

High p_T particle spectra **from the NA61/SHINE experiment**

Krisztina Márton for the NA61/SHINE Collaboration

Wigner RCP, Budapest, Hungary

56th International Winter Meeting on Nuclear Physics, Bormio, Italy

22-26. 01. 2018

NA61/SHINE at CERN SPS

Physics program of NA61/SHINE

Main goals of the experiment:

- Search for the critical point of strongly interacting matter
- Detailed study of the onset of deconfinement
- Study high transverse momentum phenomena in p+p and p+A collisions
- Reference measurements for neutrino and cosmic ray experiments

Why should we study high p_T particles?

- p+p and p+A collisions are important reference systems for A+A interactions
- BNL-RHIC: suppression of high p_T hadrons was observed in central A+A collisions relative to p+p → sign of parton energy loss in the formed hot and dense strongly interacting matter

How the nuclear modification factor looks like at CERN SPS energies?

- p_T spectra was measured by NA49
 - up to 4.5 GeV/c in central Pb+Pb
 - up to 2.5 GeV/c in p+p and in p+Pb
- \rightarrow What will happen above 2 GeV/c?

Physical Review C77 (2008) 034906)

NA61/SHINE detector system

- Large acceptance hadron spectrometer with excellent capabilities for momentum, charge and mass measurements
- Main tracking devices: 4 large volume Time Projection Chambers

Events in NA61/SHINE

- Particles are detected in the TPCs

 → a track can have measured
 clusters in VTPC1, in VTPC2 and
 in MTPC
- Number of potential clusters is calculated for each track → how many clusters should belong to an ideally detected particle with the given momentum
- The Number of Clusters / Number of Potential Clusters ratio should be close to 1 for a well detected and well fitted track

Strategy for high p_T track selection

- By using the nClusters/nPotClusters ratio, one can define "good" and "bad" tracks
- Bad tracks: nClusters/nPotClusters < 0.6

or 1.2 < nClusters/nPotClusters

Track selecting method:

- Study the 3D phase space (p_T, Φ, rapidity) distributions of "bad" and "good" tracks
- Find a phase-space region where the fraction of the wrongly fitted tracks is low
- Apply a 3 dimensional phase space cut to select this clean momentum space region

$\Phi - p_T - y$ phase-space

For a track with 4-momentum (E,p_x,p_y,p_z) and charge $q=\pm 1$:

- Φ: charge-reflected azimuthal angle
- p_T: transverse momentum
- Rapidity (y)
 - to calculate rapidity, the mass of the particle is needed
 - unidentified hadrons → different particle mass hypotheses were used (pion, proton, kaon)

Phase-space cut:

- for each rapidity bin, the Φ -p_T 2D distributions were studied
- the selection of the accepted region was guided by the number of potential clusters and by the good/bad track ratios

$$\Phi = \arctan\left(\frac{p_y}{q \cdot p_x}\right)$$

$$p_T = \sqrt{p_x^2 + p_y^2}$$

$$y = \frac{1}{2} \ln\left(\frac{E + p_z}{E - p_z}\right)$$

Phase-space distribution of good and bad tracks

- Rapidity was calculated with pion mass assumption
- The high p_T region is dominated by bad tracks

Rejection of discontinuous tracks

- The high p_T region is populated by misfitted tracks
- These fake tracks have:
 - 0 clusters in a given TPC but more than 0 potential clusters

or

- more than 0 clusters in a given TPC but 0 potential clusters
- *Example*: discontinuous tracks in VTPC1
 - Φ -p_T distribution for mid-rapidity tracks
 - *Top plot*: nVTPC1Clusters=0 and nVTPC1PotClusters>0
 - Bottom plot: nVTPC1Clusters=0 and 0<nVTPC1PotClusters<10
 - Rejecting tracks with nVTPC1PotClus>10 if nVTPC1Clus=0 cleans the phase-space around Φ≈0

Phase-space distributions after the rejection of discontinuous tracks

- Rapidity was calculated with pion mass assumption
- After the rejection of discontinuous tracks, the bad tracks disappear from the high p_T region around Φ≈0, the rest can be removed by the 3 dimensional phase-space cut

Acceptance map with pion mass assumption

p_T distribution of charged particles in p+p collisions

Particles with negative charge

Particles with positive charge

- p_T distributions of unidentified charged hadrons from the accepted phase-space
- The rejection of the discontinuous tracks removes the background of fake tracks at high p_T

p_T distribution of charged particles in p+Pb collisions

Particles with negative charge

Particles with positive charge

- p_T distributions of unidentified charged hadrons from the accepted phase-space
- The rejection of the discontinuous tracks removes the background of fake tracks at high p_T

Acceptance correction

- The accepted Φ region is $p_{\rm T}$ and rapidity dependent
- Extrapolation needed to the full -180°< Φ < 180° coverage
- In p+p collisions: flat rapidity distribution can be assumed around midrapidity (-0.3 \leq y < 0.7)
- In p+Pb collisions: rapidity spectra is not symmetric, correction for the ydependence has to be done
- Acceptance correction factor:

C_{accept}=

rapidity bins

Acceptance corrected spectra in p+p and p+Pb collisions

Particles with negative charge

Particles with positive charge

Spectra in p+p collisions in NA61

Particles with negative charge

Comparison of published NA61 results on particle spectra in p+p collisions (only statistical uncertainties are shown on the plots)

1) Measurement of negatively charged pion spectra in inelastic p+p interactions at p_{lab} = 20, 31, 40, 80 and 158 GeV/c (Eur. Phys. J. C 74 (2014) 2794)

Spectra in p+p collisions in NA61

Particles with negative charge

Particles with positive charge

Comparison of published NA61 results on particle spectra in p+p collisions (only statistical uncertainties are shown on the plots)

- 1) Measurement of negatively charged pion spectra in inelastic p+p interactions at p_{lab} = 20, 31, 40, 80 and 158 GeV/c (Eur. Phys. J. C 74 (2014) 2794)
- Measurements of π[±], K[±], p and p-bar spectra in proton-proton interactions at 20, 31, 40, 80 and 158 GeV/c with the NA61/SHINE spectrometer at the CERN SPS (Eur. Phys. J. C 77 (2017) 671)

Spectra in p+p collisions in NA61

Particles with negative charge

Particles with positive charge

Comparison of published NA61 results on particle spectra in p+p collisions (only statistical uncertainties are shown on the plots)

- 1) Measurement of negatively charged pion spectra in inelastic p+p interactions at p_{lab} = 20, 31, 40, 80 and 158 GeV/c (Eur. Phys. J. C 74 (2014) 2794)
- Measurements of π[±], K[±], p and p-bar spectra in proton-proton interactions at 20, 31, 40, 80 and 158 GeV/c with the NA61/SHINE spectrometer at the CERN SPS (Eur. Phys. J. C 77 (2017) 671)

Summary and outlook

- High statistics p+p and p+Pb data was taken for the study of high transverse momentum phenomena
- The contribution of the misfitted tracks in the high p_T region is significant
 → a special track selecting method is needed to remove fake tracks
- With this method, particle production can be studied up-to $p_T \sim 4 \text{ GeV/c}$

Plans for the close future:

 After particle identification, the comparison to Pb+Pb data and the study of the nuclear modification factor will be possible in the high p_T region

Thank You for Your Attention!

Backup slides

Critical point and the onset of deconfinement

Onset of deconfinement:

- Kink: total pion multiplicity divided by the number of inelastically interacting nucleons as a function of Fermi energy
- Horn: ratio of multiplicity of positively charged kaons and pions as a function of energy in the center of mass frame
- Step: inverse slope parameter of the transverse mass spectrum of positively charged kaons

Reference for neutrino and cosmic ray experiments

Neutrino experiments

- T2K (Japan): neutrino beams form JPARC to the Super-Kamiokande to study neutrino oscillation → initial neutrino fluxes are important
- NA61 measures the productions of charged pions and kaons at p_{beam} = 31 GeV/c in interactions of protons with a 2cm graphite target and with a 90cm thick T2K replica (carbon) target

Cosmic ray experiments

- Pierre Auger Observatory: detects cosmic rays by measuring particles from atmospheric showers reaching detectors on the ground
- NA61 measures π⁻+C interactions at 158 GeV/c and 350 GeV/c to reduce systematic uncertainties in simulations of the showers used to reconstruct properties of the initial cosmic ray particles

Collected data in p+p and p+Pb @ 158 GeV/c

Target	Year	Number of events (Target In)	Number of events (Target out)
LHT	2009	3.55M	0.43M
	2010	47.3M	4.20M
	2011	13.06M	1.18M
Pb (0.5 mm)	2012, July	2.82M	0.27M
Pb (1 mm)	2012, July	1.31M	0.14M
	2012, Sept	9.40M	0.93M
	2014	18.94M	1.91M

Properties of accepted tracks

Impact parameter: distance of the extrapolated track from the main vertex position in horizontal (bx) and vertical (by) plane

- *Top plots*: impact parameter distributions of all accepted tracks; *Bottom plots*: p_T>2GeV/c •
- *Blue lines:* all tracks; *Red lines:* after rejecting the discontinuous tracks •
- The rejection of the discontinuous tracks decreases/removes the background with high impact • parameter