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The Compressed Baryonic Matter Program at FAIR
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The CBM strategy

o 105 - 107 Au+Au reactions/sec
o determination of displaced

vertices (σ » 50 µm)
o identification of leptons 

and hadrons 
o fast and radiation hard 

detectors and FEE
o free-streaming 

readout electronics 
o high speed 

data acquisition 
and 
online event selection 

o 4-D event 
reconstruction 



MAPS BASED MVD
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The Micro Vertex Detector
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Vacuum

Beam

MIMOSIS Overview

• Pixel dimensions
26.88 µm x 30.24 µm

• In-pixel discrimination

• Binary charge encoding

• Data driven read-out

• MIMOSIS development plan:
• MIMOSIS-0: portion of pixel array with 2 diff. pixel designs ! submitted in May/’17

• MIMOSIS-1: 1st prototype of complete sensor, to be submitted in " Q2/’18

• MIMOSIS-2: 2nd prototype of complete sensor, to be submitted in " Q2/’19

• MIMOSIS-3: final sensor pre-production, to be submitted early in 2020
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Commercial CMOS process
(180 nm TOWER-JAZZ)

Thinned down to about 50 !".

Integrated on CVD 
diamond and TPG.

Lateral heat evacuation 
and stability

Placed inside vacuum 

Monolithic Active Pixel Sensor



MIMOSIS Principle of Operation
CMOS Pixel Sensors (CPS): Main Features

• CPS fabricated via industrial processes used for ASIC production
◦ Thin sensitive volume (e.g. 20 - 40 µm)

◦ Full signal processing micro-circuitry
integrated on chip (low noise !)

! Very modest material budget: ∼ 0.05 % X0

• CPS provide O(µm) spatial resolution
◦ Small pixels: typically 20-30 µm x 20-30 µm

◦ Charge sharing between neighbouring pixels
! binary charge encoding often sufficient

• Read-out speed & radiation tolerance
◦ Usually the main R&D drivers

◦ In conflict with small pixels, low power, thin sensitive volume, etc.

• CPS used successfuly in STAR-RHIC/BNL (2014-16),
presently produced for ALICE-ITS&MFT (30,000 sensors)
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o Pixel dimension: 26.88 !" x 30.24 !"
o Full signal processing micro-circuitry 

integrated on chip (low noise !)
o Verymodestmaterialbudget:∼0.05%X0
o Binary charge encoding often sufficient for 

O(!") position resolution
o Data driven read-out (320 Mbit/s) 

Overall Sensor Organisation

Includes full chain upstream
from Cluster Finding circuitry
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Applications of MAPS
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CBM-MVD Sensor Requirements

ALPIDE
(demonstrated)

MIMOSIS
(MVD design goal)

Factor

Ion. Rad. Tolerance 0.3 Mrad > 3 Mrad 10

Non. Io. Tolerance 1013 neq/cm² > 3x1013 neq/cm² 3

Heavy ion tolerance N/A 1 kHz / cm² --

Time resolution ~10 µs 5 µs 2

Data rate (internal) ~0.8 Gbps 20 Gbps 25

Data rate (external) 0.8 Gbps 2.5 Gbps 3

Data reduction Trigger Elastic buffer --

GBTx compatible No Yes --



INTEGRATION



Detector Configuration
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Pointing: Geometry ↔ Multiple Scattering

MS dominates GEO dominates
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New geometry, new tools

Station 0

Station 1

Station 2

Station 3

       5   10    15   20 cm        5   10    15   20 cm

2017 (v17x)

- CAD2Root no longer supported

- Use Geometry scripting with Root 

TGeoManager

2015 (v15a)

- Based on CAD model

- Use CAD2Root 

Converter from Panda

Target

Developed new tools to create 

the MVD Geometry

=> Test needed.

Test scripting against CAD2Root.

Expect no difference.

Approximate formular for the
two nearest stations



Prototyping (double-sided integration)
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o Lateral heat evacuation on thin sheets to heat 
sink

o Double sided integration to avoid inactive 
region

o Signal transport through ultra-thin flex prints



Cooling Performance

Vacuum vessel

IR picture

Heat-up curve

o Setup: MVD geometry & thermal 
heaters, vacuum

o IR: Thermal relaxation times & 
temperature differences

o 280 W total heat dissipation

Christian Müntz (Goethe-Univ. Frankfurt) - The CBM MVD - CBM Group Seminar 9-2016 19

Cooling: Chiller- Conventional Solution?

&

?

CO2

We have we are designing we keep in mind…

Σ 279 W



RADIATION HARDNESS
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Occupancy
Hit Distribution, First Station

At peak intensity (AuAu 100 kHz + beam fluctuations):
worst sensor has more than 5 GBit/s for short time

mostly concentrated in one half of the sensor

1230 pixel/!!"

Two running scenarios. Substantial load due to #-electrons in case of Au+Au



CBM
Requirements

Established knowledge on radiation tolerance 2006
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CBM
Requirements
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Established knowledge on radiation tolerance 2013

High resistivity
epitaxial layer



CBM
Requirements

Established knowledge on radiation tolerance 2015
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CBM
Req.

Spatial resolution [µm] 5 - 10

Material budget [X0] < 0,05%

Readout speed [kfps] > 30

Non-Ionizing rad. hardness[neq/cm²] >3*1013

Ionizing radiation hardness [krad] > 3 000

Operation in vacuum & magnetic field

High-res & 
smaller feature
size



Apply voltage to the collecting diode
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Charge collected (ADU)

 5 V
 10 V
 20 V
 30 V
 40 V

Seed CCE, Fe55, Pipper-2, P1, 1013 n
eq

/cm2, 22x22µm², t
read

 = 12.8 µs, T = -60° C

Sensor seems fully depleted after 5-10 V.
No charge sharing 
=> Need ~17µm x 17µm pixel pitch to obtain CBM resolution. 

Note: A sensor irradiated to 
10#$	&'(/*+² is considered as:
• Obviously destroyed (2003)
• Worth testing (2007)
• Working reasonably (2010)
• “Mostly not irradiated” (2017)

Reference chip: 10#$	&'(/*+²



PERFORMANCE 



Alternative Ξ" Reconstruction

26 September 2017 Maksym Zyzak, 30th CBM Collaboration Meeting, Wuhan /16 

Reconstruction of Ξ- efficiency corrected spectra
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• Results in the midrapidity regions with high statistics are comparable. 
• Two independent methods provide a powerful tool for systematics study.
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26 September 2017 Maksym Zyzak, 30th CBM Collaboration Meeting, Wuhan /16 

Reconstruction of Ξ- efficiency corrected spectra
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• Results in the midrapidity regions with high statistics are comparable. 
• Two independent methods provide a powerful tool for systematics study.
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Ξ" → Λ + &" → ' + &" + &" Ξ" → Λ()**)+, + &"
26 September 2017 Maksym Zyzak, 30th CBM Collaboration Meeting, Wuhan /16 

Missing mass method
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Find tracks of Σ and its daughter 
in STS and MVD

Reconstruct a neutral daughter from 
the mother and the charged daughter

Reconstruct Σ mass spectrum from the 
charged and obtained neutral daughters

• Σ+ and Σ− have only channels with at least one neutral daughter. 
Σ+ → pπ0 Σ̅+ → p̅π0 BR = 51.6% 
Σ+ → nπ+ Σ̅+ → n̅π- BR = 48.3% 
Σ- → nπ- Σ̅- → n̅π- BR = 99.8% 

• A lifetime is sufficient to be registered by the tracking system: cτ = 2.4 cm for Σ+ and 

cτ = 4.4 cm for Σ−. 
• Can not to be identified by the PID detectors.  
• Identification is possible by the decay topology:
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Σ+ and Σ- physics: completes the picture of strangeness production: abundant particles, 
carry out large fraction of strange quarks. 
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