

THE MICRO VERTEX DETECTOR OF CBM

Joachim Stroth Goethe University Frankfurt / GSI 56th Winter Meeting on Nuclear Physics, Bormio, January 23rd, 2018

THE CBM EXPERIMENT

The Compressed Baryonic Matter Program at FAIR

The CBM strategy

- 10⁵ 10⁷ Au + Au, reactions/sec
- determination of displaced vertices ($\sigma \approx 50 \ \mu m$)
- identification of leptons and hadrons
- fast and radiation hard detectors and FEE
- free-streaming readout electronics
- high speed data acquisition and online event selection
- 4-D event reconstruction

MAPS BASED MVD

The Micro Vertex Detector

Monolithic Active Pixel Sensor

~30.97 mm

Commercial CMOS process (180 nm TOWER-JAZZ)

Thinned down to about 50 μm .

Integrated on CVD diamond and TPG.

Lateral heat evacuation and stability

Placed inside vacuum

MIMOSIS Principle of Operation

- $_{\odot}$ Pixel dimension: 26.88 μm x 30.24 μm
- Full signal processing micro-circuitry integrated on chip (low noise !)
- Verymodestmaterialbudget:~0.05%X0
- Binary charge encoding often sufficient for O(μm) position resolution
- Data driven read-out (320 Mbit/s)

Applications of MAPS

CBM-MVD Sensor Requirements

	ALPIDE (demonstrated)	MIMOSIS (MVD design goal)	Factor
Ion. Rad. Tolerance	0.3 Mrad	> 3 Mrad	10
Non. Io. Tolerance	$10^{13} n_{eq}/cm^2$	> 3x10 ¹³ n _{eq} /cm ²	3
Heavy ion tolerance	N/A	1 kHz / cm ²	
Time resolution	~10 µs	5 µs	2
Data rate (internal)	~0.8 Gbps	20 Gbps	25
Data rate (external)	0.8 Gbps	2.5 Gbps	3
Data reduction	Trigger	Elastic buffer	
GBTx compatible	No	Yes	

INTEGRATION

Detector Configuration

Prototyping (double-sided integration)

- Lateral heat evacuation on thin sheets to heat sink
- Double sided integration to avoid inactive region
- o Signal transport through ultra-thin flex prints

Cooling Performance

- Setup: MVD geometry & thermal heaters, vacuum
- IR: Thermal relaxation times & temperature differences
- 280 W total heat dissipation

RADIATION HARDNESS

Occupancy

Two running scenarios. Substantial load due to δ -electrons in case of Au+Au

Established knowledge on radiation tolerance 2006

Established knowledge on radiation tolerance 2013

High resistivity epitaxial layer

GOETHE Established knowledge on radiation tolerance 2015 **−■−** AMS-0.35µm (10Ωcm) **10**¹⁵ - AMS-0.35μm (~1kΩcm) TOWER-0.18µm (>1kΩcm) CBM Radiation hardness [n_{eq}/cm²] Requirements High-res & MMOSA-18AHR (207, 10¹⁴ smaller feature size T«0°C 10¹³ CBM Req. MIMOSA-18 Spatial resolution [µm] 5 - 10 MIMOSA-29 (2013) Material budget [X₀] < 0.05% 0¹² MIMOSA-15 (2006) Readout speed [kfps] > 30 MIMOSA-9 >3*1013 Non-Ionizing rad. hardness[neg/cm²] Ionizing radiation hardness [krad] > 3 000 **MIMOSA-9** Operation in vacuum & magnetic field **10**¹¹ 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 0 5 Pitch_{eff} [µm]

Apply voltage to the collecting diode

Sensor seems fully depleted after 5-10 V. No charge sharing => Need ~17µm x 17µm pixel pitch to obtain CBM resolution.

PERFORMANCE

Alternative Ξ^- Reconstruction

conventional

10²

10²

Thank You for Your Attention

&

and Marc Winter's team from

