

Winter Meeting Nuclear Physics, Bormio 2018

Precision atomic/nuclear physics measurements in Penning traps and tests of fundamental symmetries

- Precision atomic/nuclear masses
- The (anti)proton charge-to-mass ratio
- **g**-factors of bound electrons and $m_{\rm e}$

Klaus Blaum Jan 22nd, 2018

MAXPLANCE CERELINGUA

Why measuring atomic masses?

		δm/m
	General physics & chemistry	≤ 10 ⁻⁵
	Nuclear structure physics - separation of isobars	≤ 10 ⁻⁶
+ Z · 🜔 + Z · 🔾	Astrophysics - separation of isomers	≤ 10 ⁻⁷
inding energy	Weak interaction studies	≤ 10 ⁻⁹
	Metrology - fundamental constants Neutrino physics	$\le 10^{-10}$
	CPT tests	≤ 10 ⁻¹¹
	QED in highly-charged ions - separation of atomic states	≤ 10 ⁻¹¹

δΕ

1 MeV

100 keV

10 keV

100 eV

eVmeV

meV

eVmeV

Relative mass precision of 10⁻⁹ and below can presently ONLY be reached by Penning-trap mass spectrometry.

AX PLANCE CERELLECHAPT

Atomic and nuclear masses

Masses determine the atomic and nuclear binding energies reflecting all forces in the atom/nucleus.

 $m_{\text{Atom}} = N \bullet m_{\text{neutron}} + Z \bullet m_{\text{proton}} + Z \bullet m_{\text{electron}} - (B_{\text{atom}} + B_{\text{nucleus}})/c^2$ $\delta m/m < 10^{-10} \qquad \delta m/m = 10^{-6} - 10^{-8}$

How to weigh an atom

1111

Storage of ions in a Penning trap

The free cyclotron frequency is inverse proportional to the mass of the ion!

 $\omega_{\rm c} = qB / m_{ion}$

Invariance theorem:

$$\omega_{\rm c}^2 = \omega_{\rm +}^2 + \omega_{\rm -}^2 + \omega_{\rm z}^2 \qquad \omega_{\rm c} = \omega_{\rm +} + \omega_{\rm c}^2$$

L.S. Brown, G. Gabrielse, Rev. Mod. Phys. 58, 233 (1986).

Detection techniques

MAX PLANCK INSTITUT FOR NUCLEAR PHYSIC

MAX PLANCE CERELISCHAPT

BASE: A Penning-trap setup at CERN

A balance for protons and antiprotons.

Atomic masses I

Nuclear magic numbers

ISOLTRAP (CERN), SHIPTRAP (GSI), TRIGATRAP (Mainz) M. Block, S. Eliseev, V. Manea, L. Schweikhard, *A. Schwenk*

1111.

Atomic and nuclear structure: Basics

MAX PLANCK FOR NUCLEA

CLEAR PHYSI

INSTIT

New magic number (N=32) and 3N-forces

MAX PLANCK INSTITUTI FOR NUCLEAR PHYSICS

Neutrino physics applications

THe-TRAP for KATRIN

A high-precision Q(³T-³He)-value measurement

 $\Delta T < 0.02$ K/d at 24°C $\Delta B/B < 10$ ppt / h $\Delta x \le 0.1$ µm

First ${}^{12}C^{4+}/{}^{16}O^{6+}$ mass ratio measurement at $\delta m/m = 1.4 \cdot 10^{-11}$ performed.

Atomic masses III

Test of CPT symmetry

BASE: CERN, GSI, Hannover, Mainz, MPIK, RIKEN

A. Mooser, Ch. Ospelkaus, W. Quint, S. Smorra, S. Ulmer, J. Walz

Most stringent baryonic CPT test

Compare charge-to-mass ratios R of p and \overline{p} :

$$(q/m)_{\overline{p}}/(q/m)_{p} = 1.000\ 000\ 000\ 001\ (69)$$

S. Ulmer et al., Nature 524, 196 (2015)

It is not that easy!

$$m_{\rm H^-} = m_p \left(1 + 2 \frac{m_e}{m_p} + \frac{\alpha_{\rm pol,H^-} B_0^2}{m_p} - \frac{E_b}{m_p} - \frac{E_a}{m_p} \right)$$

A 3-fold improved proton mass

 $\frac{\delta m_{\rm p}}{m_{\rm p}} = 3.2 \cdot 10^{-11}$ mp

F. Heiße et al., Phys. Rev. Lett. 119, 033001 (2017)

Atomic masses IV

The mass of the electron – A fundamental constant

HCI-Trap: GSI, Mainz, MPIK, St. Petersburg

Z. Harman, Ch. Keitel, F. Köhler-Langes, W. Quint, V. Shabaev, S. Sturm

Quantum electrodynamics of bound states

MAX PLAN

Measurement principle

Continuous Stern-Gerlach effect Larmor frequency cannot be detected directly 🕤 up Spin energy $\Delta E = \hbar \omega_1$ Microwaves probe spin transition 🔵 down How to detect a successful spinflip? Magnetic field B \mathcal{O}_{-} 0.6 Axial frequency -411 kHz (Hz) 0,5 0,4 0,3potential 0,2 0.1 0,0 without Spin -0,1 Spin up Spin down -0,2 200 50 100 150 2500 z-axis # Measurement (20s)

Tiny axial frequency difference between spin up and down.

MAX PLANCK INSTITUTE FOR NUCLEAR PHYSICS

Ferromagnetic ring → magnetic bottle Spin dependent trapping potential

g-factor measurement process

 \rightarrow Spin flip in the precision trap?

MAXIFLANCE CERELLEX HAPT

g-factor resonance of a single ²⁸Si¹³⁺ ion

 $g_{exp} = 1.995 348 958 7 (5)(3)(8)$ $g_{theo} = 1.995 348 958 0 (17)$ Electron mass can be improved by a factor of >10 if repeated for ${}^{12}C^{5+}$.

Most stringent test of BS-QED in strong fields.

ax Planck Institu or Nuclear Physi

Theory colleagues: Harman, Keitel, Zatorski

S. Sturm *et al.*, Phys. Rev. Lett. 107, 023002 (2011) A. Wagner *et al.*, Phys. Rev. Lett. 110, 133003 (2013)

A 13-fold improved electron mass

Electron mass from ultra-high precision g-factor of hydrogenlike carbon:

$$m_e = \frac{g_{theo}}{2} \frac{\omega_c}{\omega_L} \frac{e}{q_{ion}} m_{ion}$$

 $m_{\rm e} = 0.000548579909067(14)(9)(2)$ u

A factor of 13 improved value !

S. Sturm et al., Nature 506, 467 (2014)

The (anti-)proton magnetic moment

 $\mu_p = 2.79284734462(82) \mu_N$ (0.3 ppb)

G. Schneider et al., Science 358, 1081 (2017)

 $\mu_{\overline{p}} = -2.7928473441(42) \mu_{N}$ (1.5 ppb)

Ch. Smorra et al., Nature 550, 371 (2017)

Conclusion

Exciting results in high-precision experiments with stored and cooled exotic ions have been achieved!

Presently running or planned experiments: the mass of the neutron improved *E=m*c² test improved value for α (anti-)p *g*-factor measurement

Thanks a lot for the invitation and your attention!

Max Planck Society

Adv. Grant MEFUCO

Helmholtz Alliance