

Flavour results at LHCb

P. de Simone (LNF-INFN), on behalf of the **LHCb collaboration**

56th International Winter Meeting on Nuclear Physics, 22-26 January, 2018

outline

LHCb have made a significant impact on the flavour physics landscape

demonstrating its capability to test the Standard Model (SM) and, potentially, to reveal new physics (NP) effects in the flavour sector

✓ huge production of new results → only in 2017 more than 50 papers

✓ for this talk I selected few analysis between the most recent and intriguing *from my point of view !*

1) CKM physics

- \checkmark updated γ combination
- ✓ first measurement of ϕ_s using $B_s \rightarrow (K^+\pi^-)(K^-\pi^+)$ decays

2) measurements in specific sectors where anomalies are emerging in recent years

- ✓ lepton-flavour universality in $b \rightarrow c\tau v_{\tau}$: R(D^{*}), R(J/ ψ)
- ✓ lepton-flavour universality in b → sll : R_{K} , $R_{K^{*0}}$

multi-stage trigger first hardware, subsequent two levels are software

- Vertexing proper time resolution 30-50 fs
- Tracking $\Delta p/p = 0.35 0.55 \%$ $\sigma(mass) = 10 25 \text{ MeV/c}^2$
- RICH KaonID $\varepsilon(K \rightarrow K) \approx 95\%$ misID rate $(\pi \rightarrow K) \approx 5\%$
- ECAL $\sigma(E)/E = 10\%/VE \oplus 1.\%$ HCAL $\sigma(E)/E = 69\%/VE \oplus 9\%$
- MuonID $\epsilon(\mu \rightarrow \mu) \approx 97\%$ misID rate $(\pi \rightarrow \mu) = 1-3\%$

updated y combination

 $\gamma = \arg(-V_{ud}V_{ub}^*/V_{cd}V_{cb}^*)$

 CKM matrix conveniently represented by Unitarity Triangles (UT)
 consistency of measurements provides test of SM

• γ is still the least well-known angle of the UT, $\delta\gamma \sim 7^{\circ}$ *LHCb*[*JHEP 12 (2016) 087*] • compare with the value inferred from indirect CKM global fits, $\delta\gamma \sim 2^{\circ}$ *loop processes which give* β , $\Delta m_s \& \Delta m_{d'}$ *are New Physics sensitive*

we must strive to push tree level measurements below 2°

$\gamma = arg(-V_{ud}V_{ub}^*/V_{cd}V_{cb}^*)$

• γ is still the least well-known angle of the UT, $\delta\gamma \sim 7^{\circ}$ *LHCb[JHEP 12 (2016) 087]* • measurements of γ from B decays mediated only by tree level transitions theoretically clean $\delta\gamma/\gamma \leq O(10^{-7})$ [*JHEP 1401(2014) 051*] • γ can be determined exploiting the interference between b→c and b→u transitions, eg: B[±] → Dh[±], B⁰ → DK^{*0}, B⁰ → DK^{+ π -</sub>, ... where D refers a mixture D⁰ and D⁰ flavour eigenstates}

Small signal yields (BR ~ 10⁻⁷), small interference effects (~10%) \leftarrow determine γ through a *combination of measurements from the analyses of a plethora of decay modes*

γ using partial reconstruction of $B^{\pm} \rightarrow D^{*}h^{\pm}(h=K,\pi)$

- \checkmark the D⁰ meson is reconstructed in CP eigenstates KK, $\pi\pi$
- ✓ BR(D^{*}→D⁰ π^{0}) = (64.7 ± 0.9)%, 5fb⁻¹ **LHCb**[PLB 777(2018)16] $BR(D^* \rightarrow D^0 \gamma) = (35.3 \pm 0.9)\%$ Events / (10 MeV/ c^2) LHCb 800 **LHCb** 600 B-→[K+K-]_DK- $B^+\rightarrow [K^+K^-]_{D}K^+$ limited efficiency reconstruction 400 $\rightarrow \epsilon(\pi^0) \sim 4^{\circ}/_{\circ}$ and $\epsilon(\gamma) \sim 20^{\circ}/_{\circ}$ 200 **LHCb LHCb** partially reconstruct and 10000 select identically to $B^{\pm} \rightarrow Dh^{\pm}$ B-→[K+K-]_Dπ⁻ $B^+\rightarrow [K^+K^-]_{D}\pi^+$ 5000 $B^{\pm} \rightarrow Dh^{\pm} and B^{\pm} \rightarrow D^{*}h^{\pm} end up in$ ۲ 5000 5200 5400 5600 5000 5200 5400 5600 $m(Dh^{\pm})$ [MeV/ c^2] the same selected sample \rightarrow differentiate between them $B^{\pm} \rightarrow (D^{*0} \rightarrow D^0 \pi^0) h^{\pm}$ $B \to D^* h^{\pm} \pi$ - $B^{\pm} \rightarrow D\pi^{\pm}$ based on their m(Dh) uniquely $B^0 \to (D^{*\mp} \to D^0 \pi^{\mp}) h^{\pm}$ $B^0_s \to D^0 K^{\pm} \pi^{\mp}$ • $B^{\pm} \rightarrow DK^{\pm}$ related to angular properties $B^{\pm} \rightarrow (D^{*0} \rightarrow D^0 \gamma) h^{\pm}$ $\Lambda_b \to \Lambda_c h^{\pm}$ Charmless of D^{*} decay daughters $B^{\pm} \rightarrow D^0 h^{\pm} \pi^0$ Part. reco. mis-ID Combinatorial

 $B^{\pm} \rightarrow D^{*}h^{\pm}$ modes measured for the first time at LHCb and using a **brand new technique** !

• fully reconstructed $B^{\pm} \rightarrow D^0 h^{\pm}$ results are measured with the same fit

• D^0 decays to not-CP eigenstates, eg. $D^0 \rightarrow K\pi$, are under investigation 25/01/18

state of art of $\boldsymbol{\gamma}$

(a) $\gamma \rightarrow$ obtained with a statistical combination using observables from several LHCb analyses (b) previous combination was entirely based on Run 1 measurements, 3 fb⁻¹, LHCb[JHEP 12 (2016) 087] (c) an update has been performed, which includes the following:

- ◎ 71 observables and 32 parameters

uncertainty reduced by ~1.7° relative to previous combinationLHCb combination direct $\gamma = (76.8^{+5.1}_{-5.7})^{\circ}$ [LHCb-CONF-2017-004]

LHCb precision ~5.5° dominates world average $\gamma = (76.2^{+4.7}_{-5.0})^{\circ}$ [arXiv:1612.07233]HFLAV CKM 2017 world average direct $\gamma = (65.3^{+1.0}_{-2.5})^{\circ}$ [CKMfitter group]

strongly motivates the continued pursuit of $\boldsymbol{\gamma}$ with trees

first measurement of ϕ_s^{dd} using B_s \rightarrow (K⁺ π^-)(K⁻ π^+) decays

• first decay-time-dependent amplitude analysis of $B_s \rightarrow (K\pi)(K\pi)$ decays using a $K\pi$ mass window from 750 to 1600 MeV/ $c^2 \rightarrow \sim$ four-fold increase of the signal sample size with respect to a narrow window around the K^{*0} mass

- <u>**3 fb**-1</u> from the Run1 data sample
- 9 different angular analysis of quasi-2-body decay channels → Kπ pairs with spin 0, 1 or 2 *assumption: common CP-violating parameters for the contributing amplitudes* Decay Mode $j_1 \ j_2$ Allowed values of h amplitudes

es	Decay	Mode	j_1	j_2	Allowed values of h	Number of amplitudes
_	$B_s^0 \to (K^+ \pi^-)_0^* (K^- \pi^+)_0^*$	scalar-scalar	0	0	0	1
/	$B_s^0 \to (K^+ \pi^-)_0^* \overline{K}^* (892)^0$	scalar-vector	0	1	0	1
/	$B_s^0 \to K^*(892)^0 (K^- \pi^+)_0^*$	vector-scalar	1	0	0	1
	$B_s^0 \to (K^+\pi^-)_0^* \overline{K}_2^* (1430)^0$	scalar-tensor	0	2	0	1
	$B_s^0 \to K_2^* (1430)^0 (K^- \pi^+)_0^*$	tensor-scalar	2	0	0	1
	$B_s^0 \to K^*(892)^0 \overline{K}^*(892)^0$	vector-vector	1	1	$0, \ , \bot$	3
	$B_s^0 \to K^*(892)^0 \overline{K}_2^*(1430)^0$	vector-tensor	1	2	$0, \ , \bot$	3
	$B_s^0 \to K_2^* (1430)^0 \overline{K}^* (892)^0$	tensor-vector	2	1	$0,\parallel,\perp$	3
	$B_s^0 \to K_2^* (1430)^0 \overline{K}_2^* (1430)^0$	tensor-tensor	2	2	$0, \ _1, \bot_1, \ _2, \bot_2$	5
						1.0

25/01/18

the result

large computational load due to the complexity of the unbinned maximum likelihood fit → *parallelization of the calculus on a GPU*

first measurement of the CP-violating phase ϕ_s using $b \rightarrow d\bar{d}s$ transitions

$$\phi_s^{dd}$$
= -0.10 ± 0.13_{stat}± 0.14_{syst} rad

consistent with:

✓ SM expectation [*PRD 88 (2013) 016007*] ✓ ϕ_s^{ss} = -0.17 ± 0.15_{stat} ± 0.03_{syst} rad using B_s→ $\phi\phi$ *LHCb*[*PRD 90 (2014) 50*]

the relatively large systematic uncertainty is mainly due to the treatment of the multi-dimensional acceptance → will be significantly reduced with larger data sample

1d projections of the results in six analysis variables shown with the separate components from the contributing decay modes

LHCb [arXiv:1712.08683]

anomalies about the LFU: what's about ?

• SM features Lepton Flavor Universality (**LFU**) \rightarrow equal electroweak coupling to all charged leptons, the branching ratios to e, μ and τ differ only due to their mass *any further deviation is a key signature of physics processes beyond the SM*

recently few deviations from SM emerged in B decays

✓ tree level semileptonic $b \rightarrow c\tau v_{\tau}$ transitions, high rates O(%), well known in SM → possible NP coupling mainly to the 3rd family

✓ FCNC b→sll transitions, rare decays forbidden at the tree level $O(10^{-6})$ in SM → possible NP contributions in the loops

 $\textcircled{\sc opt}$ possible BSM scenarios: leptoquarks, new heavy vector bosons, $H^{\pm,}\ldots$

- main test variables are ratios of decay rates
 - \checkmark theoretically clean: cancellation of QCD effects
 - \checkmark experimentally clean: cancellation of efficiency and reconstruction effects

lepton-flavour universality in b $\rightarrow c\tau v_{\tau}$: R(D*), R(J/ ψ)

precise SM prediction: $R(D^*) = 0.252 \pm 0.003$

[PRD85 (2012) 094025]

 $BR(\tau \rightarrow \mu \nu_{\mu} \nu_{\tau}) = (17.39 \pm 0.04)\%$

signal and normalization decay chain with identical visible final state $\rightarrow (\pi(K\pi))\mu$

at LHCb 🗲

 \checkmark B momentum unknown in production from pp collisions at LHC

✓ <u>3 missing neutrinos</u> → no narrow peak to fit

✓ large backgrounds from part-reco B decays: $B \rightarrow D^{**} \mu \nu$, $B \rightarrow (D \rightarrow X \mu) D^*X$

 \checkmark statistics from high pp \rightarrow bb cross section at LHC

 \checkmark use B flight direction to measure transverse component of missing momentum

 \checkmark B boost along beam direction approximated with boost of the visible final state

✓ can then calculate rest frame quantities → m_{miss}^2 , E_{μ}^* , $q^2 = (p_B - p_{D^*})^2$

$R(D^*)$ from $\tau \rightarrow \mu \nu_{\mu} \nu_{\tau}$

analysis based on Run 1 dataset, 3 fb⁻¹

maximum likelihood fit to m_{miss}^2 , E_{μ}^* , q^2 distributions with 3D templates representing $B^0 \rightarrow D^* \tau v$, $B^0 \rightarrow D^* \mu v$, and background sources \checkmark background and signal shapes extracted from control samples and simulations validated against data

$$\begin{split} \mathsf{R}(\mathsf{D}^*) &= 0.336 \pm 0.027_{stat} \pm 0.030_{syst} \\ & 2.1\sigma \text{ above Standard Model} \\ & \mathsf{R}(\mathsf{D}^*)^{\mathsf{SM}} = 0.252 \pm 0.003 \end{split}$$

dominant systematics \rightarrow size of the simulation sample

this is the first measurement of a b hadron decay with a τ lepton in the final state at a hadron collider

LHCb [PRL (2015) 111803]

LHCb [arXiv:1708.08856]

- ✓ BR($\tau \rightarrow 3\pi(\pi^0)v_{\tau}$) ~ 13.9% (was ~ 17% for the muonic case)
- \checkmark no charged leptons in the final state \rightarrow no backgroud from semileptonic decays
- the 3-prong topology enables the precise reconstruction of τ vertex
 the requirement of a 3π vertex detached from B vertex suppresses D*3πX background
 by 3 orders of magnitudes retaining ~ 40% of the signal

✓ BDT technique to suppress the remaining background, that is due to $B \rightarrow D^{*-}D_{(s)}(X)$, double-charm decays (~ 10 × signal)

• experimental systematic uncertainty reduced normalizing to a decay with a very similar final state: $B^0 \rightarrow D^{*-}\pi^+\pi^-\pi^+$

$$\mathcal{K}(D^{*-}) \equiv \frac{\mathcal{B}(B^0 \to D^{*-} \tau^+ \nu_{\tau})}{\mathcal{B}(B^0 \to D^{*-} 3\pi)} = \frac{N_{\text{sig}}}{N_{\text{norm}}} \frac{\varepsilon_{\text{norm}}}{\varepsilon_{\text{sig}}} \frac{1}{\mathcal{B}(\tau^+ \to 3\pi(\pi^0)\overline{\nu}_{\tau})}$$

• derive $R(D^*)$ by dividing by known semimuonic $B^0 \rightarrow D^* \mu \nu$ branching fraction

$$\mathcal{R}(D^{*-}) = \mathcal{K}(D^{*-}) \times \mathcal{B}(B^0 \to D^{*-}3\pi) / \mathcal{B}(B^0 \to D^{*-}\mu^+\nu_\mu)$$

measure

✓ B⁰→D^{*}τν and B⁰→D^{*}3π event yields ✓ efficiencies from MC, validated using data control samples

• external inputs are $\mathcal{B}(B^0 \rightarrow D^* \mu v) = (4.88 \pm 0.10) \times 10^{-2}$ *HFLAV* [arXiv:1612.07233] $\mathcal{B}(B^0 \rightarrow D^* 3\pi) = (7.21 \pm 0.29) \times 10^{-3}$ *LHCb* [PRD 87 (2013) 092001] $\mathcal{B}(\tau \rightarrow 3\pi(\pi^0)v_{\tau}) = (13.81 \pm 0.07)\%$ *PDG* [Review of particle physics (2016)]

analysis based on Run 1 dataset, 3 fb⁻¹

signal yield from a 3D binned maximum likelihood fit to q^2 , decay time, and BDT output ✓ background and signal shapes extracted from control samples and simulations validated against data

•
$$N(B^0 \rightarrow D^* \tau v) = 1273 \pm 85$$

 $R(D^*) = 0.286 \pm 0.019_{stat} \pm 0.025_{syst} \pm 0.021_{ext}$ ~ 1. σ higher than Standard Model

compatible with the muonic channel Idominant systematics \rightarrow size of the simulation samples and external BRs

LHCb [arXiv:1708.08856]

LHCb

6

8

 $q^2 \,[{\rm GeV}^2/c^4]$

18

10

R(D^{*}) combination

LHCb combination

$R(D^*) = 0.306 \pm 0.016 \pm 0.022$

 2.1σ above Standard Model

<u>combination with R(D)</u>

R(D) and $R(D^*)$ exceed the SM predictions by 2.3 σ and 3.4 σ respectively

R(D) and $R(D^*)$ combination is about 4.1 σ above the SM prediction

$R(J/\psi)$, LFU with B_c decays

LHCb [*arXiv*:1711.05623]

✓ SM predictions are in the range of 0.25 to 0.28 → the spread is due to the modeling of form factors [PLB452 (1999) 120, arXiv:0211021, PRD73 (2006) 054024, PRD74 (2006) 074008]
 ✓ form factor parameters are fitted on a data sample enriched in normalization decays

✓ signal and normalization decay chain with identical visible final state \rightarrow (µµ)µ

\checkmark like in the muonic R(D*) analysis \rightarrow

- 1. use m^2_{miss} , E^* (unpaired muon), and q^2 to disantagle between signal and normalization mode
- 2. B_c boost along beam direction approximated with boost of the visible system

✓ B_c decay time (~ 3 times shorter than other b hadrons) helps to discriminate the large background from lighter b hadrons

$R(J/\psi)$ LFU with B_c decays

$\begin{array}{c} Candidates / (0.6 \, GeV^2/c^4) \\ 0000 \\ 00$ Data Mis-ID bkg. LHCb J/ψ comb. bkg. $B_c^+ \rightarrow \chi_c(1P)l^+ v_l$ $B_c^+ \to J/\psi \,\tau^+ v_{\tau}$ Pulls $\frac{5}{m_{\text{miss}}^2}$ [GeV²/c⁴] ି ସୁ $B_c^+ \rightarrow J/\psi \,\mu^+ \nu_\mu$ ¹914000 92E⁻12000 $J/\psi + \mu$ comb. bkg. LHCb $B_c^+ \rightarrow J/\psi H_c^+$ $B_c^+ \rightarrow \psi(2S) l^+ v_l$ 2000 Pulls 0.5 1.5 ⁵ decay time [ps] Candidates per bin 8000 7000 ╞ LHCb 6000 5000 4000 3000 2000 1000 Pulls $C(q^2, E_u^*)$ 25/01/18

analysis based on Run 1 dataset, 3 fb⁻¹

signal yield from a 3D binned maximum
 likelihood fit to m²_{miss}, decay time, and a discrete quantity Z representing 8 bins in (E^{*}_µ,q²)
 ✓ background and signal shapes extracted from control samples and simulations validated against data

LHCb [arXiv:1711.05623]

• main background due to misidentified hadrons and combinatorial muons • <u>first evidence of the decay</u> $B_c \rightarrow J/\psi \tau v_{\tau}$ (3 σ)

 $\begin{array}{l} \mathsf{R}(\mathsf{J}/\psi) = 0.71 \pm 0.17_{\mathsf{stat}} \pm 0.18_{\mathsf{syst}} \\ \sim 2. \ \sigma \ above \ Standard \ Model \end{array}$

• dominant systematics \rightarrow size of the simulation samples and form factors

lepton-flavour universality in $b \rightarrow sll : R_K, R_{K^*0}$

test of LFU using $B \rightarrow K^{(*)}||$ decays @ LHCb

✓ FCNC transitions forbidden at tree level in SM → expected BR < 10⁻⁶ ✓ test of LFU measuring the ratio between the decay rates of B→K^(*)II, cancellation of hadronic form-factors uncertainties in predictions ✓ R_{K(*)} is close to unity in SM, with very small uncertainties

the ee channel is the challenge of these analyses

● **Bremsstrahlung** affects the e momentum → energy recovered looking at calorimeter hits

Iow trigger efficiency

- \checkmark trigger by the electron, hadron and other particles in the event
- \checkmark final result comes from likelihoods combination

the R_K measurement

LHCb [PRL 113 (2014) 151601]

the $R_{K^{*0}}$ measurement

LHCb [JHEP 08 (2017) 055]

$$R_{K^{*0}} = \begin{cases} 0.66 \stackrel{+}{_{-}} \stackrel{0.11}{_{0.07}} (\text{stat}) \pm 0.03 (\text{syst}) & \text{for } 0.045 < q^2 < 1.1 & \text{GeV}^2/c^4 \\ 0.69 \stackrel{+}{_{-}} \stackrel{0.11}{_{0.07}} (\text{stat}) \pm 0.05 (\text{syst}) & \text{for } 1.1 & < q^2 < 6.0 & \text{GeV}^2/c^4 \end{cases}$$

 \checkmark most precise measurement to date

 \checkmark below the SM at 2.1-2.3 σ in the low q^2 and 2.4-2.5 σ in the central q^2

 \checkmark larger data set will allow for more precise tests

conclusions and outlook

LHCb has a wide physics program in heavy flavour and beyond

for this talk I tried to select only few between the most recent and hot results \rightarrow

• LHCb keeps making world-best measurements of γ across a range of interesting modes, a brand new technique to select $B^{\pm} \rightarrow D^{*}h^{\pm}$ modes has been used

• first measurement of the CP-violating phase ϕ_s using $b \rightarrow d\bar{d}s$ transitions

 \checkmark many updates to come as we approach the end of Run 2

several deviations from LFU observed in ratios of decay rates →
 while individually not that large, consistently shows a tension with the SM
 ✓ all ratios will be updated using the whole data sample collected so far
 ✓ new analysis already ongoing are: B_s→D_s^(*)τν, Λ_b→Λ_c^(*)τν

entering an exciting phase of precision measurements !

Thank you !

spares

γ using partial reconstruction of $B^{\pm} \rightarrow D^{*}h^{\pm}(h=K,\pi)$

 \checkmark the D meson is reconstructed in CP eigenstates $\,$ KK, $\pi\pi$

✓ strong phase δ_D difference of 180° between $D^* \rightarrow D\pi^0$ and $D^* \rightarrow D\gamma$ [PRD 70 (2004) 091503]

 $B^{\pm} \rightarrow D^{*}h^{\pm}$ modes measured for the first time at LHCb and using a **brand new technique** !

• fully reconstructed $B^{\pm} \rightarrow D^{0}h^{\pm}$ results are measured with the same fit

• D^0 decays to not-CP eigenstates, eg. $D^0 \rightarrow K\pi$ are under investigation 25/01/18

few hints about the analysis

the PDF used for the fitting, incorporates the relevant flavour-tagging and production-asymmetry parameters, and the acceptance and resolution factors

^(©) tagging algorithms *LHCb*[*JINST 11 (2016) P05010, EPJ C72 (2012) 2022*] provide for each event a tagging decision, and an estimated mistag probability → tagging power $\varepsilon_{eff} = \varepsilon_{tag}(1 - 2\langle \omega \rangle)^2 = (5.15 \pm 0.14)\%$

 $■ A_p = [\sigma(\overline{B^0}_s) - \sigma(B^0_s)] / [\sigma(\overline{B^0}_s) + \sigma(B^0_s)],$ measured by LHCb by means of a decay-time-dependent analysis of $B^0_s \rightarrow D^-_s \pi^+$ *LHCb*[*PLB 39 (2014) 218*] → $A_p = -.005 \pm .019$ corrected for the different kinematics

(a) both acceptance and decay-time resolution effects are studied using samples of simulated events weighted to match the data distributions

25/01/18

LHCb [arXiv:1712.08683]

state of art of $\varphi_s{}^{cc}$

although there as been impressive progress since the initial measurements at CDF/D0, the
 uncertainty needs to be further reduced

world average (dominated by LHCb) is consistent with SM

 $\phi_s^{cc} = -21 \pm 31 \text{ mrad}$ HFLAV Summer 2017

Δm_s and Δm_A

 Experimental precision has reached a remarkable level at the per mille level, dominated by LHCb

 $-\Delta m_d = 0.5065 \pm 0.0019 \text{ ps}^{-1}$

 $-\Delta m_s = 17.757 \pm 0.021 \text{ ps}^{-1}$

• However, the interpretation requires inputs from LQCD

$$\Delta m_{d} = \frac{G_{F}^{2}}{6\pi^{2}} m_{W}^{2} \eta_{c} S(x_{t}) A^{2} \lambda^{6} \left[(1 - \bar{\rho})^{2} + \bar{\eta}^{2} \right] m_{B_{d}} f_{B_{d}}^{2} \hat{B}_{B_{d}}$$

$$\frac{\Delta m_{d}}{\Delta m_{s}} = \frac{m_{B_{d}} f_{B_{d}}^{2} \hat{B}_{B_{d}}}{m_{B}} \left(\frac{\lambda}{1 - \frac{\lambda^{2}}{2}} \right)^{2} \left[(1 - \bar{\rho})^{2} + \bar{\eta}^{2} \right] \overset{\sim 7\%}{\sim 4\%}$$

- The quest for precision with these constraints is now on LQCD
 - Need to sustain efforts from the LQCD

community to reduce the theoretical uncertainties by x10 $\overline{\rho}$ 32

Δm

EPS17

0.5

-0.5

SM fit

 $BR(B \rightarrow \tau v)$

-0.5

direct CP violation in charm

Charmed hadrons provide the only way to probe *CP* violation with up-type quarks. In the SM *CP* violation in charm is expected to be $< O(10^{-3})$ [Phys. Rev. D, 85, 079901 (2012)]

$$A_{raw}(D \to X) = \frac{N(D \to X) - N(\overline{D} \to \overline{X})}{N(D \to X) + N(\overline{D} \to \overline{X})}$$

$$A_{raw} \approx A_{CP} + A_P + A_D$$

LHCb studied *CP* asymmetries in $D^0 \rightarrow K^+ K^-$, $\pi^+ \pi^-$:

 $A_{CP}(K^+K^-) = (0.04 \pm 0.12(\text{stat}) \pm 0.10(\text{syst}))\%$

 $A_{CP}(\pi^+\pi^-) = (0.07 \pm 0.14(\text{stat}) \pm 0.11(\text{syst}))\%$

• Main syst: statistics available in control samples, e.g. $D^+ \rightarrow K^0_S \pi^+$

anomalies about the LFU: what's about ?

• SM features Lepton Flavor Universality (**LFU**) \rightarrow equal electroweak coupling to all charged leptons, the branching ratios to e, μ and τ differ only due to their mass *any further deviation is a key signature of physics processes beyond the SM*

• measurements of the Z and W couplings to leptons, mainly constrained by LEP and SLC experiments, are all compatible with LFU

✓ except for a 2.8 σ difference between the measurement of the branching fraction of the W→ τv_{τ} decay with respect to W→ μv_{μ} and W→ ev_{e} decays

recently few deviations from SM emerged in B decays

✓ tree level semileptonic $b \rightarrow c\tau v_{\tau}$ transitions, high rates O(%), well known in SM → <u>possible NP</u> <u>coupling mainly to the 3rd family</u>

✓ FCNC b→sll transitions, rare decays forbidden at the tree level $O(10^{-6})$ in SM → possible NP contributions in the loops

• possible BSM scenarios: leptoquarks, new heavy vector bosons, $H^{\pm,}$...

main test variables are ratios of decay rates

- \checkmark theoretically clean: cancellation of QCD effects
- \checkmark experimentally clean: cancellation of efficiency and reconstruction effects

• the following analysis are based on Run 1 dataset, 3 fb⁻¹

$R(D^*)$ from $\tau \rightarrow \mu \nu_{\mu} \nu_{\tau}$

separation of the signal from the normalization channel exploiting distribution of 3 kinematic variables computed in the B rest frame $m_{m_{ext}}^2$

1.
$$m_{miss}^2 = (p_B - p_{D^*} - p_{\mu})^2$$

2. E_{μ}^*
3. $q^2 = (p_B - p_{D^*})^2$

the component of p_{B} along the beam axis is approximated with

 $(p_B)_z = (m_B/m_{reco})(p_{reco})_z$

 $\sim 18\%$ resolution sufficient to retain discriminating power

LHCb [arXiv:1708.08856]

- ✓ BR($\tau \rightarrow 3\pi(\pi^0)v_{\tau}$) ~ 13.9% (was ~ 17% for the muonic case)
- \checkmark no charged leptons in the final state \rightarrow no backgroud from semileptonic decays
- the 3-prong topology enables the precise reconstruction of τ vertex
 the requirement of a 3π vertex detached from B vertex suppresses D*3πX background
 by 3 orders of magnitudes retaining ~ 40% of the signal

✓ BDT technique to suppress the remaining background, that is due to $B \rightarrow D^{*-}D_{(s)}(X)$, double-charm decays (~ 10 × signal)

 \checkmark extensive studies performed in data control samples

other anomalies in the $b \rightarrow sl^+l^-$ sector

• Differential branching fractions consistently lower than SM expectations, although predictions are still matter of discussion

other anomalies in the $b \rightarrow sl^+l^-$ sector

– angular analysis of $B^0 \rightarrow K^{*0} \mu \mu$

Consider ratios of observables where leading form-factor uncertainties cancel, *e.g.*:

 $P_5' = \frac{S_5}{\sqrt{F_{\rm L}(1 - F_{\rm L})}}$

[S. Descotes-Genon et al. JHEP 1204 (2012) 104]

Preliminary results from Belle confirmed tension seen in LHCb

NB: results from Belle combine bc electron and muon final states

CMS/ATLAS also started to measure the same angular observables, *e.g.* P'₅

Local tension with SM predictions (2.8 and 3.0σ) Global analysis finds deviation corresponding to 3.4σ

$B^0 \rightarrow \mu^+ \mu^-$ and $B_s \rightarrow \mu^+ \mu^-$

 CMS and LHCb have performed a combined fit to their full Run-1 data sets

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = 2.8^{+0.7}_{-0.6} \times 10^{-9}$$

 $\mathcal{B}(B^0 \to \mu^+ \mu^-) = 3.9^{+1.6}_{-1.4} \times 10^{-10}$

- $B_s \rightarrow \mu \mu$ 6.2 σ significance was first observation
 - Compatibility with the SM at 1.2σ
- Excess of events at the 3σ level for B⁰→μμ

 Compatible with SM at 2.2σ
- More recently, also ATLAS published a measurement with Run-1 data

update on $B \rightarrow \mu^+ \mu^-$ by LHCb

- New measurement from LHCb using Run-2 data has led this year to the first observation of the $B_s \rightarrow \mu\mu$ decay from a single experiment $\mathcal{B}(B_s^0 \rightarrow \mu^+\mu^-) = (3.0 \pm 0.6^{+0.3}_{-0.2}) \times 10^{-9}$
- Moreover, it starts to be possible to measure other properties, such as the effective lifetime, that will be useful for discriminating between NP models
 - Experimental precision not yet in the interesting range, but important proof of concept

Decay time [ps]

LFV at LHCb: $B_{(s)} \rightarrow e\mu$

- $B^0 \rightarrow e\mu$ on full Run I: 3fb⁻¹
- Normalisation:
 - ✓ B⁺→J/Ψ K⁺ (clean final state) ✓ B⁰→ K⁺π⁻ (same topology as signal)
- Primary background: $B^0 \rightarrow h^+h'^$ with both hadrons misidentified
- Fit to $m(e\mu)$: no excess \rightarrow limits with CLs

LFV at LHCb: $\tau \rightarrow \mu \mu \mu$

- Possible contribution from doubly charged Higgs
- Using full Run 1: 3fb⁻¹

- Events studied in a 3D binned space:
 - Invariant mass of τ candidate
 - Output of a MVA based on topological information: vertex quality, displacement

 H°

Output of a MVA based on PID

$$\mathcal{B}(\tau \to \mu \mu \mu) < 4.6 \times 10^{-8} @ 90\% \text{ CL}$$

Compatible with best limit from Belle.

