

Low mass dielectrons in pp, p-Pb and Pb-Pb collisions measured by the ALICE experiment

Ivan Vorobyev Technische Universität München, Excellence Cluster Universe on behalf of the ALICE Collaboration

56th International Winter Meeting on Nuclear Physics 24.01.2018, Bormio, Italy

Low mass dielectron studies

Produced during all stages of collisions with negligible final-state interactions

High-energy heavy-ion collisions:

- In-medium modifications of vector mesons
- Thermal radiation from QGP
- Energy loss of correlated heavy flavour quarks **Proton-ion collisions:**
- Cold nuclear matter effects

Proton-proton collisions:

- Medium-free reference
- Heavy flavour cross-sections
- New phenomena in high-multiplicity events?

A. Drees, Nucl. Phys. A830 (2009) 435

J/Ψ

Drell-Yan

dN_{ee}/dydm

_π⁰,η,ω - Dalitz

 ω, q

 $D\overline{D}$

RR

mass (GeV/c²)

The ALICE Experiment at CERN LHC

Inner Tracking System

- Tracking, vertex, PID (d*E*/d*x*)
 Time Projection Chamber
- Tracking, PID (d*E*/d*x*)
 Time **O**f **F**light detector
- PID (TOF measurement)

The ALICE Experiment at CERN LHC

3

The ALICE Experiment at CERN LHC

Inner Tracking System

- Tracking, vertex, PID (d*E*/d*x*)
 Time Projection Chamber
- Tracking, PID (d*E*/dx)
 Time Of Flight detector
- PID (TOF measurement)
 V0 scintillators
- Trigger, centrality estimation

In this talk:

Collision system	N of events	Triggers
pp at \sqrt{s} = 7 TeV	~ 370 M	min. bias
pp at \sqrt{s} = 13 TeV	~104 M + 48 M	min. bias + high mult.
p-Pb at √ <i>s</i> _{NN} = 5.02 TeV	~105 M	min. bias
Pb-Pb at $\sqrt{s_{NN}}$ = 2.76 TeV	~20 M	0-10% centrality

pp \sqrt{s} = 7 TeV: invariant mass spectrum

Cocktail of known hadronic sources:

- Resonance and Dalitz decays: π⁰, η, φ and J/ψ measurements, other sources (η', ρ, ω) from m_T scaling
- Heavy-flavour correlated semi-leptonic decays: measured cc and bb cross sections, shape from PYTHIA simulations
- Detector acceptance and resolution effects

Data in agreement with cocktail calculations within uncertainties

 Finalisation of results is ongoing (heavy-flavour cross section, direct photons, pair DCA analysis)

4

pp \sqrt{s} = 7 TeV: pair DCA analysis

Idea: separate prompt and non-prompt contributions using pair vertex position

• Observable:
$$DCA_{ee} = \sqrt{\frac{DCA_1^2 + DCA_2^2}{2}}$$

• Obtain DCAee templates from MC, normalise to cocktail and compare with data

Good description of data in all mass regions

- Low-mass region: prompt and non-prompt sources, can separate them
- Intermediate-mass region: non-prompt sources, separation of cc and bb

New phenomena in high multiplicity pp events?

Production / destruction of p meson, direct photons, open heavy flavour... ? Idea: produce a ratio of (uncorrected) dielectron spectra:

 $\frac{N_{ee}(HM)/\langle N_{ch}^{acc}(HM)\rangle}{N_{ee}(MB)/\langle N_{ch}^{acc}(MB)\rangle}$

- Min. bias triggered data: coincidence of V0A & V0C signals
- High mult. triggered data: coincidence of V0A & V0C signals, threshold on V0M
- (N_{ch}^{acc}(HM))/(N_{ch}^{acc}(MB)) = 4.36 (measured at η ~ 0)
- Naive expectation (for light flavour): signal ~ N_{ch}

pp \sqrt{s} = 13 TeV: cocktail calculations vs multiplicity

Light-flavour decays:

- Preliminary ALICE π[±] measurements as input, m_T scaling for other hadrons
- Modification of p_T spectrum in events with higher charged particle multiplicities ——

Light-flavour decays:

- Preliminary ALICE π[±] measurements as input, m_T scaling for other hadrons
- Modification of *p*_T spectrum in events with higher charged particle multiplicities ——

Heavy-flavour contribution:

- PYTHIA simulation of open charm production
- Multiplicity dependent production of D meson in pp at $\sqrt{s} = 7$ TeV
 - Rough expectation:

$$\frac{N_{\rm c\overline{c}\to ee}({\rm HM})/\langle {\rm N}_{\rm ch}({\rm HM})\rangle}{N_{\rm c\overline{c}\to ee}({\rm MB})/\langle {\rm N}_{\rm ch}({\rm MB})\rangle} \approx 1-2.5$$

AT.T-PUB-10251

pp \sqrt{s} = 13 TeV: high multiplicity data analysis

Results are in agreement with cocktail expectations

Intermediate mass: in agreement with D-meson results at 7 TeV

pp \sqrt{s} = 13 TeV: high multiplicity data analysis

Results are in agreement with cocktail expectations

- Intermediate mass: in agreement with D-meson results at 7 TeV
- Low mass: ratio > 1 due to change of hadron p_T spectrum and acceptance cut
- Analysis of more data (x5) is ongoing

ALI-PREL-119684

Cocktail calculations:

- Resonance and Dalitz decays: π[±] and J/ψ measurements, *m*_T scaling for other hadrons
- Heavy flavour contributions: cross section extrapolated from pp at 7 TeV measurements

Data consistent with cocktail within uncertainties

ALI-PREL-69715

Differential analysis in m_{ee} - p_T^{ee} :

- Sensitive to cc and bb cross sections
- Cold nuclear matter effects?

x5 more p-Pb data in Run 2: detailed studies vs m_{ee} and p_{T}^{ee} are foreseen

Pb-Pb $\sqrt{s_{NN}}$ = 2.76 TeV: invariant mass spectrum

- Light flavour cocktail: π⁰ measurements, m_T scaling for other hadrons
- Heavy flavour cocktail: PYTHIA calculations normalised to pp at 7 TeV measurements, extrapolated to 2.76 TeV and scaled with N_{coll}

Data compatible with cocktail within large uncertainties

Room for additional sources

Pb-Pb $\sqrt{s_{NN}}$ = 2.76 TeV: invariant mass spectrum

- Light flavour cocktail: π^0 measurements, m_T scaling for other hadrons
- Heavy flavour cocktail: PYTHIA calculations normalised to pp at 7 TeV measurements, extrapolated to 2.76 TeV and scaled with *N*_{coll}

Data compatible with cocktail within large uncertainties

- Room for additional sources
- Data compared to hadronic cocktail + QGP and HG radiation with modified ρ and ω in-medium spectral functions [1, 2]
- Reduced sensitivity to measure thermal radiation
- Run 3 data (after detector upgrade): more precise studies, access to T_{init}

The the transformation of transformation of the transformation of the transformation of the transformation of the transformation of transformation of the transformation of tr

$p_{T}^{e} > 0.4 \text{ GeV/c}, |\eta_{e}| < 0.8$ -Rapp: HG (in-medium p spectral function) -Rapp: HG (vacuum p spectral function) Adv. HEP 2013 (2013) 148253 and PRC 63 (2001) 054907 -Rapp: HG (vacuum p spectral function) -Rapp: HG (vac

Fit dielecton mass spectrum (m_{ee} 100-300 MeV/ c^2 , p_T 1-2 and 2-4 GeV/c)

$$f(m_{ee}) = r \cdot f_{dir}(m_{ee}) + (1 - r)f_{LF}(m_{ee}) + f_{HF}(m_{ee})$$

- $r = virtual direct \gamma / inclusive$
- Direct virtual photons described by Kroll-Wada ($m_{ee} << p_T$)

$$\frac{1}{N_{\gamma}} \frac{dN_{ee}}{dm_{ee}} = \frac{2\alpha_{e.m.}}{3\pi} \sqrt{1 - \frac{4m_e^2}{m_{ee}^2}} (1 + \frac{2m_e^2}{m_{ee}^2}) \times \frac{1}{m_{ee}}$$

 Results compatible with ALICE and RHIC direct photon measurements of r ~ 0.1 - 0.2 [1, 2]

Summary and outlook

pp collisions

- Medium-free baseline for heavy ions studies
- First low-mass dielectron analysis of high-multiplicity events
- Results are described with cocktail calculations of known hadronic sources

p-Pb collisions

- Studies of possible cold nuclear matter effects
- Compatible with hadronic cocktail within uncertainties

Pb-Pb collisions

- Challenging analysis, results compatible with hadronic cocktail within uncertainties
- Room for additional contributions

More results are coming soon!

Back-up slides

Dielectron pair analysis

• Physics signal:

$$S = N_{_{+-}} - B \cdot R$$

 Combinatorial background: geometric mean of like-sign pairs from same event

$$B = 2\sqrt{N_{++}} \cdot N_{--}$$

 Pair acceptance correction factor (from mixed events)

$$R = \frac{N_{+-MIX}}{2\sqrt{N_{++MIX}} \cdot N_{--MIX}}$$

 Conversion rejection techniques: V0 tagging, pair orientation relative to the magnetic field

2.5

3

 $m_{\rm ee} \, ({\rm GeV}/c^2)$

3.5

2

1.5

dN/dm_{ee} (a.u.)

10⁻²

10

10-

10⁻⁵

ALI-PREL-70734

ALICE Preliminary

 $p_{\tau}^{\rm e} > 0.2 \; {\rm GeV}/c$

 $|\eta^{\rm e}| < 0.8$

0.5

pp \sqrt{s} = 7 TeV: direct photons

Fit dielecton mass spectrum (m_{ee} 100-400 MeV/ c^2 , $p_T > 1$ GeV/c) with

 $f(m_{ee}) = r \cdot f_{dir}(m_{ee}) + (1 - r)f_{LF}(m_{ee}) + f_{HF}(m_{ee})$

- $r = virtual direct \gamma / inclusive$
- Direct virtual photons described by Kroll-Wada (m_{ee} << p_T)

$$\frac{1}{N_{\gamma}} \frac{dN_{ee}}{dm_{ee}} = \frac{2\alpha_{e.m.}}{3\pi} \sqrt{1 - \frac{4m_e^2}{m_{ee}^2}} (1 + \frac{2m_e^2}{m_{ee}^2}) \times \frac{1}{m_{ee}}$$

 Results compatible with NLO pQCD calculations

pp \sqrt{s} = 7 TeV: pair DCA analysis

Idea: separate prompt and non-prompt contributions using pair vertex position

- Tracks from D or B decays ($c_T \sim 100-500 \text{ }\mu\text{m}$) do not point back to event vertex
- Observable: $DCA_{ee} = \sqrt{\frac{DCA_1^2 + DCA_2^2}{2}}$ (DCA_i Distance of Closest Approach of track i)
- Obtain DCAee templates from MC, normalise to cocktail and compare with data

pp \sqrt{s} = 7 TeV: DCA resolution

- DCA resolution should be smaller than observable (ct of D meson ~ 150 μ m)
- Pair DCA analysis is done for $p_T > 0.4 \text{ GeV}/c$

New developments: machine learning methods

- Electron identification: improves efficiency while keeping hadron contamination low
- Dielectron signal: suppress conversions, reduce combinatorial background
- Usage of the methods are foreseen in the dielectron analysis of pp, p-Pb and Pb-Pb Run 2 data

pp \sqrt{s} = 13 TeV: S / B and significance

Naive expectation: signal is proportional to N_{ch}, combinatorial background grows like N_{ch}^2

- → Signal / background ratio is lower for high multiplicity events
- \rightarrow Significance is comparable in background-dominated mass region

ALI-PREL-119611

A Large Ion Collider Experiment

pp \sqrt{s} = 13 TeV: MB and HM triggers

- Min. bias trigger: coincidence of V0A & V0C signals (forward rapidity)
- High mult. trigger: coincidence of V0A & V0C signals, threshold on V0M
- $\langle N_{ch}^{acc}(HM) \rangle / \langle N_{ch}^{acc}(MB) \rangle = 4.36$ (measured at $\eta \sim 0$)

ALI-PERF-118369

Pb-Pb $\sqrt{s_{NN}}$ = 2.76 TeV: virtual direct photons

Upper limit on virtual direct photons

Measure fraction of virtual photons in N =10⁴ simulated experiments

- Random sampling of data around best fit curve and moving of data coherently by fraction of their systematic uncertainties
- Upper limit (90% CL) extracted from integration of obtained r distributions

Run 2 collected data

Statistics collected in pp 2016 (13 TeV), p-Pb 2016 (5 TeV) and Pb-Pb 2015 (5 TeV)

ALICE

Direct photon results

ALICE Pb-Pb 2.76 TeV [1]

ALICE Upgrade for Run 3 (2020-2022)

Major upgrades of main tracking systems

- Completely new 7-layer ITS detector
- New TPC GEM-based readout chambers
- Higher readout rate up to 50 kHz in PbPb (x50 compared to Run 2)

Beam pipe

ALICE Upgrade for Run 3 (2020-2022)

- Dedicated low B field = 0.2 T to increase acceptance of low p_T & mass pairs
- Expected statistics: 2.5 x 10⁹ PbPb events in 4 weeks of PbPb data taking

Excess above 1 GeV is dominated by thermal QGP radiation

- T of early stages without blue shift
- 10% statistical and 10-20% systematic uncertainties in IMR