q_W^p = -2(2C_{1u} + C_{1d})$

Early experiments

SLAC and APV

Parity-Violating Electron Scattering: Quark Couplings

- Weak vector charge *uud* $Q_{W}^{p} = -2(2C_{1u} + C_{1d})$
- Early experiments
 - SLAC and APV
- Electron scattering
 - HAPPEx, G0
 - PVA4/Mainz
 - SAMPLE/Bates

Parity-Violating Electron Scattering: Quark Couplings

- Weak vector charge *uud* $Q^{p}_{i\nu} = -2(2C_{1u} + C_{1d})$
- Early experiments
 - SLAC and APV
- Electron scattering
 - HAPPEx, G0
 - PVA4/Mainz
 - SAMPLE/Bates

 Q_{Weak} experiment

Precision Electroweak Experiments: JLab 12 GeV

MOLLER Experiment

Source	ΔA_{PV}
Mom. transfer Q^2	0.5%
Beam polarization	0.4%
2 nd order beam	0.4%
Inelastic <i>ep</i>	0.4%
Elastic <i>ep</i>	0.3%

SoLID PV-DIS Experiment

Source	ΔA_{PV}
Beam polarization	0.4%
Rad. corrections	0.3%
Mom. transfer Q^2	0.5%
Inelastic <i>ep</i>	0.2%
Statistics	0.3%

Precision beam polarimetry is crucial to these experiments.

Precision Electroweak Experiments: Polarimetry

Compton Polarimetry

- $ec{e}ec{\gamma}
 ightarrow e\gamma$ (polarized laser)
- Detection $e \; {\rm and}/{\rm or} \; \gamma$
- Only when beam energy above few hundred MeV
- High photon polarization but low asymmetry
- Total systematics $\sim 1\%$
 - laser polarization
 - detector linearity

Møller Polarimetry

- $\vec{e}\vec{e}
 ightarrow ee$ (magnetized Fe)
- Low current because temperature induces demagnetization
- High asymmetry but low target polarization
- Levchuk effect: scattering off internal shell electrons
- Intermittent measurements at different beam conditions
- Total systematics $\sim 1\%$
Atomic Hydrogen Polarimetry

New polarimetry concept¹

- 300 mK cold atomic H
- 8 T solenoid trap
- = $3 \cdot 10^{16} \text{ atoms/cm}^2$
- $3 \cdot 10^{15-17} \text{ atoms/cm}^3$
- 100% polarization of e

Advantages

- High beam currents
- No Levchuk effect
- Non-invasive, continuous

30K Solenoid 8T 0.3K Storage Cell beam

Atomic Hydrogen Polarimetry: 100% Polarization of e

Hyperfine Splitting in Magnetic Field

- Energy splitting of $\Delta E = 2\mu B$: $\uparrow / \downarrow = \exp(-\Delta E/kT) \approx 10^{-14}$
- Low energy states with $|s_e s_p\rangle$:

$$\begin{array}{l} |d\rangle = |\uparrow\uparrow\rangle \\ |c\rangle = \cos\theta \left|\uparrow\downarrow\rangle + \sin\theta \left|\downarrow\uparrow\rangle \\ |b\rangle = \left|\downarrow\Downarrow\rangle \end{array}$$

$$|a
angle = \cos heta |{\downarrow}{\Uparrow}
angle - \sin heta |{\uparrow}{\Downarrow}
angle$$

with sin $\theta \approx 0.00035$

•
$$P_e(\downarrow) \approx 1$$
 with only 10^5 dilution from $|\uparrow\downarrow\rangle$ in $|a\rangle$ at $B = 8$ T

•
$$P_p(\Uparrow)pprox 0.06$$
 because 53% $|a
angle$ and 47% $|b
angle$

Force $\vec{\nabla}(-\vec{\mu} \cdot \vec{B})$ will pull $|a\rangle$ and $|b\rangle$ into field

Atomic Hydrogen Polarimetry: Expected Contaminations

Without beam

- $\,$ Recombined molecular hydrogen suppressed by coating of cell with superfluid He, $\sim 10^{-5}$
- Residual gasses, can be measured with beam to < 0.1%

With 100 $\mu \rm A$ beam

- = 497 MHz RF depolarization for 200 GHz $|a\rangle \rightarrow |c\rangle$ transition, tuning of field to avoid resonances, uncertainty $\sim 2 \cdot 10^{-4}$
- = lon-electron contamination: builds up at 20%/s in beam region, cleaning with \vec{E} field of $\sim 1 \text{ V/cm}$, uncertainty $\sim 10^{-5}$

Atomic Hydrogen Polarimetry: Projected Uncertainties

Projected Systematic Uncertainties ΔP_e in Møller polarimetry

Source	Fe-foil	Hydrogen
Target polarization	0.63%	0.01%
Analyzing power	0.30%	0.10%
Levchuk effect	0.50%	0.00%
Deadtime	0.30%	0.10%
Background	0.30%	0.10%
Other	0.30%	0.00%
Unknown unknowns	0.00%	0.30%(?)
Total	1.0%	0.35%

Atomic Hydrogen Polarimetry: Collaboration with Mainz

P2 Experiment in Mainz: Weak Charge of the Proton

- "*Q_{Weak}* experiment" with improved statistical precision
- Dedicated 200 MeV accelerator MESA under construction
- Required precision of electron beam polarimetry < 0.5%
- Strong motivation for collaboration on a short timescale (installation in 2017)

Parity-Violating Electron Scattering: Running of Weak Mixing Angle

Running of $\sin^2 \theta_W \left(Q_W^p = 1 - 4 \sin^2 \theta_W \right)$

- Higher order loop diagrams
- $\sin^2 \theta_W$ varies with Q^2

yZ Box Corrections near 1.16 GeV

In 2009, Gorchtein and Horowitz showed the vector hadronic contribution to be significant and energy dependent.

This soon led to more refined calculations with corrections of ~8% and error bars ranging from ±1.1% to ±2.8%.

It will probably also spark a refit of the global PVES database used to constrain $G_{E^{S}}, G_{M^{S}}, G_{A}$.

*** Included in Q_P. For reference, Q_P = 0.0713(8).

yZ Box Corrections near 1.16 GeV A Partial Bibliography

PV Amplitude	Authors	Reference
A°×V ^p (vanishes as E→0)	GH	Gorchtein & Horowitz, PRL 102 , 091806 (2009)
	SBMT	Sibirtsev, Blunden, Melnitchouk, andThomas, PRD 82 , 013011 (2010)
	RC	Rislow & Carlson, PRD 83 , 113007 (2011)
	GHR-M	Gorchtein, Horowitz, and Ramsey-Musolf, PRC 84 , 015502 (2011)
V ^e ×A ^p (finite as E→0)	MS	Marciano and Sirlin, PRD 27 , 552 (1983), PRD 29 , 75 (1984)
	EKR-M	Erler, Kurylov, and Ramsey-Musolf, PRD 68 , 016006 (2003)
	BMT	Blunden, Melnitchouk, and Thomas, PRL 107 , 081801 (2011)

The Q_{Weak} Experiment: Main Detector

Low noise electronics

- Event rate: 800 MHz/PMT
- Asymmetry of only 0.2 ppm
- Low noise electronics (TRIUMF)

I-V Preamplifier

18-bit 500 kHz sampling ADC

The *Q_{Weak}* Experiment: Systematic Uncertainties

Reminder: weak vector charges

- Proton weak charge $Q_W^p pprox -0.072$
- Neutron weak charge $Q_W^n = -1$

Sources of neutron scattering

- Al target windows
- Secondary collimator events
- Small number of events, but huge false PV asymmetry

Al target windows

Electroweak Interaction: Running of Weak Mixing Angle

Atomic parity-violation on ¹³³Cs

- Porsev, Beloy, Derevianko¹: Updated calculations in many-body atomic theory
- Experiment: $Q_W(^{133}Cs) = -73.25 \pm 0.29 \pm 0.20$
- Standard Model: $Q_W(^{133}Cs) = -73.16 \pm 0.03$

NuTeV anomaly

- Reported 3σ deviation from Standard Model
- Erler, Langacker: strange quark PDFs
- Londergan, Thomas²: charge symmetry violation, $m_u \neq m_d$
- Cloet, Bentz, Thomas³: in-medium modifications to PDFs, isovector EMC-type effect

¹Phys. Rev. Lett. 102 (2009) 181601
 ²Phys. Rev. D67 (2003) 111901
 ³Phys. Lett. B693 (2010) 462-466

NuTeV Nuclear Correction

Isovector EMC effect¹ affects NuTeV point²

¹I. Cloët, W. Bentz, A. M. Thomas, Phys. Rev. Lett. 102, 252301 (2009) ²W. Bentz, Phys. Lett. B693, 462-466 (2010)

NuTeV Nuclear Correction

Isovector EMC effect¹ affects NuTeV point²

¹I. Cloët, W. Bentz, A. M. Thomas, Phys. Rev. Lett. 102, 252301 (2009) ²W. Bentz, Phys. Lett. B693, 462-466 (2010)