Probing resonance matter with HADES

Technische Universität Darmstadt / GSI

TECHNISCHE

UNIVERSITÄT DARMSTADT

23/01/2018 | Bormio2018 | Malgorzata Gumberidze | 1

Baryonic Matter at 1-2A GeV Beam Energy

> Baryon dominated : $N_{\pi}/A_{part} \approx 10\%$

Strangeness Production at SIS18 Energies

Data compilation: Prog.Part.Nucl.Phys. 66 (2011) 834-879

- All strange hadrons produced below NN-thrshold
- Steep excitation function at SIS18
- Lower production yield of K⁻ (two order of magnitude)

Meet the HADES

Measurements at SIS18

Fixed target experiment

Fast detector

8 kHz trigger rate

Large acceptance

18° < θ < 85° (polar angle) Full azimuthal angle

Tracking system

4 drift chamber planes

+ superconducting magnet

Time-of-flight detectors

RPC + TOF for precise hadron identification

Data sample: Au+Au at $\sqrt{s} = 2.4 \text{ GeV}$

- 40% most central collisions
- 5 x 10⁹ LVL1 events

HADES Performance: Particle Identification

PID by means of :

- Velocity
- Momentum
- dE/dx in MDC and ToF
- **RICH** information

Topological cuts applied background obtained using mixed-event

multi-differential analysis few 10% centrality classes

Reconstruction of Strange Hadrons

23/01/2018 | Bormio 2018 | Malgorzata Gumberidze | 6

TECHNISCHE

UNIVERSITÄT

Microscopic Description : K_{S}^{0} and Λ

- Transport models overestimate yield and don't reproduce <A_{part}> dependence
- > Including KN potential improves description of kaon spectra
- > The effect is mimicked in UrQMD with resonance production
- \succ No simultaneous description of kaon and Λ spectra

HSD v711n: Phys rep, 308:65–233, January 1999 IQMD c8: Eur.Phys.J.,A1:151–169, 1998 UrQMD 3.4: Prog.Part.Nucl.Phys., 41:255–369, 1998

K⁻/K⁺ Production : Comparison to KaoS

- > No strong centrality dependence of K^- / K^+ ratio
- > Data fits well into the extrapolation from higher energies

K⁻/K⁺ Production : Comparison to KaoS

s ū

π

ū

K

HADES

 Interpretation: Production coupled via strangeness exchange reaction + later freeze-out of K⁻

Deep Sub-threshold ϕ **Production**

 $\rightarrow \phi/K^{-}$ ratio constant at high energy

- > ϕ/K^{-} ratio constant at high energy
- > Sizeable increase of ϕ/K^2 ratio around production threshold

- φ/K⁻ ratio constant at high energy
- > Sizeable increase of ϕ/K^- ratio around production threshold \rightarrow even higher for Au+Au
- $\succ~\phi$ important source for K- production below NN threshold

\rightarrow 25% of all measured K⁻ from ϕ feed-down

- > Unique freeze-out criteria when ϕ decay kinetics taken into account
 - \rightarrow sequential freeze-out of K⁺,K⁻ not necessary to describe the data
 - \rightarrow support for statistical model

Strange Particle Production: The Complete Picture

<A_{part}> dependent multiplicity

- First comprehensive set of strange particles
- Strangeness production far below NN threshold
 - \rightarrow Strong constraints on production mechanism
- ► Universal scaling of yield with participants → Mult ≈ A^{α}_{part} , with $\alpha > 1$
- Production yields reflect matter properties

Strange Particle Production: The Complete Picture

Chemical freeze-out

- Particle production from a homogeneous source
- Grand canonical ensemble Parameters : T, m_B, R_c
- Strangeness canonically suppressed $\rightarrow \phi/K^-$ ratio Additional parameter needed ($R_c < R_v$)
- Hadron yields described by 4 parameters

Strangeness production consistent with the assumption of reaching a thermal equilibrium at SIS18 energies in baryonic matter

g THERMUS v2.3 S. Wheaton, J. Cleymans Comput.Phys.Commun()2009 180

Extraction of freeze-out temperature

Radial Flow

- Kinetic freeze-out parameters from blast wave fit to hadron spectra
- > $T_{kin} = 62 \pm 10 \text{ MeV}$, $<\beta> = 0.36 \pm 0.04$
- > Λ and ϕ spectra steeper

- Global freeze-out parameters agrees well with the world data trend
- > $T_{kin} ≤ T_{chem}$ also at low energies (high μ_B)

Summary

Microscopic description:

- Kaon spectra best described by IQMD with potential, however it does not describe Λ spectra
- No consistent picture when looking at different observables

Deep sub-threshold strangeness production:

- ϕ sizeable source for K⁻ production
- Feed-down can explain lower effective temperature and rapidity spectrum of K⁻
- No indication for sequential freeze-out of K⁺/K⁻

The global picture:

- Universal centrality dependence of strangeness production
- SHM describes particle yields
- Strangeness production suggests creation of thermalized stronglyinteracting medium

Outlook

- Strong scientific program for FAIR Phase-0
 - > Further exploration of the phase diagram and reference measurements
 - ✓ π+p/A √s = 1.7 1.9 GeV :

EM structure of baryonic resonances

✓ Ag+Ag at 1.65A GeV :

multi-strange hadrons & intermediate-mass dileptons

Continue physics program at higher energies at SIS 100

Proposal for experiments at SIS18 during FAIR Phase-0

The HADES Collaboration

Properties of hadron resonances and baryon rich matter

Thank you for your attention !!!

ϕ /K- ration : comparison to models

Figure 6.9: Excitation function of the measured ϕ/K^- ratio for various systems and energies (see legend) [2, 121, 3, 158, 159, 160]. While the ratio stays flat for energies above a few AGeV, it substantially increases towards lower energies around the elementary ϕ production threshold. Lines correspond to calculations from a statistical hadronization model for different values of the canonical suppression radius R_C (see legend).

TECHNISCHE

UNIVERSITÄT DARMSTADT

Strangeness Production: The Global Picture

Phys.Rev. C 48, 2462 Blast wave model:

 $\frac{dN}{p_T dp_T} \propto \int_0^R r \, dr \, m_T I_0 \left(\frac{p_T \sinh \rho(r)}{T_{\rm kin}}\right) \\ \times K_1 \left(\frac{m_T \cosh \rho(r)}{T_{\rm kin}}\right)$

Linear flow velocity profile:

 $\beta = \beta_S (r/R)^n$ n = 1

Proton, Kaon and Pion spectra well described by simultaneous blast wave fit with global parameters: $T_{kin} = 62 \pm 10 \text{ MeV}$

$$\langle \beta_r \rangle = 0.36 \pm 0.04$$

 $T_{kin} < T_{chem} = 68 \pm 2 \text{ MeV}$

