Characteristics of charmonium production in Pb—Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV measured with ALICE

Pascal Dillenseger

for the ALICE Collaboration

56th International Winter Meeting on Nuclear Physics
22-Jan-2018 Bormio, Italy
Some time ago …

1974:
Discovery of the J/ψ
Sam Ting et al.
Burton Richter et al.

1986:
J/ψ suppression as signature of a QGP formation
Tetsuo Matsui & Helmut Satz

Quarkonium as QGP thermometer

J/ψ R_{AA} from RHIC to LHC

- LHC data show **less** J/ψ suppression at $p_T < 8$ GeV/c than
 - RHIC data
 - expected from colour screening

$R_{AA} = \frac{Y_{AA}}{\langle T_{AA} \rangle \sigma_{pp}}$

Y_{AA} - J/ψ yield

T_{AA} - nuclear overlap function

ALI-DER-112313
So where do the J/ψ come from?
A possible solution... (re)combination

Start of collision
Development of quark-gluon plasma
Hadronization

Low (RHIC) energy

High (LHC) energy

(Re)combination of c\bar{c}-quarks

Models containing a (re)combination component can explain the data

Characteristics of charmonium production in Pb—Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV measured with ALICE - Pascal Dillenseger
(Re)combination of c\bar{c}-quarks

Due to the uncertainties no discrimination power between the models
Extended J/ψ observables

More discrimination power at the poster