Overview of BESIII Experiment

Xiaoyan SHEN

(On behalf of BESIII Collaboration)

Institute of High Energy Physics, China

The 56th International Winter Meeting on Nuclear Physics Jan. 22-26, 2018, Bormio, Italy

Outline

- Introduction
- Status of BESIII
- Recent highlights of BESIII
- Upgrade plan
- Summary

Beijing Electron Positron Collider (BEPC)

beam energy: 1.0 – 2.3 GeV

BESIII

detector

τ-charm Physics

2004: started BEPCII upgrade, BESIII construction 2009 - now: BESIII physics run

• 1989-2004 (BEPC):

L_{peak}=1.0x10³¹ /cm²s

• 2009-now (BEPCII):

 $L_{peak} = 1.0 \text{ x} 10^{33} / \text{cm}^2 (4/5/2016)$

LINAC

BESIII Detector Performance

	MDC	MDC	EMC		TOF
Exps.	Spatial resolution	dE/dx resolution	Energy resolution	Exps.	Time resolution
CLEOc	110 μm	5%	2.2-2.4 %		100
Dahar	125	70/	2 67 0/	CDFII	100 ps
Babar	125 μm	/ %	2.07 %	Belle	90 ps
Belle	130 μm	5.6%	2.2 %		
DECIU	•			BESIII	68 ps (BTOF)
RF2III	115 μm	<5% (Bhabha)	2.4%		60 ps (ETOF)

MUC: Efficiency ~ 96% BG level: < 0.04 Hz/cm²(B-MUC), < 0.1 Hz/cm²(E-MUC)

Data/Monte-Carlo Consistency

- For tracking efficiency data/MC difference < 1%
- For photon detection efficiency data/MC difference < 1%

 For particle identification efficiency, data/MC difference ~1% (TOF+ dE/dx) when p<1.2 GeV

K/π PID efficiency of data/MC (dE/dx+TOF)

Kaon

Pion

Physics at τ - charm Energy Region

- Rich of resonances: charmonia, charmed mesons, charmed baryons
- Threshold characteristics (pairs of τ, D, D_s, ...) -- low BG at threshold, high X-section -- indirect probe of NP
- Transition between pQCD and non-pQCD
- Energy location of the new forms of hadrons

New forms of hadrons

Conventional hadrons consist of 2 or 3 quarks :

- QCD predicts the new forms of hadrons:
 - Multi-quark states : Number of quarks >= 4

None of the new forms of hadrons is settled !

Charmonium spectroscopy

 Charmonium states below open charm threshold are all observed

Above open charm threshold:

- many expected states not observed
- many unexpected observed

Z(4430) Z(4250) Z(4050) Z(3900) X(3872) XYZ(3940)

X(3 X(4 72) Y(4 940) Y(4 Y(4 Y(4 X(4

X(3915) X(4160) Y(4008) Y(4140) Y(4260) Y(4360) X(4350) Y(4660)

Charmonium decays provide ideal hunting ground for light glueballs and hybrids

 $\Gamma(J/\psi \to \gamma G) \sim O(\alpha \alpha_s^2), \Gamma(J/\psi \to \gamma H) \sim O(\alpha \alpha_s^3),$ $\Gamma(J/\psi \to \gamma M) \sim O(\alpha \alpha_s^4), \Gamma(J/\psi \to \gamma F) \sim O(\alpha \alpha_s^4)$

- "Gluon-rich" process
- Clean high statistics data samples from e⁺e⁻ annihilation
- I(J^{PC}) filter in strong decays of charmonium

Precision measurement of CKM elements -- Test EW theory

CKM matrix elements are fundamental SM parameters that describe the mixing of quark fields due to weak interaction.

Precision measurement of CKM matrix elements -- a precise test of SM model New physics beyond SM?

12

Λ_{c} measurement at BESIII

 Λ_c^+ : a heavy quark (c) with a unexcited spin-zero diquark (u-d)

 $\frac{\text{Charmed meson}}{m_d << m_c \rightarrow \text{quark} + \text{heavy quark}}$ (q) (Q)

u s d

Strange baryons (Λ [uds]) m_u, m_d ≈ m_s → (qqq) uniform

 $\begin{array}{l} \underline{\textbf{Charmed baryon}} \quad (\Lambda_c[udc]) \\ m_u, m_d << m_c \rightarrow \underline{\textbf{diquark + quark}} \\ (qq) \qquad (Q) \end{array}$

 Λ_c^+ may provide complementary powerful test on internal dynamics to charmed meson.

- The lightest charmed baryon
- **D** Most of the charmed baryons will eventually decay to Λ_c^+

 $\square B(\Lambda_c^+ \to pK^-\pi^+): \text{ dominant error for } V_{ub} \text{ via b-baryon decay}$

Nucleon Form Factor

- Fundamental properties of the nucleon
 - Connected to charge, magnetization distribution
 - Crucial testing ground for models of the nucleon internal structure
 - Necessary input for experiments probing nuclear structure, or trying to understand modification of nucleon structure in nuclear medium
- Can be measured from space-like processes (eN) (precision 1%) or time-like process (e⁺e⁻ annihilation) (precision 10%-30%)

Space-like: FF real

Status of BESIII

BESIII Collaboration

Political Map of the World, June 1999

Univ. of Hawaii Carnegie Mellon Univ. Univ. of Minnesota Univ. of Indiana

Mongolia (1)

Institute of Physics and Technology India (1)

Indian Institute of Technology

Pakistan (2)

BRAZII

Univ. of Punjab COMSAT CIIT

~ 450 members from 64 institutions in 14 countries

Europe (16)

Germany: Univ. of Bochum, Univ. of Giessen, GSI Univ. of Johannes Gutenberg Helmholtz Ins. In Mainz, Univ. of Munster Russia: JINR Dubna; BINP Novosibirsk Italy: Univ. of Torino, Frascati Lab, Ferrara Univ. Netherland: KVI-CART/Univ. of Groningen Sweden: Uppsala Univ. Turkey: Turkey Accelerator Center UK: Oxford Univ., Univ. of Manchester

Korea (1) Seoul Nat. Univ.

> Japan (1) Tokyo Univ.

China(37)

IHEP, CCAST, UCAS, Shandong Univ., Univ. of Sci. and Tech. of China Zhejiang Univ., Huangshan Coll., Shanghai Jiaotong Univ. Huazhong Normal Univ., Wuhan Univ., Xingyang Normal Univ. Zhengzhou Univ., Henan Normal Univ., Hunan Normal Univ. Peking Univ., Tsinghua Univ. , *Beijing Inst. of Petro-chemical Tech.* Zhongshan Univ., Nankai Univ., Beihang Univ. Shanxi Univ., Sichuan Univ., Univ. of South China Hunan Univ., Liaoning Univ., Univ. of Sci. and Tech. Liaoning Nanjing Univ., Nanjing Normal Univ., Southeast Univ. Guangxi Normal Univ., Guangxi Univ.

Lanzhou Univ., Henan Sci. and Tech. Univ. Jinan Univ., Fudan Univ.

Recent selected BESIII highlights

- Hadron spectroscopy
 - XYZ
 - Light hadron spectroscopy
- $\Lambda_{\rm c}$ absolute branching fractions
- Ds decay constant

Y(4260)

Y(4260) was first observed by BaBar

S-wave states: J/ ψ , ψ ', ψ (4040), ψ (4415) P-wave states: ψ (3770), ψ (4160).

Overpopulation of 1⁻⁻ state. 5) No place for Y(4260) in QM spectrum

Y(4260) is confirmed by Belle, CLEOIII and BESIII

 $e^+e^- \rightarrow \gamma_{\rm ISR} \pi^+\pi^- J/\psi (J/\psi \rightarrow e^+e^- \text{ or } \mu^+\mu^-)$

BESIII Y(4260): $e^+e^- \rightarrow \pi^+\pi^- J/\psi$

525/pb @4.26 GeV

PRL110, 252001 (2013)

- Select 4 charged tracks and reconstruct J/ψ with lepton pair.
- Very clean sample, very high efficiency (~45%).
- $\sigma(e^+e^- \rightarrow \pi^+\pi^- J/\psi)$ = (62.9±1.9±3.7) pb

$\mathbf{H}^{+}\mathbf{S}\mathbf{I} \qquad \mathbf{Y}(4260): \mathbf{e}^{+}\mathbf{e}^{-} \rightarrow \pi^{+}\pi^{-}\mathbf{h}_{c}(\mathbf{1P})$

- 827 pb⁻¹ at Ecm=4.26 GeV; 544 pb⁻¹ at Ecm=4.36 GeV; ...
- $h_c \rightarrow \gamma \eta_c, \eta_c \rightarrow hadrons [16 exclusive decay modes]$ > $p p, \pi^+\pi^-K^+K^-, \pi^+\pi^-p p, 2(K^+K^-), 2(\pi^+\pi^-), 3(\pi^+\pi^-)$ > $2(\pi^+\pi^-)K^+K^-, K_s^0K^+\pi^-+c.c., K_s^0K^+\pi^-\pi^+\pi^-+c.c., K^+K^-\pi^0$ > $p p\pi^0, K^+K^-\eta, \pi^+\pi^-\eta, \pi^+\pi^-\pi^0\pi^0, 2(\pi^+\pi^-)\eta, 2(\pi^+\pi^-\pi^0)$

BESIII: PRL 111, 242001 (2013)

Cross section measurement in different processes at BESIII

Cross section measurement of $e^+e^- \rightarrow \omega \chi_{cl}$

PRL 114, 092003 (2015)

- Only $\omega \chi_{c0}$ has significant signal
- The cross section is fitted with coherent sum of a BW and a phase space term

 $M = 4230 \pm 8 \pm 6 \text{ MeV}$, $\Gamma = 38 \pm 12 \pm 2 \text{ MeV}$

The mass and width are compatible with the Y observed in $\pi^+\pi^-J/\psi$ and $e^+e^- \rightarrow \pi^+\pi^-h_c$

Cross section measurement of $e^+e^- \rightarrow \pi^+\pi^- J/\psi$

Coherent sum of two BW-like structures + one incoherent ψ(3770)
 M = (4222.0±3.1±1.4) MeV, Γ = (44.1±4.3±2.0) MeV
 Lower and narrower than previous Y(4260) PDG values

>M = (4320.0±10.4±7) MeV, Γ = (101.4±25±10) MeV

a little bit lower than Y(4360) PDG value

□Compared with one BW fit, the sig. of the second BW is 7.6 σ □Y(4260) + Y(4360) ? The first observation of Y(4360)→ $\pi^+\pi^-J/\psi$?²⁶

Cross section measurement of $e^+e^- \rightarrow \pi^+\pi^-\psi'$

Phys. Rev. D 96, 032004 (2017)

- Solid curve: binned χ² fit with 3 coherent BWs -- Y(4220),
 Y(4360) and Y(4660)); dashed curve: 2 coherent BWs.
- □ A clear bump around Y(4360), consistent with the results from Belle and BaBar, but with much improved precision

BESI

- **□**Fitted with coherent sum of two BW-like structures
 - > M₁=4218.4^{+5.5}_{-4.5}±0.9 MeV/c², Γ₁= 66.0^{+12.3}_{-8.3}±0.4 MeV → Y(4220)

 \succ M₂=4391.5^{+6.3}_{-6.8} \pm 1.0 MeV/c², Γ₂=139.5^{+16.2}_{-20.6} \pm 0.6 MeV → Y(4390)

□ The Y(4220) here is consistent with the state observed in $\pi^{+}\pi^{-}J/\psi$ around 4222MeV

Cross section of $e^+e^- \rightarrow \pi^+ D^0 D^{*-} + c.c.$

- Reconstruct $D^0 \rightarrow K^-\pi^+$
- Find another π^+
- **1.9** < $(RM(D^0\pi^+) + M(D^0) m(D^0)) < 2.1 \text{ GeV}$

Fit to the dressed cross section of $e^+e^- \rightarrow \pi^+ D^0 D^{*-}+\text{c.c.}$

Fit with a constant (pink dashed triple-dot line) and two constant width relativistic BW functions (green dashed double-dot line and aqua dashed line). 38

Resonant parameters

Parameters	SolutionI	SolutionII	Solution	nIII SolutionIV
$c (10^{-4})$		5.5	5 ± 0.6	The error are statistical only.
$M_1 \; ({\rm MeV}/c^2)$		4224	4.8 ± 5.6	RESIII Preliminary
$\Gamma_1 (MeV)$		72.	3 ± 9.1	BEDIII FICIIIIII QI Y
$M_2 \; ({\rm MeV}/c^2)$		4400	0.1 ± 9.3	
$\Gamma_2 (MeV)$		181.	7 ± 16.9	
$\Gamma_1^{\rm el} \ ({\rm eV})$	62.9 ± 11.5	7.2 ± 1.8	81.6 ± 1	$5.9 9.3 \pm 2.7$
$\Gamma_2^{\rm el} \ ({\rm eV})$	$88.5{\pm}15.8$	55.3 ± 8.7	551.9 ± 8	$35.3 \ 344.9 \pm 70.6$
ϕ_1	-2.1 ± 0.1	2.8 ± 0.3	-0.9 ± 0	$.1 -2.3 \pm 0.2$
ϕ_2	1.9 ± 0.3	2.3 ± 0.2	2.3 ± 0.2	$.1 -1.9 \pm 0.1$

> Statistical significance is greater than 10σ .

≻ Consistent with those of Y(4220) and Y(4390) in $e^+e^- \rightarrow \pi^+\pi^-h_c$.

Masses and widths of vector charmonium states observed in different processes at BESIII

Process	$M_1 \; ({\rm MeV}/c^2)$	Γ_1 (MeV)	$M_2 ({\rm MeV}/c^2)$	Γ_2 (MeV)
$e^+e^- \rightarrow \omega \chi_{c0}$	$4230\pm8\pm6$	$38 \pm 12 \pm 2$ [37]		
$e^+e^- \rightarrow \pi^+\pi^- J/\psi$	$4220.0 \pm 3.1 \pm 1.4$	$44.1 \pm 4.3 \pm 2.0$	$4320.0 \pm 10.4 \pm 7.0$	$101.4^{+25.3}_{-19.7} \pm 10.2$ [9]
$e^+e^- \rightarrow \pi^+\pi^-h_c$	$4218.4^{+5.5}_{-4.5}\pm0.9$	$66.0^{+12.3}_{-8.3}\pm0.4$	$4391.5^{+6.3}_{-6.8}\pm1.0$	$139.5^{+16.2}_{-20.6} \pm 0.6$ [10]
$e^+e^- \rightarrow \pi^+ D^0 D^{*-} + c.c$	$4224.8 \pm 5.6 \pm 4.0$	$72.3 \pm 9.1 \pm 0.9$	$4400.1 \pm 9.3 \pm 2.1$	$181.7 \pm 16.9 \pm 7.4$ [38]
$e^+e^- \rightarrow \pi^+\pi^-\psi(3686)$	$4209.5 \pm 7.4 \pm 1.4$	$80.1 \pm 24.6 \pm 2.9$	$4383.8 \pm 4.2 \pm 0.8$	$84.2 \pm 12.5 \pm 2.1$

$\pi\psi$ (3686) spectra very different at different c.m. energies.

Z states

$Z_c^+(3900)$ in $e^+e^- \rightarrow Y(4260) \rightarrow \pi^+\pi^-J/\psi$

BESIII: PRL110, 252001 (2013)

- M = 3899.0±3.6±4.9 MeV
- Γ = 46±10±20 MeV
- 307 ± 48 events

- Decays to cc

 has cc
- Charged
- At least has 4 quarks

• 4 charged Zc's at BESIII

EESII Neutral Z_c(3900),Z_c(3885),Z_c(4020)

 $e^+e^- \rightarrow \mathbf{Z}_{\mathbf{c}}(\mathbf{3885})^0\pi^0 \rightarrow (D\overline{D}^*)^0\pi^0$

Summary of Z_c's at BESIII

Besime Determination of J^p of Z_c(3900) from e⁺e⁻ $\rightarrow \pi^+\pi^-J/\psi$

J^p of Zc favor 1⁺ with statistical significance larger than 7.3σ over other quantum numbers.

PRL 119, 072001 (2017)

□Amplitude analysis with helicity formalism □Simultaneous fit to data samples at 4.23GeV and 4.26GeV □ $\pi^+\pi^-$ spectrum is parameterized by σ , f₀(980), f₂(1270) and f₀(1370)

$\begin{array}{l} \underset{from \ e^+e^- \rightarrow \pi^+\pi^-J/\psi}{\text{PRL 119, 072001 (2017)}} \end{array}$

$Z_c: J^P$	M (MeV)	$g_1'({ m GeV^2})$	g_2^\prime/g_1^\prime	$-\ln L$
0^{-}	3906.3 ± 2.3	0.079 ± 0.007	25.8 ± 2.9	-1528.8
1-	3903.1 ± 1.9	0.063 ± 0.005	26.5 ± 2.6	-1457.7
1+	3900.2 ± 1.5	0.075 ± 0.006	21.8 ± 1.7	-1569.8
2^{-}	3905.2 ± 2.1	0.060 ± 0.004	28.7 ± 2.7	-1516.5
2^{+}	3894.3 ± 1.9	0.051 ± 0.005	23.4 ± 3.3	-1316.2

J^p of Z_c favor 1⁺ with statistical significance larger than
 7.3σ over other quantum number assumptions

• Significance for $e^+e^- \rightarrow Z_c^+(4020) \pi^- + c.c \rightarrow \pi^+\pi^- J/\psi$ is ~3 σ . Upper limits at 90% C.L.:

$$\frac{\sigma(e^+e^- \to Z_c^+(4020) \ \pi^- + c.c \to \pi^+\pi^- J/\psi)}{\sigma(e^+e^- \to Z_c^+(3900) \ \pi^- + c.c \to \pi^+\pi^- J/\psi)} < 3.3\% \text{ at } 4.23 \text{ GeV}$$

$$<25.1\% \text{ at } 4.26 \text{ GeV}$$

Light hadron spectroscopy from charmonium decays

2.1

1.8

M(3(π⁺π⁻)) (GeV/c²)

1.6

1.9

- Patterns in the production and decay modes

- Suggest the existence of a state, either a broad one with strong couplings to $p\overline{p}$, or a narrow state just below the $p\overline{p}$ mass thresh.
- Support the existence of a $p\overline{p}$ molecule-like state or bound state

Λ_c^+ experimental status

Λ_{c} Measurements [PDG2015]

Scale factor/

$\Delta B/B$
1
42.8%
80.0%

Ac DECAY MODES	1	Fraction (Г;/Г)	Confidence level	(м АВ/			
Hadronic modes with a p : $S = -1$ final states							
pK ⁰		(3.21± 0.30) %		9.3%			
$pK^{-}\pi^{+}$		(6.84 + 0.32)		5.8%			
$p\overline{K}^{*}(892)^{0}$	[a]	(2.13 ± 0.30) %		14.1%			
$\Lambda(1232)^{++}K^{-}$	[4]	(1.18 ± 0.37)		22.9%			
$\Lambda(1520)\pi^+$	[a]	$(2.4 \pm 0.6)\%$		25.0%			
$pK^-\pi^+$ nonresonant	140	$(3.8 \pm 0.4)\%$		10.5%			
$p\overline{K}^0\pi^0$		$(4.5 \pm 0.6)\%$		13.3%			
$p\overline{K}^0\eta$		$(1.7 \pm 0.4)\%$		23.5%			
$p\overline{K}^0\pi^+\pi^-$		$(3.5 \pm 0.4)\%$		11.4%			
$pK^{-}\pi^{+}\pi^{0}$		$(4.6 \pm 0.8)\%$		13.0%			
$pK^{*}(892)^{-}\pi^{+}$	[q]	$(1.5 \pm 0.5)\%$		33.3%			
$p(K^-\pi^+)_{\text{nonresonant}}\pi^0$		(5.0 ± 0.9)%	•	18.0%			
$\Delta(1232) K^{*}(892)$		seen					
$pK^{-}\pi^{+}\pi^{+}\pi^{-}$		(1.5 ± 1.0)×	10-3	66.7%			
$pK^{-}\pi^{+}\pi^{0}\pi^{0}$		(1.1 ± 0.5)%	•	45.4%			
Hadronic mode	es with	a p: S = 0 fina	states				
$p\pi^{+}\pi^{-}$		(4.7 ± 2.5)×	10-3	45.4%			
p f ₀ (980)	[q]	(3.8 ± 2.5)×	10-3	53.2%			
$p\pi^{+}\pi^{+}\pi^{-}\pi^{-}$		(2.5 ± 1.6)×	10-3	64.0%			
pK+K-		(1.1 ± 0.4)×	10-3	36.4%			
$p\phi$	[q]	(1.12± 0.23)×	10-3				
pK^+K^- non- ϕ		(4.8 \pm 1.9) \times	10-4				
Hadronic modes wi	ith a h	yperon: S = -1	final states				
$\Lambda \pi^+$		(1.46± 0.13) %		8.9%			
$\Lambda_{\pi} + \pi^{0}$		(50 ± 13)	<u>.</u>	26.0%			

$\Lambda \pi$	(1.46± 0.13) %	0.3	1
$A\pi^{+}\pi^{0}$	$(5.0 \pm 1.3)\%$	26.0)'
$\Lambda \rho^+$	< 6 %	CL=95%	
$A\pi^{+}\pi^{+}\pi^{-}$	(3.59± 0.28) %	7.8	5
$\Sigma(1385)^+ \pi^+ \pi^-, \Sigma^{*+} \rightarrow \Lambda \pi^+$	(1.0 ± 0.5)%	20.0	ינ
$\Sigma(1385)^{-}\pi^{+}\pi^{+}, \Sigma^{*-} \rightarrow$	(7.5 ± 1.4)×10	-3 18.7	19
$\Lambda \pi^{-}$			

- Total BFs < 65%
- Large uncertainties, most larger than 20%
- Most BFs are measured relative to $\Lambda c \rightarrow pK\pi$

$\Lambda \pi^+ \rho^0$	(1.4 ± 0.6)%	42.8%
$\Sigma(1385)^+ \rho^0$, $\Sigma^{*+} \rightarrow \Lambda \pi^+$	$(5 \pm 4) \times 10^{-3}$	80.0%
$\Lambda \pi^+ \pi^+ \pi^-$ nonresonant	< 1.1 % CL=90	%
$\Lambda \pi^+ \pi^+ \pi^- \pi^0$ total	(2.5 ± 0.9)%	36.0%
$\Lambda \pi^+ \eta$	$[q] (2.4 \pm 0.5)\%$	20.8%
$\Sigma(1385)^{+}\eta$	[q] (1.16± 0.35)%	30.2%
$\Lambda \pi^+ \omega$	$[q] (1.6 \pm 0.6)\%$	37.5%
$\Lambda \pi^+ \pi^+ \pi^- \pi^0$, no η or ω	< 9 × 10 ⁻³ CL=90	%
$\Lambda K^+ \overline{K}^0$	$(6.4 \pm 1.3) \times 10^{-3}$ S=1	.6 20.3%
$\equiv (1690)^0 K^+, \equiv^{*0} \rightarrow \Lambda \overline{K}^0$	$(1.8 \pm 0.6) \times 10^{-3}$	33.3%
$\Sigma^0 \pi^+$	$(1.43 \pm 0.14)\%$	10.0%
$\Sigma^+ \pi^0$	$(1.37 \pm 0.30)\%$	21.9%
$\Sigma^+\eta$	$(7.5 \pm 2.5) \times 10^{-3}$	33.3%
$\Sigma^+\pi^+\pi^-$	$(4.9 \pm 0.5)\%$	10.2%
$\Sigma^+ \rho^0$	< 1.8 % CL=95	%
$\Sigma^{-}\pi^{+}\pi^{+}$	$(2.3 \pm 0.4)\%$	17.4%
$\Sigma^{0}\pi^{+}\pi^{0}$	$(2.5 \pm 0.9)\%$	36.0%
$\Sigma^{0} \pi^{+} \pi^{+} \pi^{-}$	(1.13± 0.31) %	27.4%
$\Sigma^{+}\pi^{+}\pi^{-}\pi^{0}$		
$\Sigma^+ \omega$	$[q] (3.7 \pm 1.0)\%$	27.1%
$\Sigma^+ K^+ K^-$	$(3.8 \pm 0.6) \times 10^{-3}$	15.8%
$\Sigma^+\phi$	[q] (4.3 ± 0.7) × 10 ⁻³	16.3%
$\Xi(1690)^0 K^+, \Xi^{*0} \rightarrow$	$(1.11\pm0.29)\times10^{-3}$	26.2%
$\Sigma^+ K^-$		
$\Sigma^+ K^+ K^-$ nonresonant	$< 9 \times 10^{-4}$ CL=90	%
$\Xi^{0}K^{+}$	$(5.3 \pm 1.3) \times 10^{-3}$	24.5%
$\Xi^{-}K^{+}\pi^{+}$	$(7.0 \pm 0.8) \times 10^{-3}$ S=1	.1 11.4%
Ξ(1530) ⁰ K ⁺	[q] (3.5 ± 1.0) × 10 ⁻³	28.6%

Hadronic modes with a hyperon: S = 0 final states

1K ⁺	$(6.9 \pm 1.4) \times 10^{-4}$	2	0.3%
$\Lambda K^{+} \pi^{+} \pi^{-}$	< 6 × 10 ⁻⁴	CL=90%	
Σ ⁰ K ⁺	$(5.7 \pm 1.0) \times 10^{-4}$	1	7.5%
$\Sigma^{0} K^{+} \pi^{+} \pi^{-}$	$< 2.9 \times 10^{-4}$	CL=90%	
$\Sigma^+ K^+ \pi^-$	$(2.3 \pm 0.7) \times 10^{-3}$	3	0.4%
$\Sigma^{+}K^{*}(892)^{0}$	[q] (3.8 ± 1.2) × 10 ⁻³	3	1.6%
$\Sigma^- K^+ \pi^+$	< 1.3 × 10 ⁻³	CL=90%	

suppressed modes

<	3.1	× 10 ⁻⁴	CL=90%
_		~ 10	

onic mode

2.8	±	0.4)%	47.00
2.9	±	0.5)%	17.2%
2.7	±	0.6)%	22.2%

Absolute BFs of Λ⁺_c Cabibbo-Favored hadronic decays

PRL 116, 052001 (2016)

Results of 12 CF hadronic BFs

Straightforward and model independent

PRL 116, 052001 (2016)

□ A least square global simultaneous fit :

[CPC 37, 106201 (2013)]

Mode	This work (%)	PDG (%)	BELLE B	
pK_S^0	$1.52 \pm 0.08 \pm 0.03$	1.15 ± 0.30		
$pK^{-}\pi^{+}$	$5.84 \pm 0.27 \pm 0.23$	5.0 ± 1.3	$6.84 \pm 0.24^{+0.21}_{-0.27}$	
$pK_{S}^{0}\pi^{0}$	$1.87 \pm 0.13 \pm 0.05$	1.65 ± 0.50		
${m ho}{m K}^0_{S}\pi^+\pi^-$	$1.53 \pm 0.11 \pm 0.09$	1.30 ± 0.35		
${m ho}{m K}^-\pi^+\pi^0$	${\bf 4.53 \pm 0.23 \pm 0.30}$	3.4 ± 1.0		
$\Lambda\pi^+$	$1.24 \pm 0.07 \pm 0.03$	1.07 ± 0.28		
$\Lambda\pi^+\pi^0$	$7.01 \pm 0.37 \pm 0.19$	3.6 ± 1.3		
$\Lambda\pi^+\pi^-\pi^+$	$3.81 \pm 0.24 \pm 0.18$	2.6 ± 0.7		
$\Sigma^0\pi^+$	$1.27 \pm 0.08 \pm 0.03$	1.05 ± 0.28		
$\mathbf{\Sigma}^{+}\pi^{0}$	$1.18 \pm 0.10 \pm 0.03$	1.00 ± 0.34		
$\mathbf{\Sigma}^{+}\pi^{+}\pi^{-}$	${\bf 4.25 \pm 0.24 \pm 0.20}$	3.6 ± 1.0		
$\mathbf{\Sigma}^+ \omega$	$1.56 \pm 0.20 \pm 0.07$	$\textbf{2.7} \pm \textbf{1.0}$		

□ $B(\Lambda_c^+ \rightarrow pK^-\pi^+)$: BESIII precision comparable with Belle's □ BESIII $B(\Lambda_c^+ \rightarrow pK^-\pi^+)$ is compatible with BELLE's within 2σ □ Improved precisions of the other 11 modes significantly

Semi-Leptonic decay $\Lambda_c^+ \rightarrow \Lambda l^+ \nu_l$

ARGUS first measurement :

Phys. Lett. B 269, 234 (1991).

$$\sigma(e^+e^- \rightarrow \Lambda_c^+ X) \cdot \text{BR}(\Lambda_c^+ \rightarrow \Lambda e^+ X) = 4.20 \pm 1.28 \pm 0.71 \text{ pb}$$

 $\sigma(e^+e^- \to \Lambda_c^+ X) \cdot \text{BR}(\Lambda_c^+ \to \Lambda \mu^+ X) = 3.91 \pm 2.02 \pm 0.90 \text{ pb}$

CLEO improved measurement : *Phys. Lett. B 323, 219 (1994).* $\sigma(e^+e^- \rightarrow \Lambda_c^+ X) \cdot BR(\Lambda_c^+ \rightarrow \Lambda e^+ X) = 4.87 \pm 0.28 \pm 0.69 \text{ pb}$

$$\sigma(e^+e^- \rightarrow \Lambda_c^+ X) \cdot \text{BR}(\Lambda_c^+ \rightarrow \Lambda \mu^+ X) = 4.43 \pm 0.51 \pm 0.64 \text{ pb}$$

Combined with the $\tau(\Lambda_c^+)$ and the assumption of form factors

$\Lambda \ell^+ \nu_\ell$	PDG 2015	[r] (2.8 ± 0.4)%
$\Lambda e^+ \nu_e$		(2.9 \pm 0.5)%
$\Lambda \mu^+ \nu_\mu$		(2.7 \pm 0.6)%

Not a direct measurement!

Theoretical calculations on the BF ranges from 1.4% to 9.2%

BFs of $\Lambda_{c}^{+} \rightarrow \Lambda l^{+} \nu_{l}$ decays

First direct measurement, optimized variables : $U_{\text{miss}} = E_{\text{miss}} - c |\vec{p}_{\text{miss}}|$

Important to test and calibrate LQCD and lepton universality.

Observation of $\Lambda_c^+ \rightarrow nK_s^{0}\pi^+$

First observation of Λ_c^+ decays involving the neutron in final states.

The relative BF of neutron-involved mode to proton-involved mode is essential to test the isospin symmetry and extract the strong phases of different final states.

Cross section measurement of $e^+e^- \rightarrow \Lambda \bar{\Lambda}$

arXiv:1709.10236, Submitted to PRL

- Measured cross section and form factor with improved precision
- Threshold effect in form factor contradicts with theoretical expectation

Cross section measurement of $e^+e^- \rightarrow \Lambda_c \bar{\Lambda}_c$

- Confirmed threshold effect
- First measurement of $|G_E/G_M|$

$D_{s}^{+} \rightarrow \mu^{+}v @ 4.18 \text{ GeV} (3 \text{ fb}^{-1})$

Bridge to precisely measure

✓ Decay constant f_{Ds+} with input $|V_{cs}|^{CKMfitter}$ ✓ CKM matrix element $|V_{cs}|$ with input f^{LQCD}_{Ds+}

Take |V_{cs}|^{CKMfitter} as input :

$f_{D_s^+} = 249.1 \pm 3.6_{\text{stat.}} \pm 3.8_{\text{syst.}} \text{ MeV}$

Take f_{Ds}^{LQCD} as input :

 $|V_{cs}| = 0.974 \pm 0.014_{\text{stat.}} \pm 0.016_{\text{syst.}}$

			· • <u> </u>			٦
CKMFitte	er		0.9734	3±0.00015	- t	
DELPHI	$W^+ \rightarrow c\bar{s}$	5	0.94±0	.32±0.13		-
CLEO/B	ELL/BABR/BES	III D ⁰ → K [−] l ⁺ ≀	, 0.975±	0.007±0.025	•	
CLEO	τ*(e ⁺ ν _e ν	_τ)ν _τ	0.988±	0.044±0.022	+	
CLEO	τ ⁺ (ρ ⁺ ∇ _τ)	/τ	1.009±	0.052±0.021	-	
CLEO	$\tau^+(\pi^+\nabla_{\tau})$	/τ	1.088±	0.069±0.018		
BABR	τ*(e ⁺ ν _e ν	_τ ,μ⁺ν _μ ⊽ _τ)ν _τ	0.956±	0.036±0.056	-	
BELL	τ*(e ⁺ ν _e ν	$_{\tau},\mu^{+}\nu_{\mu}\nabla_{\tau},\pi^{+}\nabla_{\tau})$	ν _τ 1.025±	0.019±0.029	•	
BESIII@	4.009 μ ⁺ ν _μ ,τ ⁺ (τ⁺ ⊽ _τ)ν _τ	0.944±	0.063±0.027		
CLEO	$\mu^+\nu_{\mu}$		1.007±	0.040±0.018	-	
BABR	$\mu^{+}\nu_{\mu}$		1.040±	0.033±0.031		
BELL	$\mu^* \nu_{\mu}$		0.976±	0.026±0.021	+	
BESIII@ prelimina	4.178 μ⁺ν _μ ry		0.974±	0.014±0.016	•	
-1.5	-1	-0.5	0	0.5	1	
		IV	1			
1° csl						

Upgrade plan and physics prospects

BESIII upgrade

D ETOF \rightarrow MRPC: 120ps \rightarrow 60 ps, finished in Oct. 2015

- MDC: Malter effect found in inner chamber in 2012, add water vapor to the chamber to cure the aging problem.
- New inner chamber, built by IHEP, is ready now.
- CGEM as the inner chamber ongoing : Italy group in collaboration with other groups.
- **Crystal Zero Degree detector**
- **•** New valve box for superconducting magnet
- **Other possible upgrade plan is under discussion**

Cylindrical GEM Inner Tracker

BESIII is building a cylindrical GEM detector (CGEM-IT) to replace the BESIII Inner MDC to recover some efficiency loss due to aging and to improve the secondary vertex resolution.

- Low Material budget ≤ 1.5% of X₀ for all layers
- High Rate capability: ~10⁴ Hz/cm²
- Coverage: 93%
- Spatial resolution $\sigma_{r\phi}$ ~130 μm in 1 T magnetic filed
- Operation duration at least 5 years

The CGEM is co-funded by the European Commission Research and Innovation Staff Exchange (RISE) project 2015-2018.

Formation of a consortium: INFN (Ferrara, Frascati, Perugia and Torino), Mainz, Uppsala, IHEP

• Will challenge accelerator beam energy limit from 2.30 \rightarrow 2.35 \rightarrow 2.45 GeV(4.6 \rightarrow 4.7 \rightarrow 4.9 GeV)

Λc study

With larger $\Lambda_{\rm c}\,\text{data}\,\text{sample}$

- ► PWA ⇒ intermediate structures in 3-body decays
- More semileptonic decays: nlν, Λ*Iν, ΣXIν ...
- Decay asymmetry parameters $\alpha \Leftrightarrow \Lambda_{c}^{+} \rightarrow BP/BV$
- Λ_{c}^{+} Rare decays search
 - Weak radiative decay $\Lambda_c^+ \rightarrow \gamma \Sigma^+$
 - FCNC $\Lambda_c^+ \rightarrow pl^+l^-$
 - + LNV Λ_c^+ → peµ
- Accelerator top-up project

data taking efficiency: increased by 20-30%

BESIII data taking status & plan (run ~ 8-10 years)

	Previous data	BESIII present & future	Goal
J/ψ	BESII 58M	1.2 B 20* BESII	10 B
ψ'	CLEO: 28 M	0.5 B 20* CLEOc	3B
ψ"	CLEO: 0.8/fb	2.9/fb 3.5*CLEOc	20 /fb
Above open charm threshold	CLEO: 0.6/fb @ψ(4160)	0.5/fb@ψ(4040) 2.3/fb@~4260, 0.5/fb@4360 0.5/fb@4600, 1/fb@4420 Scan from 4.19 – 4.28, 10 MeV step, 500 pb ⁻¹ /point, 7 points	5-10 /fb
R scan & Tau	BESII	3.8-4.6 GeV at 105 energy points 2.0-3.1 GeV at 20 energy points	
Y(2175)		100 pb ⁻¹	
ψ (4160)		3 fb ⁻¹	
J/ ψ		6 – 8 Billion	

Thanks for your attention!

