Testing the conjecture of partial chiral symmetry restoration: meson-nucleus potentials and the search for mesic states

Volker Metag II. Physikalisches Institut JUSTUS-LIEBIG-UNIVERSITAT GIESSEN

*funded by the DFG within SFB/TR16

56th. Int. Winter Meeting on Nuclear Physics Bormio, Italy, Jan. 22-26, 2018

bound by

earth-moon system

bound by

gravitation

earth-moon system

<u>electromagnetic</u> <u>interaction</u>

atom

bound by

gravitation

earth-moon system

<u>electromagnetic</u> <u>interaction</u>

atom

 π -,K⁻ - atoms

bound by

gravitation

earth-moon system

<u>electromagnetic</u> <u>interaction</u>

atom

 π -,K⁻ - atoms

strong interaction

η' mesic state

bound by

gravitation

earth-moon system

<u>electromagnetic</u> <u>interaction</u>

atom

 π -,K⁻ - atoms

strong interaction

 η^{\prime} mesic state

meson - nucleus interaction attractive? repulsive?

→ meson-nucleus potential

outline

introduction: meson-nucleus interactions
methods for determining meson-nucleus potentials
potential parameters for K⁺,K⁰,K⁻, η, η'ω,Φ - A interaction
search for meson-nucleus bound states
summary & outlook

V. Bernard, R.L. Jaffe, U.-G. Meissner, NPB 308 (1988) 753 S. Klimt, M. Lutz, U. Vogel, W Weise, NPA 516 (1990) 429

mass as a result of symmetry breaking

K⁰

K-

V. Bernard, R.L. Jaffe, U.-G. Meissner, NPB 308 (1988) 753 S. Klimt, M. Lutz, U. Vogel, W Weise, NPA 516 (1990) 429

mass as a result of symmetry breaking

K⁰

K-

partial restoration of chiral symmetry predicted to occur in a nucleus \Rightarrow impact on meson masses ??

Predictions for in-medium mass changes

 $\Delta m_{\eta'} (\rho_0) \approx -150 \text{ MeV}$ $\Delta m_{\eta} (\rho_0) \approx +20 \text{ MeV}$

 $\Delta m_{K^{+}}(\rho_{0}) \approx +30 \text{ MeV}$ $\Delta m_{K^{-}}(\rho_{0}) \approx -100 \text{ MeV}$ $\begin{array}{l} \Delta m_{\rho} \left(\rho_{0} \right) \approx \text{ - (80-160) MeV} \\ \Delta m_{\omega} \left(\rho_{0} \right) \approx \text{ - (80-160) MeV} \\ \Delta m_{\Phi} \left(\rho_{0} \right) \approx \text{ -(20-30) MeV}_{5} \end{array}$

in the nuclear medium: mesons removed by inelastic reactions \rightarrow shorter lifetime \rightarrow larger in-medium width

- line shape analysis
- excitation function
- momentum distribution
- meson-nucleus bound states

transparency ratio measurement

$$T_{A} = \frac{\sigma_{\gamma A \to \eta' X}}{A \cdot \sigma_{\gamma N \to \eta' X}}$$

D. Cabrera et al., NPA733 (2004) 130

Determining the <u>real part</u> of the meson-nucleus potential from excitation functions and momentum distributions

sensitive to nuclear density at the production point excitation function

Determining the <u>real part</u> of the meson-nucleus potential from excitation functions and momentum distributions

sensitive to nuclear density at the production point excitation function

lower threshold → larger phase space→ larger cross section Determining the <u>real part</u> of the meson-nucleus potential from excitation functions and momentum distributions

sensitive to nuclear density at the production point excitation function

attractive interaction → mass drop → lower threshold → larger phase space→ larger cross section repulsive interaction → mass increase → higher threshold → smaller phase space→ smaller cross section

Determining the <u>real part</u> of the meson-nucleus potential from excitation functions and momentum distributions sensitive to nuclear density at the production point momentum distribution excitation function σ_{m} $d\sigma_m$ attractive dpm V=0 V=0 repulsive $E_{\rm thr}^{\gamma N}$

E_Y

Pm

attractive interaction → mass drop → lower threshold → larger phase space→ larger cross section repulsive interaction → mass increase → higher threshold → smaller phase space→ smaller cross section

Determining the <u>real part</u> of the meson-nucleus potential from excitation functions and momentum distributions sensitive to nuclear density at the production point momentum distribution excitation function σ_{m} $d\sigma_m$ attractive dpm V=0 V=0 repulsive repulsive $E_{\rm thr}^{\gamma N}$ E_Y Pm attractive interaction \rightarrow mass drop \rightarrow repulsive interaction \rightarrow extra kick \rightarrow shift to higher momenta lower threshold \rightarrow larger phase space \rightarrow larger cross section repulsive interaction \rightarrow mass increase \rightarrow higher threshold \rightarrow smaller phase space \rightarrow

smaller cross section

Determining the <u>real part</u> of the meson-nucleus potential from excitation functions and momentum distributions sensitive to nuclear density at the production point momentum distribution excitation function σ_{m} $d\sigma_m$ attractive attractive dpm V=0 V=0 repulsive repulsive $E_{\rm thr}^{\gamma N}$

E_Y

attractive interaction \rightarrow mass drop \rightarrow lower threshold \rightarrow larger phase space \rightarrow larger cross section

repulsive interaction \rightarrow mass increase \rightarrow higher threshold \rightarrow smaller phase space \rightarrow smaller cross section

Pm repulsive interaction → extra kick → shift to higher momenta

> attractive interaction \rightarrow meson slowed down \rightarrow shift to lower momenta

Determining the <u>real part</u> of the meson-nucleus potential from excitation functions and momentum distributions sensitive to nuclear density at the production point excitation function momentum distribution σ_{m} $d\sigma_m$ attractive attractive dpm V=0 V=0 repulsive repulsive $E_{\rm thr}^{\gamma N}$

E_Y

attractive interaction \rightarrow mass drop \rightarrow lower threshold \rightarrow larger phase space \rightarrow larger cross section

repulsive interaction \rightarrow mass increase \rightarrow higher threshold \rightarrow smaller phase space \rightarrow smaller cross section

Pm repulsive interaction → extra kick → shift to higher momenta

> attractive interaction \rightarrow meson slowed down \rightarrow shift to lower momenta

quantitative analysis requires transport model or collision model calculations 8

Determining the <u>imaginary part</u> of the meson-nucleus potential from transparency ratio measurements

strategy for determining potential parameters

real part of meson-nucleus potential

measure meson excitation functions and/or momentum distributions compare with transport and or collision model calculations for different sets of V_0

$$\rightarrow V_0 = V(\rho = \rho_0)$$

imaginary part of meson-nucleus potential measure transparency ratio $T_A(A,p)$ compare with transport and or collision model calculations for different sets of Γ_{med} , σ_{inel}

$$\rightarrow \Gamma_{\text{med}}, \sigma_{\text{inel}} \rightarrow W_0 = W(\rho = \rho_{0;P} = 0)$$
$$U(\rho = \rho_0) = V_0 + i W_0$$

Review:

V. Metag, M. Nanova and E.Ya. Paryev, Prog. Part. Nucl. Phys.97 (2017) 199

excitation function and momentum distribution for η^\prime photoproduction off C

determining the real part of the η '-nucleus potential

 $V_0 = \Delta m(\rho = \rho_0) = -[39\pm7(stat)\pm15(syst)] \text{ MeV}$

observed mass shift in agreement with QMC model predictions

S. Bass and T. Thomas, PLB 634 (2006) 368

determining the imaginary part of the η '-nucleus potential

 $W_0 = Im U(\rho = \rho_{0,p_{\eta'}} = 0) = -[13 \pm 3(stat) \pm 3(syst)] MeV$

determining the real part of the K⁰-nucleus potential

HADES: Ar + KCl at 1.756 AGeV G.Agakishiev et al., PRC90 (2014) 054906

K⁰ transverse momentum spectra compared to IQMD transport calculations without potential (green dotted) and with repulsive potential of +46 MeV (blue dashed curve)

 $V \approx$ + 40 MeV

determining the real part of the K--nucleus potential

K-momentum spectra in coincidence with K⁺ (200 \leq p_{K+} \leq 600 MeV/c) compared to collision model calculations: E. Paryev et al., J. Phys. G 42 (2015) 075107

 $V_{K^{-}}(\rho = \rho_0) = -63^{+50}_{-30}$ MeV accounting for systematic uncertainties

Determining the imaginary part of the Φ -nucleus potential

Real part of the meson-nucleus potential

V. Metag, M. Nanova and E.Ya. Paryev, Prog. Part. Nucl. Phys.97 (2017) 199

meson-nucleus real potential:

K+, K0 repulsive: 20-40 MeV $m_{K+,K0}$ K- strongest attraction: - (30 - 100) MeV m_{K^-} $\eta, \eta', \omega, \Phi$ weakly attractive: - (20 - 50) MeV $m_{\eta'}$

Imaginary part of the meson-nucleus potential

V. Metag, M. Nanova and E.Ya. Paryev, Prog. Part. Nucl. Phys.97 (2017) 199

meson-nucleus imaginary potential:

 $\begin{aligned} \eta' &:\approx -10 \text{ MeV} \\ \eta, \Phi &:\approx -20 \text{ MeV} \\ \omega &:\approx -40 \text{ MeV} \text{ quite broad} \\ \text{K}^- &:\approx -60 \text{ MeV very broad} \end{aligned}$

Search for η ' nucleus bound states in ${}^{12}C(p,d)\eta'X$

recoilless production in ${}^{12}C(p,d)$ reaction

PRIME collaboration (2012)

K. Itahashi et al., Exp. S 437

theoretical expectation H. Nagahiro et al., PRC 87(2013) 045201

Search for η ' nucleus bound states in ${}^{12}C(p,d)\eta'X$

high statistical sensitivity sets constraints on η' -¹¹C interaction: $|V_0| < 100$ MeV improved experiment detecting formation and decay of mesic state in preparation.

Summary and conclusions

- mesons do change their properties in the nuclear medium as predicted by chiral model calculations: $m_{K^+,K0}$; m_{K^-} ; $m_{\eta'}$
- meson-nucleus interaction described by complex potential

U(r) = V(r) + i W(r)

- real part of meson-nucleus potential deduced from comparison of measured meson excitation functions or momentum distributions with transport and/or collision model calculations
- imaginary part of meson-nucleus potential deduced from comparison of measured transparency ratios with transport and/or collision model calculations
- measured potential parameters indicate favourable conditions ($|V_0| >> |W_0|$) for observing meson-nucleus quasi-bound states: promising candidate: η, η'
- pilot experiment searching for η' mesic states provides only upper limits; more sensitive semi-exclusive experiment in preparation
- evidence for existence of K-pp cluster

backup slides

line shape analysis??

V determine mass from in-medium decay: e.g., $\eta' \rightarrow \gamma \gamma$

$$m = \sqrt{(p_1 + p_2)^2}$$

probability for decay:

$$\frac{dP_{decay}}{dl} = \frac{mc}{P} \cdot \frac{I}{\hbar c} \cdot \Gamma_{decay} = 2.2 \cdot 10^{-5} / \text{fm}$$
$$\Gamma_{\eta' \to \gamma\gamma} = 4.3 \cdot 10^{-3} \text{ MeV} \qquad (\text{for } \frac{mc}{P} \approx 1.0)$$

probability for absorption:

$$\frac{dP_{abs}}{dI} = \sigma_{abs} \cdot \rho(r) = 0.22/fm \text{ at } \rho = \rho_0$$

$$\sigma_{abs} = 13 \text{ mb}$$

$$\frac{P_{decay}}{P_{abs}} = 10^{-4}$$

10 000 times more likely to get absorbed than to decay

23

more favourable decay/absorption ratio only at lower densities near the surface where in-medium modifications are reduced sensitive to nuclear density at decay point

determining the real part of the K--nucleus potential

K+ and K⁻ kinetic energy spectra from AI + AI at 1.94 AGeV

b.) corrected for feeding of K⁻ spectrum from decay $\Phi \rightarrow K^+K^-$ decays

 Φ/K -ratio = 0.36±0.05 Ni+Ni at I.9 AGeV (FOPI) Φ/K -ratio = 0.52±0.16 Au+Au at I.23 AGeV (HADES)

not reproduced in transport calculations

make sure other observables are reproduced before deducing potential parameters !! 25

deviation from expected lines shape for slow ($\beta\gamma < 1.25$) Φ mesons

 $V_0 = \Delta m(\rho = \rho_0) = -35 \pm 7 \text{ MeV}; W(\rho = \rho_0) = -7^{+4}_{-3} \text{ MeV}$

search for meson-nucleus bound states with Φ and heavier mesons (charm sector)

general experimental problem:

heavy meson production associated with high momentum transfer probability for nucleus to stay intact ~ $F_A^2(q^2)$

minimising momentum transfer: M. Faessler, NPA 692 (2001) 104c favourable reaction $\overline{p} p \rightarrow XY$ with Y forward and X backward in cm $p_{min}(X) \approx \frac{m_X^2 - m_N^2}{2 m_N}$ (still I.4 GeV/c for DD pairs !!) 5 more favourable: two step production 3± Γ/2 [MeV] $\overline{p} p \rightarrow D^{*-} D^{+-}$ $D^{*-} + (Z,A) \rightarrow \pi^0 + D^- \otimes (Z,A)$ -15 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1, 2 0, 1, 2, 3 $^{27}AI \quad {}^{28}Si \quad {}^{32}S \quad {}^{40}Ca \quad {}^{118}Sn \quad {}^{208}Pb \quad \cdot$ 0, 1 L=0²⁴Ma ^{12}C -20 J. Yamagata-Sekihara et al., PLB 754 (1016) 26 D⁰-nucleus bound states

real vs. imaginary part of the meson-nucleus potential

