

Istituto Nazionale di Fisica Nucleare

Underground Nuclear Astrophysics: Present and future of the LUNA experiment Carlo Gustavino INFN Roma

56th International Winter Meeting on Nuclear Physics, 23-27 January 2018, Bormio – Italy

Why Nuclear astrophysics?

Nuclear reactions are responsible for the synthesis of the elements in the celestial bodies and BBN: **High precision data are required**

- Understanding the Sun
- Stellar population
- Evolution and fate of stars
- Big Bang Nucleosynthesis
- Isotopic abundances in the cosmos
- Cosmology
- Particle Physics
- Theoretical nuclear physics

Why Underground Measurements?

Very low cross sections because of the Coulomb barrier Underground accelerator to reduce the background induced by Cosmic Rays

Gran Sasso National Laboratories

LUNA M

2019→.

Background reduction with respect to Earth's surface: $\mu \sim 10^{-6}$

 $\gamma \sim 10^{-2} - 10^{-5}$ neutrons $\sim 10^{-3}$

LUNA 50 kV 1991-2001

> LUNA 400 kV 2000→...

Gran Sasso Laboratory

Background @ Gran Sasso

Passive shielding is more effective underground since the μ flux, that create secondary γ s, is suppressed.

Hydrogen **Burning**

pp-chain, **CNO cycles** Ne-Na cycle Mg-Al cicle -Stellar evolution

Many rections regulating the Hydrogen burning in stars have been studied by LUNA:

- ..With outstanding results related to:
- -Mixing parameters of solar neutrinos
- -Age of Universe
- -Isotopic abundances.
- -Temperature and metallicity of Sun

C.Gustavino

LUNA 50 kV

1991: Birth of underground Nuclear Astrophysics. Thanks to E. Bellotti, C. Rolfs and G. Fiorentini

 ${}^{3}\text{He}({}^{3}\text{He},2p){}^{4}\text{He} \quad (\text{solar }\nu) \\ {}^{2}\text{H}(p,\gamma){}^{3}\text{He} \qquad (\text{BBN})$

 $\begin{array}{l} E_{beam} \approx 1-50 \ keV \\ I_{max} \approx 500 \ \mu A \ protons, \ ^{3}He \\ Energy \ spread \approx 20 \ eV \end{array}$

C.Gustavino

Solar Neutrinos

In the Sun, 98% of neutrinos are produced by the p-p chain.

Following the Fowler idea, a natural way to explain the observed neutrino deficit was the existence of a narrow resonance inside the ³He+³He solar gamow peak

C.Gustavino

³He(³He,2p)⁴He reaction

-First measurement below the Gamow peak

-2 events/month @ E_{cm} =16,5 keV \rightarrow s(16,5 keV)=20±10 fb

-No evidence for a narrow resonance \rightarrow SSM validation

-LUNA measurement "triggered" the second generation of solar neutrino experiment (Borexino, Kamland, SNO), focused on the measurement of v's mixing parameters

LUNA 400 kV

Still the word's only underground accelerator

¹⁴N(p,γ)¹⁵O ³He(⁴He,γ)⁷Be ²⁵Mg(p,γ)²⁶Al ¹⁷O(p,γ)¹⁸F ²H(⁴He,γ)⁶Li ²²Ne(p,γ)²³Na 2 H(p, γ) 3 He ¹³C(α ,n)¹⁶O (s-process) $^{12,13}C(p,\gamma)^{13,14}N$ ($^{12}C/^{13}C$ ratio) ²²Ne(α,γ)²³Na

(CNO-I cycle) (Sun, BBN) (Mg-Al Cycle) ¹⁵N(p,γ)¹⁶O (CNO-II Cycle) (CNO-III Cycle) (BBN) (Ne-Na Cycle) (BBN) (s-process)

 $E_{\text{beam}} \approx 50 - 400 \text{ keV}$ $I_{max} \approx 300 \ \mu A$ protons,⁴He Energy spread \approx 70 eV

C.Gustavino

Hydrogen burning cycles

$^{17}O(p,\gamma)^{18}F$ and $^{17}O(p,\alpha)^{14}N$ reactions

$^{17}O(p,\gamma)^{18}F$ and $^{17}O(p,\alpha)^{14}N$ reactions

Bruno et al EJPA 51 (2015) 94

- protective aluminized Mylar foils (2.4 μ m) before each detector
- expected alpha particle energy E ~ 200 keV (from 70 keV resonance)

¹⁷O(p, γ)¹⁸F and ¹⁷O(p, α)¹⁴N reactions

Di Leva et al., PRC 89 (1) (2014) 015803 Scott et al., PRL 109 (20) (2012) 202501

LUNA rate is a factor of 2 higher than the rate previously adopted, compatible with the hypothesis of oxygen enriched pre-solar grains in group II produced by massive AGB stars

Bruno et al., PRL 117, 142502 (2016) Lugaro et al., Nature Astronomy 1, 0027 (2017)

Big Bang Nucleosynthesis

BBN is the result of the competition between the relevant nuclear processes and the expansion rate of the early universe:

$$H^2 = \frac{8\pi}{3}G\rho$$

$$\rho = \rho_{\gamma} \left(1 + \frac{7}{8} \left(\frac{4}{11} \right)^{4/3} N_{\text{eff}} \right)$$

Calculation of primordial abundances only depends on: -Baryon density Ω_b -Particle Physics (N_{eff}, α ...) -Nuclear Astrohysics, i.e. Cross sections of relevant processes at BBN energies

³He(α , γ)⁷Be reaction

-LUNA data well inside the BBN energy region

-Low uncertainty (4%)

-Simultaneous measurement of prompt and delayed γs

→ Consolidation of "Lithium Problem"

C.Gustavino

$D(\alpha,\gamma)^{6}Li$ reaction

First measurement in the BBN energy region \rightarrow LUNA data exclude a nuclear solution for the ⁶Li problem...

C.Gustavino

$D(p,\gamma)^{3}$ He reaction

C.Gustavino

D(p,γ)³He reaction @ LUNA400

Reaction	Rate Symbol	$\sigma_{^{2}\mathrm{H/H}} \cdot 10^{5}$
$p(n,\gamma)^2 \mathbf{H}$	R_1	± 0.002
$d(p,\gamma)^3$ He	R_2	± 0.062
$d(d,n)^3$ He	R_3	± 0.020
$d(d,p)^{3}\mathrm{H}$	R_4	± 0.013

(Di Valentino, C.G. et al. 2014)

-The error budget of computed abundance of deuterium is mainly due to the $D(p,\gamma)^{3}He$ reaction -measurements (9% error) NOT in agreement with recent "Ab-Initio" calculations.

Measurement goal:

-Cross section measurement at $30 < E_{cm} < 260$ with ~ 3% accuracy -Differential cross section measurement at $100 < E_{cm} < 260$

Physics:

-Cosmology: measurement of Ω_b . -Neutrino physics: measurement of N_{eff} . -Nuclear physics: comparison of data with "ab initio" predictions.

C.Gustavino

$D(p,\gamma)^{3}$ He reaction: Ω_{b} and N_{eff}

 $100\Omega_{b,0}h^2(CMB)=2.22\pm0.02$ (PLANCK2015)

-Deuterium adundance also depends on the density of relativistic particles, (photons and 3 neutrinos in SM). Therefore it is a tool to constrain "dark radiation". Assuming literature data for the $D(p,g)^{3}He$ reaction:

 N_{eff} (BBN) = 3.57±0.18 (Cooke&Pettini 2013) N_{eff} (CMB) = 3.36±0.34 (PLANCK 2013) N_{eff} (SM) = 3.046

$D(p,\gamma)^{3}$ He reaction: setup

Next: LUNA MV

Funded by the Italian Research Ministry as a "premium project". First run scheduled in june 2019.

Terminal Voltage $\approx 0.2 - 3.5 \text{ MeV}$ I max $\approx 100\text{-}1000 \ \mu\text{A}$ protons,⁴He,¹²C⁺,¹²C⁺⁺

C.Gustavino

- Critical mass for the fate of a star
 - Population of WD, novae, SN1a, SN, NS and BH.
 - Duration of quiescent carbon burning
 - Complex chains involving $C \rightarrow Si$ nuclei
 - Affects s-process
 - Strongly affects the abundance of elements
 - Type 1a supernovae outcomes

C.Gustavino

s-process

¹³C(α ,n)¹⁶O →LUNA 400 and LUNA-MV ²²Ne(α ,n)²⁵Mg →LUNA-MV

The LUNA collaboration

- A. Best, A. Boeltzig*, G.F. Ciani*, A. Formicola, I. Kochanek, M. Junker, L. Leonzi | INFN LNGS /*GSSI, Italy
- D. Bemmerer, M. Takacs, T. Szucs | HZDR Dresden, Germany
- C. Broggini, A. Caciolli, R. Depalo, P. Marigo, R. Menegazzo, D. Piatti | Università di Padova and INFN Padova, Italy
- C. Gustavino | INFN Roma1, Italy
- Z. Elekes, Zs. Fülöp, Gy. Gyurky MTA-ATOMKI Debrecen, Hungary
- M. Lugaro | Monarch University Budapest, Hungary
- O. Straniero | INAF Osservatorio Astronomico di Collurania, Teramo, Italy
- F. Cavanna, P. Corvisiero, F. Ferraro, P. Prati, S. Zavatarelli | Università di Genova and INFN Genova, Italy
- A. Guglielmetti, D. Trezzi | Università di Milano and INFN Milano, Italy
- A. Di Leva, G. Imbriani, | Università di Napoli and INFN Napoli, Italy
- G. Gervino | Università di Torino and INFN Torino, Italy
- M. Aliotta, C. Bruno, T. Davinson | University of Edinburgh, United Kingdom
- G. D'Erasmo, E.M. Fiore, V. Mossa, F. Pantaleo, V. Paticchio, R. Perrino, L. Schiavulli, A. Valentini Università di Bari and INFN Bari, Italy