

Istituto Nazionale di Fisica Nucleare

Open heavy-flavour production in pp, p–Pb and Pb–Pb collisions in ALICE

Jeremy Wilkinson (INFN, Bologna) on behalf of the ALICE Collaboration

Bormio Winter Meeting 26/01/2018

Why open heavy flavour in ALICE?

- Heavy-flavour (charm & beauty) production offers a unique probe into the properties of the Quark-Gluon Plasma (QGP) formed in heavy-ion collisions
- pp: cross section serves as test of pQCD calculations & important baseline for quarkonia
- p-Pb: moderate number of binary collisions ($\langle N_{coll} \rangle \approx 7$); small system, medium effects expected to be small (if any)
 - → Comparisons of results (such as nuclear modification factors) in p-Pb and Pb-Pb disentangle in-medium effects from cold nuclear matter effects
 - → Study possible collectivity in small systems
- Pb-Pb: study in-medium effects
 - → Due to large masses, charm and beauty quarks are produced in the **early stages** of the collision.
 - → Expected hierarchy of energy loss due to dead cone and colour charge effects: $\Delta E(g) > \Delta E(u,d,s) > \Delta E(c) > \Delta E(b)$

Blue: D⁰, Red: D⁺; Solid: Direct production, Hollow: feed-down from resonant state) Ratios: **Phys.Rev. D86, 010001 (2012)**

Three main reconstruction methods: → Hadronic decays of D mesons & Λ_c baryons:

$$\begin{array}{l} D^{0} \rightarrow {\sf K}^{-}\pi^{+} \ ({\sf BR}=3.93\,\pm 0.04\%; \ {\sf cT}\approx 123\ \mu{\sf m}) \\ D^{+} \rightarrow {\sf K}^{-}\pi^{+}\pi^{+} \ ({\sf BR}=9.46\,\pm 0.24\%, \ {\sf cT}\approx 312\ \mu{\sf m}) \\ D^{*+} \rightarrow D^{0}\pi^{+} \ ({\sf BR}=67.7\,\pm 0.5\%) \\ D^{+}_{s} \rightarrow \varphi\pi^{+} \rightarrow {\sf K}^{+}{\sf K}^{-}\pi^{+} \ ({\sf BR}=2.27\,\pm 0.08\%, \ {\sf cT}\approx 150\ \mu{\sf m}) \\ \Lambda^{-+}_{c} \rightarrow p{\sf K}\pi \ ({\sf BR}=6.35\%); \ \Lambda^{-+}_{c} \rightarrow p{\sf K}^{-0}_{s} \ ({\sf BR}=1.58\%) \\ ({\sf and respective charge conjugates}) \\ \end{array}$$

$$c \rightarrow e^{\pm} + X (BR \approx 10\%), b \rightarrow e^{\pm} + X (BR \approx 11\%)$$

$$\Lambda_{c}^{+} \rightarrow e^{+}\nu_{e} \Lambda (BR = 3.6\%)$$

$$\Xi_{c}^{0} \rightarrow e^{+}\nu_{e} \Xi^{-} (BR \text{ unknown})$$

→ Semileptonic decays to muons: $c \rightarrow \mu^{\pm} + X$ (BR ≈ 10%), $b \rightarrow \mu^{\pm} + X$ (BR ≈ 11%)

lazionale di Fisica Nuclea

ALICE: A Large Ion Collider Experiment

ALICE: A Large Ion Collider Experiment

Bormio Winter Meeting, 26/01/18

- Strategy: full reconstruction of hadronic decays of D mesons
 - Retains full kinematic information of original particle
- Reconstruction relies on topological + PID selections to reduce combinatorial background

- Example: D⁰ meson: non-zero lifetime; decay vertex displaced from interaction point (primary vertex)
 - → Decay length, impact parameter, pointing angle (for example) can be used to select candidates
- For D^{*+}, D⁰ candidate paired with soft π⁺ at primary vertex
- PID at mid-rapidity using TOF (where available) + TPC, with 'n σ ' PID
 - → Strong separation of pions, kaons and protons in wide momentum range
- For Λ_c baryon: combination of direct reconstruction and machine learning techniques using Toolkit for Multivariate Analysis (TMVA) [PoS ACAT:040,2007]

Bormio Winter Meeting, 26/01/18

D mesons in pp collisions

- D mesons measured in pp collisions at $\sqrt{s} = 7, 8 \& 13 \text{ TeV}$
- D⁰ mesons measured down to $p_{\rm T}$ = 0 using non-topological analysis; allows full mid-rapidity cross section to be measured without extrapolation
- Described within uncertainties by pQCD calculations at all energies

[1]: Eur. Phys. J. C77 (2017) 550

- Nuclear modification factor R_{pPb} : shows modification of spectrum compared to • pp collisions (=1 in case of no initial-state nuclear effects)
- Run-2 data: factor ~2 improvement in statistics
- D-meson species consistent with unity (both strange and non-strange); • described well by models including initial- and final-state effects

Bormio Winter Meeting, 26/01/18

Jeremy Wilkinson

35

Heavy-flavour decay leptons in p-Pb collisions

- Electrons from beauty decays: R_{ppb} consistent with unity and models
 - No significant cold nuclear matter effects seen for either charm or beauty

[JHEP 07 (2017) 052]

Bormio Winter Meeting, 26/01/18

Heavy-flavour decay leptons in p-Pb collisions

- Muons from heavy-flavour decays measured at forward (p-going) and backward (Pb-going) direction
 - \rightarrow Probes lower and higher Bjorken-x in Pb nucleus
- Forward rapidity: R_{pPb} consistent with unity for all p_T
- Backward: R_{pPb} tends above unity at low p_T (2-sigma effect); consistent with unity at higher p_T
 - \rightarrow Suppression at high p_{T} in Pb-Pb collisions is due to final-state effects

- Multiplicity dependence: examine correlation between heavy-flavour production & overall charged particle production
- "Self-normalised yield": a y = x trend (dashed line) would mean same degree of scaling between heavy quarks and light quarks
- Faster than linear increase is seen for D mesons and beauty hadrons (which dominate semileptonic decays at high p_{T}) in both pp and p-Pb collisions
 - → Increased rate of HF production in high-multiplicity events, where multiparton interactions play essential role
- Data described better by EPOS generator when hydrodynamic effects are considered.

Bormio Winter Meeting, 26/01/18

Heavy flavours as a function of multiplicity

• Multiplicity dependence also studied for J/ψ in pp collisions at $\sqrt{s} = 13$ TeV; similar trend seen as for D mesons

Azimuthal correlations in p-Pb collisions

- Baseline-subtracted per-trigger azimuthal correlation of heavy-flavour decay electrons with charged particles measured from low- to high-multiplicity events
- v_2 : "elliptic flow" coefficient; measures degree of anisotropy in collision
- Positive v_2 {2,sub}, similar to charged particles
 - → Initial-state effects, possible collective effects in small systems?

tituto Nazionale di Fisica Nuclear

- First mid-rapidity measurement of Λ_c production at LHC
- Cross section underestimated by pQCD (GM-VFNS) & Monte Carlo (POWHEG+PYTHIA) models
- R_{pPb} of Λ_c⁺ baryons consistent with D mesons & unity within uncertainties; also consistent with models

arXiv:1712.09581 [nucl-ex]

Charmed baryons in pp & p–Pb collisions

- Ξ_c^0 baryon in pp collisions at $\sqrt{s} = 7$ TeV, using semileptonic decay channel ($\Xi_c^0 \rightarrow e^+\Xi^-\nu_e$)
- First measurement of Ξ_c^0 baryon production at LHC

Bormio Winter Meeting, 26/01/18

Istituto Nazionale di Fisica Nuclea

- Baryon-to-meson ratio sensitive to hadronisation mechanisms
- Λ_c/D^0 ratio consistent in pp & p–Pb collisions; no significant evidence of p_T dependence with current uncertainties
- Both baryons in both systems underestimated by model calculations

arXiv:1712.04242 [hep-ex], arXiv:1712.09581 [nucl-ex]

Bormio Winter Meeting, 26/01/18

tituto Nazionale di Fisica Nuclea

D mesons in Pb–Pb collisions

- D mesons measured in Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76 \& 5.02 \text{ TeV}$
- Nuclear modification factor (R_{AA}) shows strong suppression of D mesons in Pb–Pb collisions w.r.t. pp collisions
- Suppression independent of energy, but increases for more central collisions
- Described by model calculations

Bormio Winter Meeting, 26/01/18

Strange D mesons in Pb–Pb collisions

- D_{s}^{+} mesons measured in Pb–Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV
- Hint towards lower level of suppression for strange than non-strange D mesons at intermediate $p_{\rm T}$
 - → Indicates possible role of recombination in charm hadronisation

stituto Nazionale di Fisica Nuclear

Heavy-flavour decay leptons in Pb-Pb collisions

- Heavy suppression of electrons (muons) from charm and beauty decays at mid- (forward) rapidity in central collisions
- Beauty decay electrons separated from charm using fits to impact parameter distributions at 2.76 TeV; hint of higher R_{AA} for beauty than charm
 - → consistent with expectation from mass dependence of energy loss

JHEP 07 (2017) 052

Heavy-flavour v₂ in Pb–Pb collisions

- (left): compatible between all species, significantly above unity
- v_2 also consistent between 10-30% and
 - 30-50% centrality classes for D⁰ mesons
 - → implies strong interaction between charm quarks and medium

arXiv:1707.01005 [nucl-ex]

Bormio Winter Meeting, 26/01/18

Jeremy Wilkinson

20 / 21

- Open heavy flavour production in pp collisions described by perturbative QCD
- First measurement of $\Lambda_{_{\rm C}}$ (at mid-rapidity) and $\Xi_{_{\rm C}}$ in LHC: baryon-to-meson ratio underpredicted by models
- p–Pb: nuclear modification factor consistent with unity; suppression in Pb–Pb collisions due to final-state effects
- Strong suppression of D-meson yields in Pb–Pb collisions, but with hint of smaller suppression for strange D mesons → possible recombination effects
- Outlook:
 - → Improved pp reference at 5.02 TeV will allow refinements to R_{pPb} and R_{AA} to better understand nuclear effects
 - → New measurements of Λ_c production in pp collisions at 5 and 13 TeV, p-Pb collisions (run 2, x6 more statistics), and Pb-Pb collisions
 - → Measurements of charm and beauty jet properties in pp, p-Pb and Pb-Pb (ongoing)
 - → Towards Run 3: ITS and TPC upgrades will allow direct reconstruction of B mesons

Bormio Winter Meeting, 26/01/18

– Backup –

Bormio Winter Meeting, 26/01/18

Jeremy Wilkinson

22 / 21

Comparison of Λ_c with LHCb

- LHCb pp results: lower baryon-to-meson ratio than ALICE; significant difference seen in rapidity trend
- Effect not seen in preliminary p–Pb results from LHCb; ratio more consistent with ALICE results

NFN D-hadron azimuthal correlations in p–Pb collisions

- Azimuthal correlation of D mesons with charged hadrons studies modification of jet fragmentation
- Near-side studies modification of parton fragmentation
- Away-side: check for yield suppression; probes pathlength dependence of energy loss
- No modification seen in p–Pb collisions with respect to pp baseline

[Eur. Phys. J. C 77 (2017) 245]

Bormio Winter Meeting, 26/01/18

24 / 21

D-tagged jets

- Ongoing analysis of D⁰ and D*+-tagged jets in pp collisions to study charm-quark fragmentation
- Anti-k_T algorithm for jet finding
- Jet cross section consistent with predictions within uncertainties

