Rare B decays at BABAR

Wolfgang Gradl

on behalf of the BABAR collaboration

56th International Winter Meeting on Nuclear Physics 24th January 2018

Flavour-changing neutral currents

Quark flavour changed by interaction with W boson: elementary vertices qq'W

Standard model forbids flavour-changing neutral currents (FCNC) at tree level: no elementary vertex bsZ or $bs\gamma$ GIM mechanism provides exact cancellation

Loops can induce FCNC, but they are suppressed by the GIM mechanism amplitude \propto mass squared difference of quarks

e.g. $K^0
ightarrow \mu^+ \mu^-$

 $\mathcal{B}(K_L^0 \to \mu^+ \mu^-) = (6.84 \pm 0.11) \times 10^{-9}$

FCNC through loops

Loops can contain off-shell particles \Rightarrow sensitivity to much larger mass/energy scales

Example: $B^0 - \overline{B}^0$ oscillation proceeds mainly via loop containing *t* quark observation of $B^0 - \overline{B}^0$ oscillation at ARGUS in the late 1980's (handful of events of the type $e^+e^- \rightarrow Y(4S) \rightarrow B^0B^0$ or $\overline{B}^0\overline{B}^0$) immediately led to lower limit on $m_t > 50 \text{ GeV}/c^2$

Parameters	Comments
r>0.09(90%CL)	this experiment
x>0.44	this experiment
$B^{1/2} f_{\rm B} \approx f_{\pi} < 160 {\rm MeV}$	B meson (≈pion) decay constant
$m_{\rm b} < 5 {\rm GeV}/c^2$	b-quark mass
$\tau < 1.4 \times 10^{-12}$ s	B meson lifetime
$ V_{\rm rd} < 0.018$	Kobayashi-Maskawa matrix element
n _{OCD} < 0.86	OCD correction factor a)
$m_1 > 50 {\rm GeV}/c^2$	t quark mass

ARGUS, Phys. Lett. B 192, 245 (1987)

FCNC in the SM and beyond

Standard model contributions

Sensitive to new physics, e.g.

Rare B decays | W. Gradl | 4

Effective couplings

"Integrate out" heavy degrees of freedom (like Fermi theory of neutron β decay)

Effective Hamiltonian expressed via Operator Product Expansion (OPE) in terms of operators O_i and calculable *Wilson coefficients* C_i

$$H_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tq}^* V_{tb} \sum_i \frac{C_i}{\rho_i}(\mu) \mathcal{O}_i(\mu) + \sum_i \frac{C_i^{NP}}{\Lambda^2} \mathcal{O}_i^{NP}$$

New physics (NP) can enter via new particles in loops

- potentially modifies phase and magnitude of SM C_i
- angular distributions as function of q² sensitive to NP
- probes new couplings and NP at a scale of a few TeV

For decays $b \to s\gamma$, $b \to s\ell^+\ell^-$: relevant operators $\mathcal{O}_{7\gamma}$, $\mathcal{O}_{9,10}$

Effective couplings: $b \rightarrow s\ell^+\ell^-$

The BABAR experiment

- PEP-II: e^+e^- collider, $3.1 \times 9 \text{ GeV}^2$ $\sqrt{s} = 10.58 \text{ GeV} [Y(4S)]$
- Asymmetric beam energies c.m. lab boost $\beta \gamma = 0.56$
- Asymmetric detector
 - acceptance in c.m. $-0.9 \lesssim \cos \theta^* \lesssim 0.85$
- excellent performance
 - Good tracking, mass resolution
 - Good γ , π^0 reco.
 - Full PID for e, μ, π, Κ, p
- in operation 1999 2008 collaboration still active

▶ 426 fb⁻¹ on Y(4S)
 471 million BB pairs

Reconstructing B mesons

Blind analysis, multivariate discriminants, maximum likelihood fits

$B \rightarrow K \pi \pi \gamma$ overview

In the SM: left-handed quarks, right-handed anti-quarks (V – A structure) produce left-handed photons in $b \rightarrow s\gamma$ transition opposite helicity suppressed by $\sim m_s/m_b \approx 0.02$

Therefore, $\overline{B}^0 \to s \gamma_L$ and $B^0 \to \overline{s} \gamma_R$

Rare B decays | W. Gradl | 9

$B \rightarrow K \pi \pi \gamma$ overview

 γ_L and γ_R in principle distinguishable

 \Rightarrow no interference between final state without and with mixing

 \Rightarrow no CP violation in interference

$$\mathcal{A}_{CP}(\Delta t) = \frac{S_{f_{CP}}}{S_{f_{CP}}} \sin(\Delta m \Delta t) - C_{f_{CP}} \cos(\Delta m \Delta t)$$

SM prediction: $S_{f_{CP}\gamma} \sim 0.02$

NP models with large right-handed contributions are allowed, within branching fractions, and can lead to large CP violation

Previous results:

- $B^0 \rightarrow K_S^0 \rho^0 \gamma$ Belle Phys. Rev. Lett. **101**,251601 (2008), $B^0 \rightarrow K_S^0 \pi^0 \gamma$ *BaBa* Phys. Rev. D **78**, 071102 (2008); Belle Phys. Rev. D **74**, 111104 (2006) CPV compatible with SM; no evidence for NP
- $B^+ \rightarrow K^+ \pi^+ \pi^- \gamma$ LHCb Phys. Rev. Lett. **112**, 161801 (2014) photon polarisation non-zero (5.2 σ)

B meson decay-time distribution in presence of CP violation:

$$\propto \exp\left(\frac{|\Delta t|}{\tau_{B^0}}\right) \left[1 + q_{\text{tag}}\left\{\frac{\Delta D}{2} + D\left(\frac{S}{\sin(\Delta t\Delta m)} - \frac{C}{\cos(\Delta t\Delta m)}\right)\right\}\right] \otimes R(\Delta t)$$

$$q_{\text{tag}} = 1(-1)$$
 for $B_{\text{tag}} = B^0(\overline{B}^0)$

- $\Delta D, D$ Mistag probabilities
 - S CPV in interference (suppressed in SM: $\sim m_s/m_b$)
 - C direct CPV (0 in SM for CP-eigenstate final state)

$B^0 ightarrow {\cal K}^0_{ m S} \pi^+ \pi^- \gamma$ analysis strategy

- I. problem: background from $B \to K^{*\pm} \pi^{\mp} \gamma$ dilutes $S_{K_S \rho \gamma}$ from $B^0 \to K_S^0 \rho^0 \gamma$ need to perform full amplitude analysis to obtain dilution factor $D_{K_S \rho \gamma} \equiv S_{K_S \pi \pi \gamma} / S_{K_S \rho \gamma}$
- 2. problem: not enough $B^0 \to K^0_{\rm S} \pi^+ \pi^- \gamma$ to perform amplitude analysis
 - ▶ Perform amplitude analysis on $B^+ \to K^+ \pi^+ \pi^- \gamma$ to identify resonances and amplitudes
 - Use isospin relations to relate $B^+ \to K^+ \pi^+ \pi^- \gamma$ to $B^0 \to K^0_S \pi^+ \pi^- \gamma$ Hebinger, Kou, and Yu, LAL-15-75
 - Calculate dilution factor from these amplitudes

$$D_{K_{S}\rho\gamma} = \frac{\int \left[|\mathcal{A}_{K_{S}\rho}|^{2} - |\mathcal{A}_{K^{*+}\pi^{-}}|^{2} - |\mathcal{A}_{(K\pi)^{+}\pi^{-}}|^{2} + 2\Re(\mathcal{A}_{K_{S}\rho}^{*}\mathcal{A}_{K^{*+}\pi^{-}}) + 2\Re(\mathcal{A}_{K_{S}\rho}^{*}\mathcal{A}_{(K\pi)^{+}\pi^{-}}) \right] dm^{2}}{\int \left[|\mathcal{A}_{K_{S}\rho}|^{2} + |\mathcal{A}_{K^{*+}\pi^{-}}|^{2} + |\mathcal{A}_{(K\pi)^{+}\pi^{-}}|^{2} + 2\Re(\mathcal{A}_{K_{S}\rho}^{*}\mathcal{A}_{K^{*+}\pi^{-}}) + 2\Re(\mathcal{A}_{K_{S}\rho}^{*}\mathcal{A}_{(K\pi)^{+}\pi^{-}}) \right] dm^{2}}$$

Use full phase space to determine amplitudes Determine dilution factor in optimised region

 $0.6 < m_{\pi^+\pi^-} < 0.9$ GeV, $m_{K\pi} < 0.845$ GeV or $m_{K\pi} > 0.945$ GeV

$B^+ \rightarrow K^+ \pi^+ \pi^- \gamma$ results

Determine B^+ yield from ML fit to $m_{\rm ES}$, ΔE , and event-shape Fisher discriminant

Rare B decays | W. Gradl | 13

$B^+ ightarrow {\cal K}^+ \pi^+ \pi^- \gamma$ amplitudes

Use sPlot technique to produce background-subtracted mass spectra perform 1D fits (not enough statistics)

mKm (GeV/c2)

Mode	$\mathcal{B}(B^+ \to \text{Mode})[10^{-6}]$	Previous WA [10 ⁻⁶]
$K_1(1270)^+\gamma$	$44.1^{+6.3}_{-4.4}{}^{+3.6}_{-3.6}\pm4.6$	43 ± 13
$K_{1}(1400)^{+}\gamma$	$9.7^{+4.6}_{-2.9}{}^{+2.8}_{-2.3}\pm0.6$	< 15
$K^*(1410)^+\gamma$	$27.1^{+5.4}_{-4.8}{}^{+5.2}_{-2.6}\pm2.7$	n/a
$K_{2}^{*}(1430)^{+}\gamma$	$8.7^{+7.0}_{-5.3}{}^{+8.7}_{-10.4}\pm0.4$	14 ± 4
$K^*(1680)^+\gamma$	$66.7^{+9.3}_{-7.8}{}^{+13.3}_{-10.0}\pm5.4$	< 1900

Mode	$\mathcal{B}(B^+ \to \text{Mode})[10^{-6}]$	Previous WA [10 ⁻⁶]
$K^{*}(892)^{0}\pi^{+}\gamma$	$23.4\pm0.9^{+0.8}_{-0.7}$	206
$K^+ ho(770)^0\gamma$	$8.2\pm 0.4\pm 0.8\pm 0.02$	< 20
$(K\pi)^0_0\pi^+\gamma$ (NR)	$9.9 \pm 0.7 ^{+1.5}_{-1.9}$	< 9.2
$K_0^*(1430)^0 \pi^+ \gamma$	$1.32^{+0.09}_{-0.10}{}^{+0.20}_{-0.26}\pm0.14$	n/a
		JG U

Rare B decays | W. Gradl | 14

$B^0 ightarrow K^0_{ m S} \pi^+ \pi^- \gamma$ results

B⁰ yield and CP parameters from time-dependent ML fit

Results:

$$\begin{array}{l} \mathcal{B}(B^0 \to K^0 \pi^+ \pi^- \gamma) = (24.0 \pm 2.4^{+1.7}_{-1.8}) \times 10^{-6} \\ S_{K_S \pi^+ \pi^- \gamma} = +0.14 \pm 0.25 \pm 0.03 \qquad \mathcal{D}_{K_S \rho \gamma} = -0.78^{+0.19}_{-0.17} \\ C_{K_S \pi^+ \pi^- \gamma} = -0.39 \pm 0.20^{+0.03}_{-0.02} \qquad \mathcal{S}_{K_S \rho \gamma} = -0.18 \pm 0.32^{+0.06}_{-0.05} \end{array}$$

Consistent with Belle Phys. Rev. Lett. **101**, 251601 (2008) Several new amplitudes observed

CP asymmetries consistent with zero and the SM

Angular analysis of $B \to K^* \ell^+ \ell^-$

BABAR, Phys. Rev. D 93, 052105

 $B \to K^* \ell^+ \ell^-$ angular distribution depends on

- θ_K between K and B in K* rest frame
- θ_{ℓ} between ℓ^+ and B (ℓ^- and \overline{B}) in $\ell^+\ell^-$ rest frame
- ϕ between di-lepton and $K\pi$ planes

 $q^2 \equiv m^2(\ell^+\ell^-)$

Test operators $\mathcal{O}_{7\gamma}$, \mathcal{O}_{9V} , \mathcal{O}_{10A}

 $\begin{array}{c|c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$

Angular analysis of $B \to K^* \ell^+ \ell^-$

Extract yield with ML fit to (m_{ES} , ΔE , BDT probability)

Not enough events to perform full angular analysis: integrate over two angles to find longitudinal polarisation F_L and lepton forward-backward asymmetry A_{FB}

$$\frac{1}{\Gamma(q^2)}\frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta_K} = \frac{3}{2}F_L(q^2)\cos^2\theta_K + \frac{3}{4}(1 - F_L(q^2))\sin^2\theta_K$$
$$\frac{1}{\Gamma(q^2)}\frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta_\ell} = \frac{3}{4}F_L(q^2)\sin^2\theta_\ell + \frac{3}{8}(1 - F_L(q^2))(1 + \cos^2\theta_\ell) + \mathcal{A}_{FB}(q^2)\cos\theta_\ell$$

 $\begin{array}{ll} \mathsf{B}^+ \to \mathsf{K}^{*+}(\to \mathsf{K}^+\pi^0) \mathsf{e}^+\mathsf{e}^- & \mathsf{B}^+ \to \mathsf{K}^{*+}(\to \mathsf{K}^+\pi^0) \mu^+\mu^- \\ \mathsf{B}^+ \to \mathsf{K}^{*+}(\to \mathsf{K}^0_S\pi^+) \mathsf{e}^+\mathsf{e}^- & \mathsf{B}^+ \to \mathsf{K}^{*+}(\to \mathsf{K}^0_S\pi^+) \mu^+\mu^- \\ & \mathsf{B}^0 \to \mathsf{K}^{*0}(\to \mathsf{K}^+\pi^-) \mathsf{e}^+\mathsf{e}^- \end{array}$

and 6 bins in q^2 , excluding charmonium states J/ψ and $\psi(2S)$

New: electron mode for B^0 ; first measurement for B^+ decays

Results for bin q_0^2 : 1 < q^2 < 6 GeV²

BABAR, Phys. Rev. D 93, 052105

shaded distributions include signal and background

BABAR, Phys. Rev. D 93, 052105

F_L and \mathcal{A}_{FB} versus q^2

Observable P_2

Less susceptible to theoretical uncertainties than F_L , A_{FB} alone:

$$P_2 \equiv -\frac{2}{3} \frac{\mathcal{A}_{FB}}{1 - F_L}$$

For $1 \le q^2 \le 6 \text{GeV}^2$: $P_2^{\text{SM}} = 0.11 \pm 0.10$ Descotes-Genon *et al.*, JHEP12(2014)125

In bin q_2^2 , see discrepancy > 2σ with SM

Summary

- BABAR continues to produce measurements of $b \to s\gamma$ transitions: Time-dependent *CP* asymmetries in $B^0 \to K_S^0 \pi^+ \pi^- \gamma$ Angular asymmetries in the decays $B \to K^* \ell^+ \ell^$ first measurements in charged *B* mode
- Results (including any tensions with SM) compatible with measurements from other experiments
- Much more statistics needed to improve precision (LHCb; Belle II, see Riccardo's talk yesterday)

