



















#### How can we describe nucleons in a nucleus?







#### How can we describe nucleons in a nucleus?









How do we test our models?







#### How do we test our models? Quasi-Elastic Scattering









#### One way to test Mean-Field Model: QE spectroscopy





#### One way to test Mean-Field Model: QE spectroscopy

Spectroscopic factors extracted from A(e,e'p) measurements demonstrated 30-40% less occupancy of valence protons than expected.



What's missing? **Correlations!** 











#### **Global picture of SRC from inclusive & exclusive measurements**

9



Hen PLa





#### **Global picture of SRC from inclusive & exclusive measurements**









#### **Global picture of SRC from inclusive & exclusive measurements**











# **Short Range Correlations:**

- 2 nucleons pairs that are close together in the nucleus (wave functions overlap)
- Momentum space: pairs with high relative momentum and low c.o.m momentum (with respect to  $k_F$ )
  - 20% of nuclear wave function, np pairs dominate over pp/nn pairs





# **Short Range Correlations:**

- 2 nucleons pairs that are close together in the nucleus (wave functions overlap)
- Momentum space: pairs with high relative momentum and low c.o.m momentum (with respect to  $k_{\text{F}}$ )
  - 20% of nuclear wave function, np pairs dominate over pp/nn pairs

## WHY we (I) care:

Better understanding of the nucleon-nucleon interaction and the nucleon momentum distribution and the high-impact connections to other fields





# **Short Range Correlations:**

- 2 nucleons pairs that are close together in the nucleus (wave functions overlap)
- Momentum space: pairs with high relative momentum and low c.o.m momentum (with respect to  $k_{\mbox{\scriptsize F}}$ )
  - 20% of nuclear wave function, np pairs dominate over pp/nn pairs

# WHY we (I) care:

Better understanding of the nucleon-nucleon interaction and the nucleon momentum distribution and the high-impact connections to other fields

- SRC formation process and asymmetry dependence
- Proton dynamics in neutron rich nuclei
- Direct observation of 3N-SRC
- Mapping transition from Mean-Field to SRC (Migdal jump)







# **Short Range Correlations:**

- 2 nucleons pairs that are close together in the nucleus (wave functions overlap)
- Momentum space: pairs with high relative momentum and low c.o.m momentum (with respect to  $k_{\text{F}}$ )
  - 20% of nuclear wave function, np pairs dominate over pp/nn pairs

# WHY YOU might care:

high-impact connections to other fields





# **Short Range Correlations:**

- 2 nucleons pairs that are close together in the nucleus (wave functions overlap)
- Momentum space: pairs with high relative momentum and low c.o.m momentum (with respect to  $k_{\text{F}}$ )
  - 20% of nuclear wave function, np pairs dominate over pp/nn pairs

# WHY YOU might care:

high-impact connections to other fields

- EMC effect (future experiment @ JLab)
- Neutrino-nucleus scattering
- Neutron stars
- Nuclear symmetry energy
- Energy sharing in imbalanced Fermi systems
- Contact interaction in universal fermi systems







































#### **QE Exclusive Scattering**



















ted partner









ted partner

Knocked-out proton





ed partner

Knocked-out proton





















## **Current Limitation: Statistics**

| Experiment   | pp Pairs       | np Pairs | nn Pairs |
|--------------|----------------|----------|----------|
| E01-015/JLab | 263            | 179      |          |
| E07-006/JLab | 50             | 223      |          |
| CLAS/JLab    | ~400 / nucleus |          |          |
|              |                |          |          |
| Total        | < 2000         | < 450    | 0        |





# Motivation for SRC@JINR

### **Current Limitation: Statistics**



J.L.S. Aclander et al., Phys. Lett. B 453, 211 (1999)A. Tang et al., Phys. Rev. Lett. 90, 042301 (2003)E. Piasetzky et al., PRL 97 162504 (2006)

~30 events to 10,000 events?



# Motivation for SRC@JINR

### **Current Limitation: Statistics**



J.L.S. Aclander et al., Phys. Lett. B 453, 211 (1999)A. Tang et al., Phys. Rev. Lett. 90, 042301 (2003)E. Piasetzky et al., PRL 97 162504 (2006)

#### ~30 events to 10,000 events? **Proton Probe - Selective Attention**



# Motivation for SRC@JINR 🙀

### **Current Limitation: Statistics**





#### **Statistics AND Remnant Nucleus?!**

**Proton Probe - Selective Attention** 





#### **Statistics AND Remnant Nucleus?!**

**Proton Probe - Selective Attention** 

**Inverse Kinematics!** 



### Statistics AND Remnant Nucleus?!





## First Fully Exclusive Measurement of SRC Pairs at JINR














## **Upcoming Experiment starting Feb 15th**





## LH<sub>2</sub> target 30cm length































## **Upcoming Experiment starting Feb 15th**









## GEMs 80 x 66 cm<sup>2</sup> σ<sub>xy</sub> ~ (0.4mm,1.6mm)









## **Upcoming Experiment starting Feb 15th**







ToF mRPC 3.2 x 2.2 m<sup>2</sup> σ<sub>t</sub> ~ 80ps





## **Upcoming Experiment starting Feb 15th**







Silicon (x3)  $\sigma_{xy} = 100 \text{ microns}$   $12.5 \times 12.5 \text{ cm}^2$  $25 \times 12.5 \text{ cm}^2$ 







































































## **2N-SRC Identification**







## 2N-SRC Identification



Trigger: Incoming nucleus, 2 out-going protons at 30°







## 2N-SRC Identification





# 🔆 I'lii

## **A-2 Identification**







## **A-2 Identification**







## **NEXT MONTH: Initial Measurement**

| Parameters             | Values                         |
|------------------------|--------------------------------|
| Length of LH2 target   | 30 cm                          |
| Target Thickness       | 1.2e24 protons/cm <sup>2</sup> |
| Beam Time              | 11 days                        |
| Duty Cycle             | 20%                            |
| Flux                   | 1e5 ions/s                     |
| n Detection Efficiency | ~100%                          |
| Nuclear transparency   | 0.2                            |

Cuts

 $|s,t,u|>2\;({\rm GeV/c})^2$ 

 $P_{miss} > 0.25 \text{ GeV/c}$ 







## **NEXT MONTH: Initial Measurement**

| Reaction                                              | Events |
|-------------------------------------------------------|--------|
| ${}^{12}{}_6C + p \rightarrow {}^{10}{}_5B + pp$      | 4000   |
| ${}^{12}{}_6C + p \rightarrow {}^{10}{}_5B + pp + n$  | 350    |
| ${}^{12}{}_6C + p \rightarrow {}^{10}{}_4Be + pp$     | 200    |
| ${}^{12}{}_6C + p \rightarrow {}^{10}{}_4Be + pp + p$ | 100    |

| Reaction                   | Signal:Background |
|----------------------------|-------------------|
| p(12C,2p)N                 | 4:1               |
| $p({}^{12}C, 2p, n)N$      | 18:1              |
| $p(^{12}C, 2p, n, A - 2)N$ | 20:1              |









### Collaboration

## The World of SRC



Addition to the BM@N Physics Program: Probing Short-Range Correlations

#### **Spokespersons:**

Or Hen (MIT), Eli Piasetzky (TAU), Thomas Aumann (TUD, GSI), Mikhail Kapishin (JINR)

#### **Coordinators:**

Georgios Laskaris (MIT, TAU), Anatoly Litvinenko (JINR), Maria Patsyuk (MIT)

Special thanks to the JINR team for making our measurement possible





## Thank You!



## **Future Experiments**









## **Questions?**

#### If you don't follow anything else...

#### **Short Range Correlations:**

• 2 nucleons pairs that are close together in the nucleus (wave functions overlap)

• Momentum space: pairs with high relative momentum and low c.o.m momentum (with respect to  $k_{\text{F}}$ )

20% of nuclear wave function, np pairs dominate over pp/nn pairs

#### WHY YOU might care:

General knowledge...

- EMC effect (future experiment @ JLab)
- Neutrino-nucleus scattering
- Neutron stars
- Nuclear symmetry energy
- Energy sharing in imbalanced Fermi systems
- Contact interaction in universal fermi systems

First fully exclusive measurement at JINR to study A-2 system and 2N-SRC with higher statistics













## **BACK UP SLIDES:**

FS Kinematic Distributions Inclusive QE scattering Old diagrams + pics of hall layout Detector breakdowns Resolutions Electronics Calibrations Timeline How SRC connects to other things



## **Cuts for Background reduction**





## Final-State Angular Distributions for inverse kinematics [4GeV/c/u C beam]







## Final-State Angular Distributions for inverse kinematics [4GeV/c/u C beam]







### Final-State Angular Distributions for inverse kinematics [4GeV/c/u C beam]







## How do we study SRC pairs? Inclusive vs Exclusive









## **QE Inclusive Scattering Experimental Results**





## **QE Inclusive Scattering Experimental Results**




#### **QE Inclusive Scattering Experimental Results**





#### First Fully Exclusive Measurement of SRC Pairs at JINR





#### First Fully Exclusive Measurement of SRC Pairs at JINR







#### First Fully Exclusive Measurement of SRC Pairs at JINR







| Name | Location /<br>function | Scintillator dimensions, cm <sup>3</sup>        | PMTs                           |
|------|------------------------|-------------------------------------------------|--------------------------------|
| BC1  | Beam Telescope         | 15 x 15 x 0.3                                   | XP 2020                        |
| BC2  | то                     | 3.8 x 3.8 (actually 7.4, tilted by 45º) x 0.091 | MCP-PMT PP03656<br>(Photonics) |
| BC3  | Charge<br>separation   | 10 x 10 x 0.29                                  | XP 2020                        |
| Veto | Veto                   | 15 x 15 x 0.3 with a hole 4.5 cm<br>in diameter | XP 2020                        |

| Trigger<br>counters | Location         | Scintillator dimensions, cm <sup>3</sup>                          | PMTs           |
|---------------------|------------------|-------------------------------------------------------------------|----------------|
| X, two<br>planes    | Inside SP-57     | 30 x 15 x 1, two optically isolated halves each read out by 1 PMT | Hamamatsu 7724 |
| Y, two<br>planes    | Behind SP-<br>57 | 50 x 50 x 2, read out by 2 (4) PMTs                               | ET9954KB       |











- 8 silicon modules
- 2 square shape silicon microstrip detector
- Dimensions of each module:
  6.1 cm x 6.1 cm
- Thickness: 300 μm
- 1280 strips per silicon module

#### Overall Resolution is 100 µm













Figure 2: a) Schematic view of the first GEM half-plane with the readout strips split into zones. b) Schematic view of the GEM middle 1/4 plane with the readout strips split into zones. c) Layout of the strip readout from different zones. d) Schematic transverse structure of the triple GEM detector.





## TOF400



#### mRPC: multi-gap resistive plate chamber

















# TOF400





### **Resolution**:

(0.34mm, 6mm) 80ps

- Glass 280  $\mu m$
- Gap width 200  $\mu$ m
- Number of gaps 15
- Active area 300\*600 mm<sup>2</sup>
- Strip size 10\*600 mm<sup>2</sup>
- Strip impedance 50 Ohm
- 24 strips, 48 ch FFE.









- wire inclination angles of 0, 90, ±45°
- outer dimensions of the sensitive area of Y<sub>out</sub> ± 1.2 m, X<sub>out</sub> ± 1.2 m

DCHs

- 256 wires per coordinate plane
- 2048 wires per chamber











## Resolutions



| Detectors                        | Value    |
|----------------------------------|----------|
| Beam Momentum resolution         | 0.3%     |
| <b>Beam Angular Resolution</b>   | 0.040    |
| TOF-400 time resolution          | 80 psec  |
| Leading protons polar resolution | 0.060    |
| Leading protons azimuthal        | 0.130    |
| LAND time resolution             | 300 psec |
| LAND polar resolution            | 0.060    |
| LAND azimuthal resolution        | 0.06°    |
| Momentum resolution for A-2      | 0.6%     |
| Polar resolution for A-2         | 0.02°    |
| Azimuthal resolution for A-2     | 0.030    |





# TQDC Module



#### Specify:

Latency Search Window ADC Window

125 MS/s14 bit resolution25ps resolution







# Trigger Module











- Use a 2-5% NIP Pb target (e.g. 2.5 mm Pb target corresponds to 2.8% NIP)
- Foils @ MIT Hen Lab are 250  $\mu m$  thick
- 10 scattering centers along the 30 cm long H<sub>2</sub> target region







## **TOF** Calibration





liī



# Current Status & Timeline 🙀 💵

#### Timeline





#### Timeline

| Dates       | Events             |
|-------------|--------------------|
| Feb 6       | Accelerator Starts |
| Feb 10      | BMN Running        |
| Mar 6 - 12  | SRC Commissioning  |
| Mar 13 - 23 | SRC Running        |





#### Timeline

| Dates       | Events             |
|-------------|--------------------|
| Feb 6       | Accelerator Starts |
| Feb 10      | BMN Running        |
| Mar 6 - 12  | SRC Commissioning  |
| Mar 13 - 23 | SRC Running        |

Electronics setup & testing Quality control software Prelim online analysis







### Assuming scattering off 2N-SRC pairs:

- (e,e'p) is sensitive to np and pp pairs
- (e,e'pp) is sensitive to pp pairs alone

=> (e,e'pp)/(e,e'p) ratio is sensitive to the np/pp ratio

$$A(e,e'pp) \propto \# pp_{A} \cdot 2\sigma_{p}$$

$$A(e,e'p) \propto \# pp_{A} \cdot 2\sigma_{p} + \# pn_{A} \cdot \sigma_{p}$$

$$= \# pp_{A} \cdot 2\sigma_{p} \left[ 1 + \frac{1}{2} \frac{\# pn_{A}}{\# pp_{A}} \right]$$

$$\Rightarrow \frac{\# np_{A}}{\# pp_{A}} = 2 \cdot \left[ \frac{A(e,e'p)}{A(e,e'pp)} - 1 \right]$$
Assuming No FSI





### Assuming scattering off 2N-SRC pairs:

- (e,e'p) is sensitive to np and pp pairs
- (e,e'pp) is sensitive to pp pairs alone

=> (e,e'pp)/(e,e'p) ratio is sensitive to the np/pp ratio

$$\begin{aligned} A(e,e'pp) &\propto \# pp_A \cdot 2\sigma_p \\ A(e,e'p) &\propto \# pp_A \cdot 2\sigma_p + \# pn_A \cdot \sigma_p \\ &= \# pp_A \cdot 2\sigma_p \left[ 1 + \frac{1}{2} \frac{\# pn_A}{\# pp_A} \right] \\ \Rightarrow \frac{\# np_A}{\# pp_A} &= 2 \cdot \left[ \frac{A(e,e'p)}{A(e,e'pp)} - 1 \right] \end{aligned}$$

Corrected for Final-State Interactions (FSI) on the outgoing nucleon

(Attenuation and Single-Charge Exchange.)



### **Kinetic Energy Sharing**





### **Calculations** *Predict* Correlations wins





VMC Calculations: R. Wiringa et al., Phys. Rev. C 89, 024305 (2013)



A concept developed for a <u>dilute</u> two-component Fermi systems with a short-range interaction.

> dilute  $\equiv r_{eff} << a, d$ Distance between

> > fermions

 $n(k) = C / k^4 \text{ for } k > k_F$ 

C is the contact term

Tan's Contact term:

1. Measures the number of SRC different fermion pairs.

These systems have a high-momentum tail:

2. Determines the thermodynamics through a series of universal relations.

S. Tan Annals of Physics 323 (2008) 2952, ibid 2971, ibid 2987









# Is there 1/k<sup>4</sup> scaling regardless? <u>YES!</u>



# **Comparing with atomic systems**

**Equal contacts** for equal interactions strength!



| Nucleus           | $\frac{C}{k_F A}$ |
|-------------------|-------------------|
| $^{12}C$          | $3.04\pm0.49$     |
| <sup>56</sup> Fe  | $3.33\pm0.54$     |
| <sup>197</sup> Au | $3.30\pm0.53$     |

O. Hen et al. Phys. Rev. C **92**, 045205 (2015) Stewart et al. Phys. Rev. Lett. **104**, 235301 (2010) Kuhnle et al. Phys. Rev. Lett. **105**, 070402 (2010)  $\frac{C}{k_F \cdot A} = a_2(A) \cdot R_d$ 

## **Nuclear Symmetry Energy**

Energy of asymmetric nuclear matter:  $E(\rho_n, \rho_p) = E_0(\rho_n = \rho_p) \quad \underbrace{E_{sym}(\rho) \left(\frac{\rho_n - \rho_p}{\rho}\right)^2 + O(\delta^4)}_{\uparrow}$ symmetry energy  $E_{svm}(\rho) \approx E(\rho)_{PNM} - E(\rho)_{SNM}$ 

### Relates to the energy change when replacing n with p

- neutron stars
- heavy-ion collisions •
- equation-of-state of
   r-process nucleosynthesis
  - core-collapse supernovae
  - more...



## Correlated Fermi-Gas Model (CFG)



#### [Fermi-Gas with an SRC tail]



C/k<sup>4</sup> is a good parameterization of the high-momentum tail:



O. Hen et al., Phys. Rev. C 91, 025803 (2015).

# Next Step – Incorporating CFG model into:

- neutron stars equation-of-state fits
- Transport models for HI collision analysis