Photonuclear Astrophysics at ELI-NP

Dario Lattuada IFIN-HH/ELI-NP

OUTLINE

- ELI-NP
- HPLS & GBS
- GBS RA4 experiments
- Nuclear Astrophysics with ELISSA
- Monte Carlo simulations
- ..Conclusions..

Extreme Light Infrastructure -Nuclear Physics

January 22-26, 2018

High Power Laser System (HPLS)

• 815nm

THALES

- 2x 10PW, 22fs @ 1/min
- 2x 1PW, 10ps @ 1Hz
- 2x 100TW, 100ps @ 10Hz

Gamma Beam System (GBS)

- Inverse Compton scattering
- 0.2–19.5MeV
- 0.5% bandwidth
- 10⁴ photons/(eV·s)
- 99% P_γ

$$E_{\gamma} = 2\gamma_e^2 \cdot \frac{1 + \cos\theta_L}{1 + (\gamma_e \theta_{\gamma})^2 + a_0^2 + \frac{4\gamma_e E_L}{mc^2}} \cdot E_L$$

Gamma Beam System Specs

Quantity	Symbol	Units	Specification
Minimum Photon Energy	Eγ	[MeV]	0.2
Maximum Photon Energy	Eγ	[MeV]	19.5
Tunability of the photon energy			Continuously variable
Linear polarization of the gamma ray beam	Pγ	[%]	≥ 99
Divergence	Δθ	[rad]	(0.25 - 2.0) x 10 ⁻⁴
Source rms diameter		[m]	(0.01 - 0.03) x 10 ⁻³
Average diametral Full Width Half Maximum of beam spot	σ _r	[m]	≤ 1.0 x 10 ⁻³
Average bandwidth of the gamma-ray beam	w		≤ 5.0 x 10 ⁻³
Time-average spectral density at the peak energy	F	[1/(s eV)]	(0.8 - 4.0) x 10 ⁴
Time-average brilliance at peak energy	B _{av}	[1/s mm ² mrad ² 0.1%W]	≥ 1.0 x 10 ¹³
Peak-brilliance at peak energy	В	[1/s mm ² mrad ² 0.1%W]	10 ²⁰ - 10 ²³
Average spectral off-peak gamma-ray background density	$\Phi_{\gamma,bkgr}$	[1/(s eV)]	≤ 1.0 x 10 ⁻²
Frequency of the gamma-ray macropulses	$\Omega_{\gamma,M}$	[Hz]	100
Number of gamma-ray micropulses per macropulse			32
Micropulse-to-micropulse separation		[ns]	16

Research Activities

Fundamental Research

Nuclear Resonance Fluorescence (A.Zilges, C.A.Ur) <u>Nuclear Astrophysics (γ ,p) (γ ,a)</u> (M.Gai, C. Matei, O.Tesileanu) Photonuclear Reactions (γ ,n) (H.Utsunomiya, F.Camera, D.Filipescu) Photofission Studies of Exotic Nuclei (A.Krasznahorkay, F.Ibrahim, A. Oberstedt)

Applications

Gamma Imaging (H.Ohgaki, V.Iancu) Material Science with Positrons (C.Hugenschmidt, N.Djourelov) Medical Radioisotopes (D.Niculae, M.Bobeica)

R&D Diagnostics Detectors

Gamma Beam Delivery and Diagnostics (H.Weller, C.A.Ur)

RA4 Head: D. Balabanski.

Nuclear Astrophysics with GBS

The Charged Particles Working Group (CPWG)

Time Projection Chamber: eTPC with electronic readout. Proposed reactions: ${}^{16}O(\gamma, \alpha){}^{12}C$, ${}^{22}Ne(\gamma, \alpha){}^{18}O$, ${}^{19}F(\gamma, p){}^{18}O$

<u>Silicon Strip Detectors Array</u>: ELISSA allows for particle identification through kinematics. Proposed reactions: ${}^{24}Mg(\gamma,\alpha){}^{20}Ne$ and p-process reactions

The Gamma above Neutron Threshold (GANT)

Nuclear Astrophysics with ELISSA

- to perform accurate measurements of (small) cross sections of nuclear reactions
- inverse photo-disintegration reactions with low background measurements
- different systematic uncertainties than charge-particle induced reactions at low energies of astrophysical interest

It is important to evaluate the expected background and event rate

Nuclear Astrophysics with ELISSA

p-process

- proton-rich nuclei with $A \ge 74$
- less abundant typically by factors of ten to one thousand than the other isotopes of the same element
- (p,y) reactions inefficient
- s- and r-nuclei serve as seeds
- suggested to occur in type II supernovae when the shock wave passes through the O–Ne-rich layer of a massive star @ T≈2–3GK

ELISSA for studying reactions on nuclei intervening in the p-process ⁷⁴Se, ⁷⁸Kr, ⁸⁴Sr, ⁹²Mo, ⁹⁶Ru, ..

Extreme Light Infrastructure Silicon Strip Array

Front View

Rear View

Barrel configuration:

- 3 rings of 12 positionsensitive X3 silicon-strip detectors by Micron
- 2 end cap detectors made up of 4 QQQ3 DSSSD by Micron
 - ~ 500 channels readout with GET electronics

Characteristics:

- ~80% geometrical coverage of 4π
- Negligible sensitivity to neutrons & photons
- No double hit effect (few particles in the exit channel)

MC SIMULATIONS

January 22-26, 2018

Summary

- The ELI-NP gamma beam system will provide new exciting opportunities for nuclear-physics experiments
- The beam will enter the testing phase in late 2018 / early 2019
- Several experiments in which the international community is involved are under development at ELI-NP
- ELISSA is being finalized and it will be able to shed light on many astrophysical problems
- Electromagnetic background and reaction rates have been evaluated with MC simulations for many proposed experiments
- A GEANT4&ROOT-based tool for nuclear reaction is under development to be mainly used as reference software by users coming at ELI-NP facility.

Thank you

I would like to acknowledge the support from the Extreme Light Infrastructure Nuclear Physics (ELI-NP) Phase II, a project cofinanced by the Romanian Government and the European Union through the European Regional Development Fund - the Competitiveness Operational Programme (1/07.07.2016, COP, ID 1334).

Thanks to my colleagues for their support, and to you for your attention.

ELI-NP experimental areas

Platform vibrations

±1 µm @ < 10 Hz

The electron LINAC

ELI-GANT experiment: overview

(Gamma Above Neutron Threshold)

Franco Camera, Hiroaki Utsunomiya, Dan Filipescu

ELI-GANT experiment: overview

(Gamma Above Neutron Threshold)

Franco Camera, Hiroaki Utsunomiya, Dan Filipescu

Photofission: ELI BIC (Bragg Ionization Cham

