Hadron spectroscopy at LHCb

Rolf Oldeman On behalf of the LHCb collaboration University of Cagliari and INFN Bormio, 24/1/2018

Outline

Hadron spectroscopy The LHCb experiment **Conventional hadrons:** Mesons **Baryons Exotics hadrons:** Tetraquarks Pentaquarks Outlook

Hadron spectroscopy

Hadrons are combinations of quarks

LHCb focuses on Heavy Flavour (HF): hadrons with ≥ 1 charm (c) or beauty (b) quark

beyond ground-state hadrons:

- spin excitations
- angular momentum excitations
- radial excitations
- exotic hadrons

C = 1 hadrons:

mesons: $D^+(c\bar{d})$, $D^0(c\bar{u})$, $D_s^+(c\bar{s})$ baryons: $\Lambda_c^+(cdu)$, $\Xi_c^+(cus)$, $\Xi_c^0(cds)$, $\Omega_c^0(css)$ B = 1 hadrons: mesons: $B^+(\bar{b}u)$, $B^0(\bar{b}d)$, $B_s^0(\bar{b}s)$, $B_c^+(\bar{b}c)$ baryons: $\Lambda_b^0(bdu)$, $\Xi_b^0(bus)$, $\Xi_b^-(bds)$, $\Omega_b^-(bss)$ quarkonia:

 $J/\psi, \psi'(c\bar{c})$ and $\Upsilon(1S), \Upsilon(2S), \Upsilon(3S), (b\bar{b})$

Experimental program and motivation

Measure mass, width, decay modes and quantum numbers of known resonances

- refine or eliminate models of hadron formation
- instrumental in reducing hadronic uncertainties in searches for new physics

Search for new resonances

- complete the "sky-map" of all hadrons
- narrow resonances make ideal flavor-tagging tool
 - D^0 oscillations observed thanks to $D^{*+} \rightarrow D^0 \pi^+$ decay

The LHCb experiment

LHC 27km, at ~-100m

pp collisions every 25ns 2011: E_{cm} =7TeV 2012: E_{cm} =8TeV 2015-2018: E_{cm} =13TeV ~1/100 has $b\bar{b}$, 1/10 has $c\bar{c}$ delivered 120 (7)fb⁻¹ to ATLAS,CMS (LHCb)

LHCb: dedicated HF experiment

luminosity levelling: const $\mathcal{L}=4x10^{32} \text{ cm}^{-2}\text{s}^{-1}$ forward detector $2 < \eta < 5 \rightarrow \text{low } p_T$ thresholds Si strips 8mm from beam, $\sigma_{IP} \approx 20 \mu \text{m}$ 4Tm dipole for $\Delta p/p \sim 0.5 - 1.0\%$ 2 RICH for $\pi/K/p$ separation full detector readout @ 1MHz

IJMPA 30, 1530022 (2015), arXiv:1412.6352

Rolf Oldeman - Hadron spectroscopy at LHCb - Bormio 2018

Two methods for spectroscopy

- Direct production in *pp* collisions
- Combine a HF hadron with one or more light particles
- High statistics
- Works for all hadrons

- Amplitude analysis of heavier state
- Analyze HF+light particle in ≥ 3-body decay of heavier particle
- Low background
- Better determination of quantum numbers J^{PC}

Mesons

simplest possible hadron: $q \overline{q}$ states For $\ell = 0$ states: antiparallel quark spin: $J^{PC} = 0^{--}$ parallel quark spin: $J^{PC} = 1^{-+}$

Also $\ell > 0$ states and radial excitations (e.g. ψ')

 $B_{c}^{(*)+}(2S) \rightarrow B_{c}^{(*)+}\pi^{+}\pi^{-}$ search

Follow-up on ATLAS observation of peak in $B_c^+\pi^+\pi^-$ spectrum $m = 6842 \pm 4 \pm 5$ MeV

Based on a yield of ~330 $B_c^+ \rightarrow J/\psi \pi^+$ decays

 $B_{c}^{(*)+}(2S) \rightarrow B_{c}^{(*)+}\pi^{+}\pi^{-}$ search arXiv:1712.04094, submitted to JHEP

~3300 $B_c^+ \rightarrow J/\psi \pi^+$ decays Expected mass resolutions: $\sigma_w(B_c(2S)^+) = 2.05 \pm 0.05 \text{ MeV}$

 $\sigma_{\rm w}(B_c^*(2S)^+) = 2.03 \pm 0.03 \,\,{\rm MeV}$ $\sigma_{\rm w}(B_c^*(2S)^+) = 3.17 \pm 0.03 \,\,{\rm MeV}$

No $B_c^{(*)+}(2S)$ signal. Measure

$$\mathcal{R} = \frac{\sigma_{B_c^{(*)}(2S)^+}}{\sigma_{B_c^+}} \cdot \mathcal{B}(B_c^{(*)}(2S)^+ \to B_c^{(*)+}\pi^+\pi^-) \overset{\text{(*)}}{\underset{\text{(*)}}{\overset{(*)}}{\overset{(*)}{\overset{(*)}}{\overset{(*)}}{\overset{(*)}{\overset{(*)}}{\overset{(*)}{\overset{(*)}}{\overset{(*)}}{\overset{(*)}{\overset{(*)}}{\overset{(*)}}{\overset{(*)}}{\overset{(*)}{\overset{(*)}}{\overset{(*)}}{\overset{(*)}{\overset{(*)}}{$$

95% CL. Limits on $\mathcal R$ in range 0.02-0.14, depending on mass

Rolf Oldeman - Hadron spectroscopy at LHCb - Bormio 2018

Muonic decays of χ_{c1} and χ_{c2}

Orbitally excited $c\bar{c}$ states χ_c usually studied in $\chi_c \rightarrow J/\psi\gamma$ decays

First observation of $\chi_c \rightarrow J/\psi \mu^+ \mu^-$ decays!

Much better mass resolution allows competitive mass and width measurements.

Quantity	LHCb	Best previous	World avorago
[MeV]	measurement	measurement	world average
$m(\chi_{c1})$	3510.71 ± 0.10	3510.72 ± 0.05	3510.66 ± 0.07
$m(\chi_{c2})$	3556.10 ± 0.13	3556.16 ± 0.12	3556.20 ± 0.09
$\Gamma(\chi_{c2})$	2.10 ± 0.20	1.92 ± 0.19	1.93 ± 0.11

Baryons

qqq states, very rich in weakly decaying ground states

Even richer in excited states!

Rolf Oldeman - Hadron spectroscopy at LHCb - Bormio 2018

Doubly charmed baryons

Three weakly decaying C=2 states expected:

$$\Xi_{cc}^{++} (ccu), \Xi_{cc}^{+} (ccd) \text{ and } \Omega_{cc}^{+} (ccs)$$

Expect $m(\Xi_{cc}^{++}) \approx m(\Xi_{cc}^{+}),$
but $\tau(\Xi_{cc}^{++}) > \tau(\Xi_{cc}^{+}).$

Observation and confirmation of Ξ_{cc}^+ reported by SELEX experiment.

Unexpectedly short lifetime and large production.

Not confirmed by BaBar [PRD74(2006)011103], Belle[PRL97(2006)162001] nor LHCb [JHEP 12 (2013) 090]

The doubly charmed baryon Ξ_{cc}^{++}

Select $\Lambda_c^+ \rightarrow p K^- \pi^+$ candidates, combine with K^- , π^+ , π^+ tracks

Reject background with neural net (trained on MC for signal, wrong-sign combinations for background)

Peak of 313±33 events (local significance of 12σ), mass $3621.40 \pm 0.72 \text{ (stat)} \pm 0.27 \text{ (syst)} \pm 0.14 (\Lambda_c^+) \text{ MeV}/c^2$.

 7σ peak also in 8TeV Run1 data Significant signal also after $t > 5\sigma_t$ cut. ~100MeV more than SELEX Ξ_{cc}^+ peaks PRL119, 112001 (2017), arXiv:1707.01621

Excited Ω_c^0 states

Previously, the only css baryons known were the ground state Ω_c^0 and the $\Omega_c(2770)^0$

Search for more excited *css* states in $\Xi_c^+ K^-$ spectrum.

Reconstruct $\Xi_c^+ \rightarrow p K^- \pi^+$ *Cabibbo-suppressed but efficient*

S/B likelihood ratio used to select 1,05M Ξ_c^+ with 83% purity

Combine with tight K^- and require $p_{\rm T} > 4.5 {\rm GeV}$

5 new narrow resonances

plus $\Omega_c(X)^0 \to \Xi_c^{\prime+} K^-, \Xi_c^{\prime+} \to \Xi_c^+ \gamma$ feeddown

No structures in Ξ_c^+ sidebands or $\Xi_c^+ K^+$ spectrum

PRL118, 182001 (2017), arXiv:1703.04639 3.0fb⁻¹Run1 + 0.3fb⁻¹ Run2

PRL118, 182001 (2017), <u>arXiv:1703.04639</u> 3.0fb⁻¹Run1 + 0.3fb⁻¹ Run2

Excited Ω_c^0 states

Resonance	Mass (MeV)	Γ (MeV)	Yield	N_{σ}
$\Omega_{c}(3000)^{0}$	$3000.4 \pm 0.2 \pm 0.1^{+0.3}_{-0.5}$	$4.5\pm0.6\pm0.3$	$1300 \pm 100 \pm 80$	20.4
$\Omega_{c}(3050)^{0}$	$3050.2 \pm 0.1 \pm 0.1 ^{+0.3}_{-0.5}$	$0.8\pm0.2\pm0.1$	$970 \pm 60 \pm 20$	20.4
		$< 1.2\mathrm{MeV}, 95\%~\mathrm{CL}$		
$\Omega_{c}(3066)^{0}$	$3065.6 \pm 0.1 \pm 0.3^{+0.3}_{-0.5}$	$3.5\pm0.4\pm0.2$	$1740 \pm 100 \pm 50$	23.9
$\Omega_{c}(3090)^{0}$	$3090.2 \pm 0.3 \pm 0.5^{+0.3}_{-0.5}$	$8.7\pm1.0\pm0.8$	$2000\pm140\pm130$	21.1
$\Omega_{c}(3119)^{0}$	$3119.1 \pm 0.3 \pm 0.9 \substack{+0.3 \\ -0.5}$	$1.1\pm0.8\pm0.4$	$480\pm70\pm30$	10.4
		$ {\rm < 2.6MeV},95\%$ CL		
$\Omega_{c}(3188)^{0}$	$3188\pm5\pm13$	$60\pm\ 15\pm11$	$1670 \pm 450 \pm 360$	
$\Omega_{c}(3066)^{0}_{\rm fd}$			$700 \pm 40 \pm 140$	
$\Omega_{c}(3090)_{\rm fd}^{0}$			$220\pm60\pm90$	
$\Omega_{c}(3119)_{\rm fd}^{0}$			$190\pm70\pm20$	

Fit improves by including broad high-mass BW shape Could be single state, multiple states, feeddowns, etc.

Studies of these states in B decays will allow

determination of quantum numbers

Confirmed by Belle:

Suppression of the 5th state in $e^+e^$ expected if it is a pentaquark

Tetraquarks

 $q\bar{q}q\bar{q}$ states that cannot be described as $q\bar{q}$ 2008: Evidence from Belle of a $\psi'\pi^-$ peak in $B^+ \rightarrow \psi'K^+\pi^-$ decays (1D analysis)

Difficult to distinguish unambiguously from reflections of $K^+\pi^-$ resonances

2009 BaBar analysis in 4D managed to describe with $K^+\pi^-$ resonances alone

2014 high-stat LHCb analysis: incompatible with $K^+\pi^-$ resonances alone

amplitude fit Z(4430): > 13σ

phase motion consistent with BW

Exotic $J/\psi\phi$ states in $B^+ \rightarrow J/\psi\phi K^+$ decays

First evidence for $J/\psi\phi$ structure from CDF:

3.8 σ excess at 4140MeV based on 75 $B^+ \rightarrow J/\psi \phi K^+$ decays

Also excess at higher mass

Not confirmed in 0.37fb⁻¹ LHCb search, using 382 decays

But confirmed by CMS

and D0

both in $B^+ \rightarrow J/\psi \phi K^+$ decays and in prompt production

2 4.3 4.4 M(J/ψK⁺K`) (GeV)

4.5

4.2

Rolf Oldeman - Hadron spectroscopy at LHCb - Bormio 2018

M(J/ψ φ) [GeV]

4.2 4.25 4.3 4.35 4.4

4.15

Exotic $J/\psi\phi$ states in $B^+ \rightarrow J/\psi\phi K^+$ decays

LHCb performed full 6D amplitude analysis

Data cannot be described with ϕK^+ resonances alone.

Four new $J/\psi\phi$ resonances are observed with >5 σ each

A wide X(4140), $\Gamma = 80 \pm 30$ MeV, $J^{PC} = 1^{++}$ X(4274) $\Gamma \sim 60$ MeV, $J^{PC} = 1^{++}$

X(4500) and X(4600) $\Gamma \sim 100 \text{ MeV} J^{PC} = 1^{++}$

PRL118, 022003 (2017), arXiv:1606.07895 PRD 95, 012002 (2017), arXiv:1606.07898

Structures in the $B_s^0 \pi^{\pm}$ spectrum

D0 reported 3.9-5.1 σ evidence for a resonance in the $B_s^0 (\rightarrow J/\psi \phi) \pi^{\pm}$ spectrum, dubbed X(5568), $\Gamma = 22 \pm 7 \text{MeV}$, $\sigma(X)/\sigma(B_s^0) = 0.086 \pm 0.022$

Uniquely interesting:

- 4-flavour quark content: $b\bar{s}u\bar{d}$
- Mass dominated by single heavy quark LHCb checked with 20x larger $B_s^0 \rightarrow J/\psi\phi$, $D_s^-\pi^+$ sample

X(5568) **not confirmed**, find $\sigma(X)/\sigma(B_s^0) < 0.02$

Structures in the $B_s^0 \pi^{\pm}$ spectrum

Lastest news on the X(5568):

CDF finds no evidence and sets limit on $\sigma(X)/\sigma(B_s^0) < 0.067$

CMS finds no evidence and sets limits on $\sigma(X)/\sigma(B_s^0) < 0.010$

D0 confirms the observation with semileptonic B_s^0 decays

Rolf Oldeman - Hadron spectroscopy at LHCb - Bormio 2018

Pentaquarks

5-quark $qqqq\bar{q}$ states A bit of a rocky history with many unconfirmed claims:

2002-2003: >10 claims of $\Theta^+(1540) \rightarrow nK^+$, pK^0

also peaks in $\Xi^-\pi^-$ and $D^{*-}p$

None of the claims confirmed with overwhelming ($>10\sigma)$ significance

Soon many null-results came in

later also by high-stat runs of experiments that claimed original observations

ЕРЈНЗ7 (2012) 1.

$J/\psi p$ resonances in $\Lambda_b^0 \rightarrow J/\psi p K^-$

Large (26K) clean $(S/B \sim 20)$ sample of $\Lambda_b^0 \rightarrow J/\psi p K^-$ decays with intriguing Dalitz plot

Fit to 6D amplitude model *helicity formalism + BW*

Model with only $\Lambda^* \rightarrow pK^$ resonances gives very poor description.

Fit much improved when adding two $J/\psi p$ resonances

 $P_c(4380)$: $\Gamma \approx 200$ MeV, 9σ

 $P_c(4450)$: $\Gamma \approx 40$ MeV, 12σ

phase motion consistent with BW

Model-independent confirmation

2D analysis in $m_{pK},\cos\theta_{\Lambda^*}$ efficiency corrections in 6D

Expand in Legendre polynomials

$$dN/d\cos\theta_{A^*} = \sum_{l=0}^{l_{\max}} \langle P_l^U \rangle P_l(\cos\theta_{A^*})$$

$$l_{max} = 3 \ (m_{pK} < 1.64) \ - \ 9 \ (m_{pK} > 2.05)$$

Compare to data, projected on $m_{J/\psi p}$ or $m_{J/\psi K}$

Demonstrated that $\Lambda_b^0 \rightarrow J/\psi p K^$ cannot be described by $pK^$ contributions alone.

- $> 9\sigma$ incompatible in $m_{J/\psi p}$
- $> 5\sigma$ incompatible in $m_{J/\psi K}$

PRL117, 082002 (2016), arXiv:1604.05708

PQ in other channels

 $\Lambda_b^0 \to J/\psi p\pi^-$: smaller yield than $\Lambda_b^0 \to J/\psi pK^-$

6D amplitude fit improves when including $P_c(4450)$ and $P_c(4380)$ and/or $Z_c(4200)^-$ tetraquark Phys. Rev. D90 (2014) 112009, arXiv:1408.6457.

3.3 σ evidence for sum of PQ, assuming no $Z_c(4200)^-$

PRL 117, 082003 (2016), arXiv:1606.06999

Weakly decaying bflavoured pentaquarks

Skyrme model : heavy quarks give tightly bound PQ

arXiv:1712.08086, submitted to PRD

Search for masses below strong decay threshold

Mode	Quark content	Decay mode	Search window
Ι	$\overline{b}duud$	$P^+_{B^0p} \to J/\psi K^+\pi^- p$	$46686220~\mathrm{MeV}$
II	$b\overline{u}udd$	$P_{\Lambda^0_{\mu}\pi^-}^{-} \rightarrow J/\psi K^-\pi^- p$	$46685760~\mathrm{MeV}$
III	$b\overline{d}uud$	$P^{+}_{\Lambda^0_{\rm h}\pi^+} \to J/\psi K^-\pi^+ p$	$46685760~\mathrm{MeV}$
\mathbf{IV}	$\overline{b}suud$	$P^{+}_{B^{0}_{s}p} \rightarrow J/\psi \phi p$	5055–6305 ${\rm MeV}$

Measure
$$R = \frac{\sigma(pp \to P_B X) \cdot \mathcal{B}(P_B \to J/\psi X)}{\sigma(pp \to \Lambda_b^0 X) \cdot \mathcal{B}(\Lambda_b^0 \to J/\psi K^- p)}$$

Weakly decaying b-flavoured pentaquarks

arXiv:1712.08086, submitted to PRD **3fb**⁻¹ @ 7 and 8 TeV

No evidence for signal, limits on R<10⁻²-10⁻³

Rolf Oldeman - Hadron spectroscopy at LHCb - Bormio 2018

Outlook

New data

Run 2 continues in 2018, already >2xRun 1 New channels

Many combinations still unexplored New triggers and data formats Store B or D with few tracks only

New detector

Upgrade with 40MHz readout, 5xL ready in 2021 Ideas, R&D for phase-2 upgrade another 5xL aim for Run 5, 2031 New people with new ideas

Conclusions

- Large HF data samples from LHCb used for detailed spectroscopy measurements
- Existence of baryons beyond mesons and baryons now well established
- Keep going on with new data, and new ideas

BACKUP

Rolf Oldeman - Hadron spectroscopy at LHCb -Bormio 2018

Experimental considerations

- Lifetime key to identifying weakly decaying charm ($c\tau \sim 0.3 1.2$ mm) and beauty ($c\tau \sim 1.5$ mm) hadrons
- A HF hadron decay results in tracks with a large impact parameter that fit to a secondary vertex that point back to the primary *pp* vertex
- The $J/\psi \rightarrow \mu^+\mu^-$ decay is particular enough that it can be identified even if produced promptly
- Identifying a track as π , K or p is key to suppressing peaking backgrounds
- Charm data samples too large to store full events

TURBO/TURBO++: record only reconstructed candidate or candidate + nearby tracks

