Inclusive J/ ψ and ψ (2S) production in p-Pb collisions with ALICE at the LHC

Biswarup Paul University and INFN Torino, Italy On behalf of the ALICE Collaboration

56^{th} International Winter Meeting on Nuclear Physics, Bormio, Italy $22^{\text{th}} - 26^{\text{th}}$ January 2018

UNIVERSITÀ DEGLI STUDI DI TORINO

p-Pb collisions

- → We study p-A collisions to understand Cold Nuclear Matter (CNM) effects such as nuclear parton shadowing/color glass condensate, energy loss and comovers absorption
- → No Quark-Gluon Plasma (QGP) is expected to be produced in p-A collisions. So, the measurement of CNM effects in p-A collisions is important to quantify the QGP effects in A-A collisions
- \rightarrow Quarkonium in ALICE can be measured in two ways:

Central Barrel: $J/\psi \to e^+e^- (|y| < 0.9)$ Forward muon arm: $J/\psi \to \mu^+\mu^- (2.5 < y < 4)$

→ p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ and 8.16 TeV

→ ALICE data are collected with two beam configurations: p-Pb and Pb-p, with Δy = 0.465

- Clear J/ ψ suppression at forward rapidity, and compatible with unity at backward rapidity
- Compatible R_{pPb} at $\sqrt{s_{NN}} = 5.02$ and 8.16 TeV even if x_F coverage is slightly different
- Good agreement between data and models based on shadowing and/or energy loss, CGC, comover and tranport

$\psi(2S) R_{pPb}$

- $\psi(2S)$ suppression is stronger than the J/ ψ one
- Theoretical predictions based on shadowing and energy loss can not describe the stronger $\psi(2S)$ suppression, especially at backward rapidity
- Models including final-state effects reproduce $\psi(2S)$ behaviour both at $\sqrt{s_{NN}} = 5.02$ and 8.16 TeV

Bormio, Italy

Conclusions

- J/ψ shows a suppression with a strong kinematic dependence, with a similar pattern at the two centre-of-mass energies
- Theoretical models based on shadowing and/or energy loss are in fair agreement with J/ ψ results but cannot explain the $\psi(2S)$ suppression
- Final-state effects needed to explain $\psi(2S)$ suppression

Thank you