A. Andronic – GSI Darmstadt

on behalf of the ALICE Collaboration

- Introduction: hot QCD (quark-gluon) matter; ALICE apparatus
- Hadrons with light-flavor (u,d,s) and the QCD phase diagram
- Quarkonium and deconfined matter
- Jet quenching (if time allows)
- Summary

Lattice QCD predicts a phase transition

A. Andronic - ALICE

transition is a crossover, Y. Aoki et al., Nature 443 (2006) 675 $T_c \simeq 145\text{-}164 \text{ MeV}, \ \varepsilon_c \simeq (0.18 - 0.5) \text{ GeV/fm}^3$, or $(1.2\text{-}3.1)\varepsilon_{nuclear}$ numerical solutions of QCD on a discrete space-time grid (sophisticated formalism, huge computers)

How to "simulate" in laboratory the early Universe?

A. Andronic - ALICE

4

1. initial collisions ($t \leq t_{coll} = 2R/\gamma_{cm}c$; $R_{Pb} \simeq 7$ fm)

2. thermalization: equilibrium is established ($t \lesssim 1 \text{ fm/c} = 3 \times 10^{-24} \text{ s}$)

3. expansion (~ 0.6c) and cooling (t < 10-15 fm/c) ...deconfined stage?

4. hadronization (quarks and gluons form hadrons)

5. chemical freeze-out: inelastic collisions cease; particle identities (yields) frozen 6. kinetic freeze-out: elastic collisions cease; spectra are frozen (t+= 3-5 fm/c)

What are the "control parameters"

A. Andronic - ALICE

- Energy of the collision (per nucleon pair, $\sqrt{s_{NN}}$)
- Centrality of the collision (number of "participating" nucleons, N_{part}) [at high energies geometric concepts valid: "participant-spectator" picture] measured in percentage of the geometric cross section ($\sigma_{AB} = \pi (R_A + R_B)^2$) NB: we sort the collisions offline, based on detector signals

...while often taking as reference the measurement in proton-proton collisions (at the same energy), for "hard probes" (pQCD) scaled by the number of collisions corresponding to the given centrality class

The accelerator complex at CERN

A. Andronic - ALICE

The accelerator complex at CERN

A. Andronic - ALICE

The ALICE apparatus

A. Andronic - ALICE

ALICE Collaboration: 37 countries, 176 institutions, 1800 members

Nucleus-nucleus collisions at the LHC

A. Andronic - ALICE

9

a picture of a central collision (about 3200 primary tracks in $|\eta| < 0.9$); "Camera": Time Projection Chamber [5 m length, 5 m diam.; 500 mil. pixels; we take a few 100 pictures per second (and are preparing to take 50000)]

Nucleus-nucleus collisions: energy density

A. Andronic - ALICE

Energy density: $\varepsilon = \frac{1}{A_T} \frac{dE_T}{du} \frac{1}{c\tau}$

- $A_T = \pi R^2$: transverse area (Pb-Pb: $A_T = 154 \text{ fm}^2$)
- $\tau \simeq 1$ fm/c: formation time (establishing the equilibrium) ... not measurable!

Particle identification

A. Andronic - ALICE

dE/dx: truncated mean of 159 samples along a track; resolution: 5.8% lines: Bethe-Bloch parametrization particles and antiparticles are shown

Hadron yields

A. Andronic - ALICE

Hadron yields and statistical hadronization

A. Andronic - ALICE

Thermal fit of hadron abundances

A. Andronic - ALICE

$$n_i = N_i/V = -\frac{T}{V}\frac{\partial \ln Z_i}{\partial \mu} = \frac{g_i}{2\pi^2} \int_0^\infty \frac{p^2 \mathrm{d}p}{\exp[(E_i - \mu_i)/T] \pm 1}$$

14

The hadron abundances are in agreement with a chemically-equilibrated system ... but how can a loosely-bound deuteron "survive" at T=156 MeV?

Chemical freeze-out and the phase diagram of QCD

A. Andronic - ALICE

arXiv:1710.09425

15

at LHC, remarkable "coincidence" with Lattice QCD results

at LHC ($\mu_B \simeq 0$): purely-produced (anti)matter ($m = E/c^2$), as in the Early Universe

 $\mu_B > 0$: more matter, from "remnants" of the colliding nuclei

 $\mu_B\gtrsim 400~{\rm MeV}:$ the critical point awaiting discovery

 μ_B is a measure of the net-baryon density, or matter-antimatter asymmetry

Proton collisions at the LHC

A. Andronic - ALICE

Proton collisions at the LHC

A. Andronic - ALICE

Hyperon production - from small to large systems

A. Andronic - ALICE

(big geometric) fireball in Pb–Pb reached with violent pp and p–Pb collisions

(grand canonical) statistical description works well in Pb–Pb (with T of QCD phase boundary)

is the same mechanism at work in small systems (at large multiplicities)?

string hadronization models do not describe data well

...new ideas are being put forward

Fischer, Sjöstrand, JHEP 01 (2017) 140

"thermodynamical string fragmentation"

Fluctuations of relative hadron production

A. Andronic - ALICE

quantified by

$$\begin{aligned}
 \nu_{\rm dyn}[A,B] &= \\
 \frac{\langle N_A(N_A-1)\rangle}{\langle N_A\rangle^2} + \frac{\langle N_B(N_B-1)\rangle}{\langle N_B\rangle^2} - 2\frac{\langle N_AN_B\rangle}{\langle N_A\rangle\langle N_B\rangle}
 \end{aligned}$$

the relative strength of fluctuations of species A and B - relative strength of correlations between species A and B (event-by-event)

 $\nu_{\rm dyn}[A,B]=0$ if A and B are produced in a statistically independent way

arXiv:1712.07929

Collective flow

A. Andronic - ALICE

R. Snellings, arXiv:1102.3010

$$\frac{dN}{d\varphi} \sim [1 + 2v_1 \cdot \cos(\varphi) + 2v_2 \cdot \cos(2\varphi) + \ldots]$$

 φ is azimuthal angle with respect to reaction plane

 $v_2 = \langle \cos(2\varphi) \rangle$ we call elliptic flow, $v_3 = \langle \cos(3\varphi) \rangle$ triangular flow (coefficients)

Data and hydrodynamics

A. Andronic - ALICE

mass dependence due to collective flow

hydrodynamic models reproduce the data with a very small viscosity/entropy density, $\eta/s~(\sim T\lambda c_s)$ lower bound conjectured (AdS/CFT): $\eta/s \ge 1/4\pi$ Kovtun, Son, Starinets, PRL 94 (2005) 111601 Data: PRC 88 (2013) 044910 JHEP 06 (2015) 190 VISHNU: PRC 89 (2014) 034919

Elliptic flow: energy dependence

A. Andronic - ALICE

 $v_2 > 0$ at high energies: "free" fireball (almond-shape) expansion ("genuine" elliptic flow)

hydrodynamic description determined by η/s and initial conditions (matter/energy fluctuations of colliding nuclei)

...constrained by correlations between v_n coeff., arXiv:1709.01127

we do also "event-shape engineering", arXiv:1709.04723

PRL 116 (2016) 132302

Quark interlude

A. Andronic - ALICE

up to now we only considered hadrons built with u, d, s quarks ...these are light, masses from a few MeV (u, d) to \sim 90 MeV (s)

what about heavier ones?

...for instance c, which weights about 1.2 GeV

produced in pairs ($c\bar{c}$) in initial hard collisions ($t \sim \hbar c/(2m_c) \leq 0.1 \text{ fm}/c$)

observable:
$$R_{AA} = \frac{\mathrm{d}N_{AA}/\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}{N_{coll}\cdot\mathrm{d}N_{pp}/\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$$
, the nuclear modification factor

one meson, the J/ ψ (a bound state of c and \bar{c} , charmonium) is of particular interest

A. Andronic - ALICE

the original idea: Matsui & Satz, PLB 178 (1986) 178

"If high energy heavy-ion collisions lead to the formation of a hot quark-gluon-plasma, then color screening prevents $c\bar{c}$ binding in the deconfined interior of the interaction region."

Refinements: "sequential suppression": Digal et al., PRD 64 (2001) 75 no $q\bar{q}$ bound state if $r_{q\bar{q}}(T) > r_0(T) \simeq 1/(g(T)T)$ r_0 Debye length in QGP $\Rightarrow q\bar{q}$ "thermometer" of QGP

Thermal picture ($n_{partons} = 5.2T^3$ for 3 flavors) for T=500 MeV: $n_p \simeq 84/\text{fm}^3$, mean separation $\bar{r}=0.2$ fm $< r_{J/\psi}$

Models ... implementing Debye screening and more

A. Andronic - ALICE

Statistical hadronization model

all charm quarks are produced in primary hard collisions ($t_{c\bar{c}} \sim 1/2m_c \simeq 0.1 \text{ fm/c}$) ...survive and thermalize in QGP (thermal, but not chemical equilibrium) charmed hadrons are formed at chemical freeze-out together with all hadrons <u>"generation"</u> ...no J/ ψ survival in QGP (full screening)

if supported by data, J/ ψ looses status as "thermometer" of QGP ...and gains status as a powerful observable for the phase boundary Braun-Munzinger, Stachel, PLB 490 (2000) 196; NPA 789 (2006) 334, PLB 652 (2007) 259

Models ... implementing Debye screening and more

A. Andronic - ALICE

Statistical hadronization model

all charm quarks are produced in primary hard collisions ($t_{c\bar{c}} \sim 1/2m_c \simeq 0.1 \text{ fm/c}$) ...survive and thermalize in QGP (thermal, but not chemical equilibrium) charmed hadrons are formed at chemical freeze-out together with all hadrons <u>"generation"</u> ...no J/ ψ survival in QGP (full screening)

if supported by data, J/ ψ looses status as "thermometer" of QGP ...and gains status as a powerful observable for the phase boundary Braun-Munzinger, Stachel, PLB 490 (2000) 196; NPA 789 (2006) 334, PLB 652 (2007) 259

Transport models

implement screening picture with space-time evolution of QGP (hydrodynamics) continuous destruction and "(re)generation" ("recombination") Thews et al., PRC 63 (2001) 054905 ...

"TAMU", PLB 664 (2008) 253, NPA 859 (2011) 114, EPJA 48 (2012) 72

"Tsinghua", PLB 607 (2005) 107, PLB 678 (2009) 72, PRC 89 (2014) 054911

Strickland, Bazow, NPA 879 (2012) 25

Charmonium data at RHIC and the LHC

A. Andronic - ALICE

Charmonium data at RHIC and the LHC

A. Andronic - ALICE

 $R_{AA} = \frac{\mathrm{d}N_{AA}/\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}{N_{coll}\cdot\mathrm{d}N_{pp}/\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ nuclear modification factor

• "suppression" at RHIC (PHENIX)

28

• dramatically different at the LHC

Statistical Hadronization Model $N_{J/\psi} \sim (N_{c \overline{c}}^{dir})^2$

 J/ψ is another observable (charm) for the phase boundary <u>calculations are for T=156 MeV</u>

arXiv:1710.09425

\mathbf{J}/ψ data and the statistical model

A. Andronic - ALICE

ALICE, PLB 766 (2017) 212

The statistical hadronization model assumes full thermalization of charm quarks, full dissociation of J/ψ mesons in QGP and formation at the hadronization

within this model, the "thermometer" status is lost, but J/ψ (charm) becomes a remarkable observable for the QCD phase boundary (hadronization)

\mathbf{J}/ψ data and transport models

A. Andronic - ALICE

ALICE, PLB 766 (2017) 212

Transport models assume continuous dissociation and formation during the whole lifetime of QGP (time evolution of T constrained by other measurements) (employ smaller uncert. of $d\sigma_{c\bar{c}}/dy$)

 J/ψ production vs. $p_{\rm T}$

A. Andronic - ALICE

ALICE, JHEP 06 (2015) 055

as expected, (re)generation is a low- $p_{\rm T}$ phenomenon significantly different trend at the LHC compared to RHIC J/ ψ at high- $p_{\rm T}$ suppressed as consequence of charm energy loss in QGP

Charmonium production

A. Andronic - ALICE

Production of excited states crucial to investigate ...possible with HL-LHC

statistical description, arXiv:1710.09425 ...transport models predict larger relative production

Summary

A. Andronic - ALICE

- in nucleus-nucleus collisions we create a (small:) chunk of the hot early Universe
 - ...a highly-dynamic and collective system; we measure observables for various stages
- measured energy densities are well above the values expected for deconfinement
- ullet collective flow (developed early in the deconfined stage) described by hydrodynamics; allows extraction of η/s
- abundance of hadrons with light quarks consistent with chemical equilibration

the thermal model provides a simple way to access the QCD phase boundary ...but is it more than a 1st order description (of loosely-bound objects)? ...and what fundamental point does it make about hadronization?

• we see (re)combination of charm quarks at the LHC ...either over the full history of QGP or at the phase boundary

...conclusion expected with the ALICE upgrade (HL-LHC, 2021-2029)

- some of the features in heavy-ion collisions are observed in high-multiplicity pp and p-Pb collisions
- not shown but available in spare slides we measure strong jet quenching (parton energy loss) in quark-gluon matter jet quenching data (for light and heavy-flavor hadrons) described by theoretical models; allows extraction of transport coefficients (in range $T = (1 - 3)T_c$)

More in talks by Ivan Vorobyev (Wed) and Jeremy Wilkinson (Fri)

Additional slides

A.Andronic

Overview of hadron production

A. Andronic - ALICE

- lots of particles, mostly newly created ($m = E/c^2$)
- a great variety of species:
 - π^{\pm} ($u\bar{d}$, $d\bar{u}$), m=140 MeV K^{\pm} ($u\bar{s}$, $\bar{u}s$), m=494 MeV p (uud), m=938 MeV Λ (uds), m=1116 MeV also: $\Xi(dss)$, $\Omega(sss)$...
- mass hierarchy in production (u, d quarks: remnants from the incoming nuclei)

The grand (albeit partial) view at hadron production

Mean transverse momentum of J/ψ mesons

A. Andronic - ALICE

ALICE, JHEP 05 (2016) 179

softening of p_T is significant at the LHC, clear indication of (re)generation thermalization of charm quarks demonstrated by collective flow of D and ${\rm J}/\psi$

\mathbf{J}/ψ production vs. p_{T}

A. Andronic - ALICE

4

ALICE, JHEP 06 (2015) 055

Distinct differences between Pb–Pb and p–Pb; crucial support that low- $p_T J/\psi$ are from (re)generation (while at high- p_T outcome of charm energy loss in QGP) for mid-rapidity: Run 1 data stat.-limited; Run 2 data will bring significance

\mathbf{J}/ψ and \mathbf{D} mesons exhibit collective flow

A. Andronic - ALICE

ALICE, PRL 119 (2017) 242301

Implies thermalization of charm quarks ...full thermalization? (high- p_T ?)

...and how to make distinction between statistical and dynamical production?

Charmonium production in p–Pb collisions

A. Andronic - ALICE

ALICE, JHEP 12 (2014) 073

6

(at least in first order) models give same result for $\psi(2S)$ as for J/ψ in data, difference predominantly at low p_T

Probing early stages

A. Andronic - ALICE

...with "hard probes" ($m \gg T$): jets or high- $p_{\rm T}$ hadrons (or heavy quarks) produced very early in the collision, $t \simeq 1/m$ (jets - sprays of hadrons from high-speed quarks)

- q, \bar{q}, g travel through QGP, lose energy
- hadronize (neutralize color picking up partners from the vacuum)
- hadrons fly towards detectors

...where we observe a deficit at high momenta ($p_{\rm T}$): "jet quenching" (Bjorken, fermilab-pub-82-059-t)

quantified by the nuclear modification factor:

$$R_{AA} = \frac{\mathrm{d}N_{AA}/\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}{N_{coll}\cdot\mathrm{d}N_{pp}/\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$$

Jet quenching at the LHC

A. Andronic - ALICE

...measured with "leading hadrons" (h[±]) (carry largest fraction of parton p_T)

a thermal component, $p_{\rm T} \lesssim 6~{\rm GeV}/c$ (scaling with N_{part}) determined by gluon saturation and collective flow

strong suppression, reaching a factor of ${\sim}7$, $p_{\rm T}\simeq7~{\rm GeV}/c$

...not seen with EW observables (γ, W^{\pm}, Z^{0}) ...ALICE $\gamma / pQCD$ NLO calc. not seen in p-Pb collisions $(p_{\rm T} \lesssim 3 \text{ GeV}/c, \text{ gluon saturation})$

ALICE, EPJ C 74 (2014) 3054 and refs. therein

Jet quenching: transport coefficient

A. Andronic - ALICE

An initial quark with energy of 10 GeV at the center of a most-central A–A collision

JET Collab., PRC 90 (2014) 014909

transport coefficient:

$$\hat{q} = \mathrm{d}\langle p_T^2 \rangle / \mathrm{d}x$$

(proportional to gluon density)

The data of Run 2 (about to be published) are significantly more precise

In-medium energy loss as a function of quark mass

A. Andronic - ALICE

D mesons are as much suppressed as pions at high $p_{T} \ensuremath{\boldsymbol{p}}$

...is expected ordering vs. quark mass

 $\Delta E_b < \Delta E_c < \Delta E_{u,d,s} < \Delta E_g$

established in data? (naively: $\Delta E \sim 1 - R_{AA}$)

to some extent, yes

JHEP 11 (2015) 205 ALICE-PUBLIC-2017-004

on-going effort: determine heavy quark (momentum) diffusion coefficient ...calculable in lattice QCD Banerjee et al., Phys. Rev. D 85 (2012) 014510

In-medium energy loss as a function of quark flavor

A. Andronic - ALICE

Theoretical model(s) reproduce the data (reasonably) well

JHEP 11 (2015) 205 ALICE-PUBLIC-2017-004

Charm diffusion coefficient

A. Andronic - ALICE

heavy quark spatial diffusion coefficient $D_s = 4T^2/\hat{q}$

arXiv:1704.07800

Jets

A. Andronic - ALICE

E: E_T or p_T ; θ_{jet} : opening angle (R or ΔR)

Y. Mehtar-Tani, arXiv:1602.01047

A. Andronic - ALICE

Their mass, $m_c \simeq 1.2$ GeV, $m_b \simeq 4.6$ GeV, is much larger than T (so we are sure they do not originate in thermal processes ...but pQCD processes)

14

Are produced in pairs ($c\bar{c}$) in initial hard collisions ($t \sim 1/(2m_c) \leq 0.1 \text{ fm}/c$)

Their identity (flavor) is assured to be preserved from early times of production throughout the QGP phase (until hadronization: $c \rightarrow D$; $b \rightarrow B$)

Expectation:

Due to high mass the gluon radiation by HQ is suppressed at small angles this is called "the dead-cone effect"

Consequence: hierarchy in energy loss:

 $\Delta E_b < \Delta E_c < \Delta E_{u,d,s} < \Delta E_g$

At the LHC, there are about 100 $c\bar{c}$ pairs produced in a central Pb–Pb collisions (not all are measurable, though)