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The phases of matter: 
An old question
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Fermi 1953



discussed for many years ....
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gets more colorful ...
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What we know about the Phase 
Diagram
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T

µ~920 MeV

Lattice QCD: 
Tc ~ 155 MeV 
pseudo-critical line up to O(µ2) 
pressure (EoS) up to O(µ4)
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What we “hope” for
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Is there a critical point?
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Nothing you cannot find in LA…
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Cumulants and phase structure  
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What we always see.... What it really means....

“Tc” ~ 160 MeV



Derivatives
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How to measure derivatives
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At µ = 0:

Cumulants of Energy measure the temperature derivatives of the EOS

Z = tr e�Ê/T+µ/TN̂B
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Cumulants of Baryon number measure the chem. pot. derivatives of the EOS
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Cumulants of (Baryon) Number

13

Kn =
�n

�(µ/T )n
ln Z =

�n�1

�(µ/T )n�1
�N�

Kn � VCumulants scale with volume (extensive):

Volume not well controlled in heavy ion collisions 

Cumulant Ratios: K2

�N� ,
K3

K2
,

K4

K2

K1 = �N� , K2 = �N � �N��2 , K3 = �N � �N��3



Simple model
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What to expect from experiment?
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Latest STAR result on net-proton 
cumulants
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Moments of Net-Proton and Net-Charge Multiplicity Distributions at STAR Xiaofeng Luo
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Figure 3: (Color online) Energy dependence of efficiency corrected cumulant ratios κσ2 = C4/C2 and
Sσ =C3/C2 of net-proton distributions in Au+Au collisions at different centralities (0∼ 5%,5∼ 10%,30∼
40%,70∼ 80%).

(0∼ 5%,5∼ 10%,30 ∼ 40%,70 ∼ 80%). For peripheral (70 ∼ 80%) and mid-central (30∼ 40%)
collisions, the κσ 2 values are close to unity and the Sσ show strong monotonic increase when
the energy decreases. For 0 ∼ 5% most-central collisions, the values of κσ 2 are close to unity at
energies above 39 GeV, while below 39 GeV, they start to deviate from unity and show significant
deviation below unity around 19.6 and 27 GeV. Finally, they shows a strong increase and stay above
unity at 7.7 GeV. The Sσ at 0∼ 5% centrality bin shows a large drop at 7.7 GeV. One may note that
we only have statistical errors shown in the figure, which are still large due to limited statistics. The
systematical errors, which are dominated by the efficiency correction and the particle identification,
are being studied.

Large acceptance is crucial for fluctuations of conserved quantities in heavy-ion collisions
to probe the QCD phase transition and critical point. The signals for the phase transition and/or
CP will be suppressed with small acceptance. In the Fig. 4, we show the energy dependence
of efficiency corrected κσ 2 =C4/C2 and Sσ /Skellam of net-proton distributions with various pT
and rapidity range for 0 ∼ 5% most central Au+Au collisions. The Skellam baseline assumes the
protons and anti-protons distribute as independent Poisson distributions. It is constructed from the
efficiency-corrected mean values of the protons and anti-protons. It is expected to represent the
thermal statistical fluctuations of the net-proton number [24]. The κσ 2 and Sσ /Skellam are to be
unity for Skellam baseline as well as in the Hadron Resonance Gas model. In the two upper panels
of Fig. 4, when we gradually enlarge the pT or rapidity acceptance, the values of κσ 2 show a small
changes close to unity at energies above 39 GeV, while below 39 GeV, more pronounced structure
is observed for a larger pT or rapidity acceptance. In the two lower panels of Fig. 4, when we
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Let’s take the preliminary STAR data at face value



Further insights: Correlations
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2

II. CUMULANTS AND CORRELATIONS FUNCTIONS

VK: VK: need to check if the ”coupling” is expected to increase with order of cumulant at critical
point. I thought so, this is where the scaling with the correlation length comes from. VK: I think
for this paper we should skip this discussion and concentrate on the signs, centrality and rapidity
dependence

Let us start by introducing the correlation functions, beginning with two particles. The two particle density for
particles with momenta p
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general the two particle density and correlation function depend on the momenta of both particles. In the following,
we will restrict ourselves to correlations in rapidity and adopt the following notation
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and similarly for higher order particle densities and correlation functions.
The three particle density depends on the one and two-particle densities as well as the two and three-particle

correlation functions
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At the same time, the particle number cumulant, Kn, can be expressed in terms of the factorial moments [6],
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1
See, e.g., Ref. [XXX] for explicit definitions of higher order correlation functions.

Cumulants

C2: Correlation Function



From Cumulants to Correlations 
(no anti-protons)
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Simple Algebra leads to relation between correlations Cn and Kn

Defining integrated correlations function

or vice versa

3

where ”N = N ≠ ÈNÍ. Formulas for the higher order cumulants can be found in Ref. [XXX].
Now we can relate the cumulants in terms of the correlation functions and the mean particle number ÈNÍ = F
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Before we apply the above equations to extract the correlation strength from the STAR data, let us make a few
more remarks concerning these correlation functions.

Frequently in the literature, one refers to correlation function where the trivial dependence on the particle den-
sity/multiplicity is removed
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which we shall refer to as reduced correlation functions or simply couplings. For example in terms of the reduced
correlation functions the two particle density would be given as
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The advantage of the reduced correlation functions is that they are directly sensitive to the dynamics, and should
remain constant if the only change is that of the particle abundances. This will prove helpful when studying for
instance the centrality dependence of the correlations.

Also, the correlation functions Cn are often referred to as “factorial cumulants” [7]
Integrating over rapidity we obtain
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Using above definition we can write

K
2

= ÈNÍ + ÈNÍ2

c
2

(21)
K

3

= ÈNÍ + 3 ÈNÍ2

c
2

+ ÈNÍ3

c
3

(22)
K

4

= ÈNÍ + 7 ÈNÍ2

c
2

+ 6 ÈNÍ3

c
3

+ ÈNÍ4

c
4

(23)

and analogously for K
5

and K
6

.

Finally we should point out that direct relation between correlation functions and cumulants can not be established
if one considers for example net-proton cumulants. In this case the additional knowledge of various factorial moments
is required. The relevant formulas are given in the Appendix

A. Comments

Before we analyze the existing data several comments are warranted.
(i) First it would be interesting to see how couplings scale with multiplicity if the correlations originate from several

independent sources of correlations. Suppose we have Ns sources of particles, each characterized by the multiplicity



Correlations near the critical point
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M. Stephanov, 0809.3450, PRL 102

Scaling of Cumulants Kn with correlation length 

Cumulants from Correlations

Consequently:

Correlations Cn pick up the most divergent pieces of cumulants Kn!



Preliminary Star Data 
(X. Luo, PoS Cpod 2014 (019))
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Significant four particle correlations! 

Four particle correlation dominate K4  
for central collisions at 7.7 GeV 

Based on prelim. STAR data



Correlations
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Xiaofeng Luo / Nuclear Physics A 00 (2016) 1–9 6

energies above 19.6 GeV, the values of v2
3{2} linearly increase with the log(psNN ) for all of the four centralities.

Figure 5 right shows psNN dependence of the v2
3{2} scaled by the charged particle multiplicity per participant pair

nch,PP =
2

Npart
dNch/d⌘ for three centralities. Experimentally, the nch,PP has been measured and monotonically increase

with psNN [23], which can be related to the energy density of the system. The v2
3{2}/nch,PP shows a local minimum

around 20 GeV, which is the consequence of a relatively flat trend for v2
3{2} and monotonically increasing trend for the

nch,PP in the energy range 7.7 <psNN< 20 GeV. Physics wise, the v2
3{2}/nch,PP should reflect the ability of the system

to convert the initial geometry fluctuations to the final state. Thus, the local minimum in v2
3{2}/nch,PP could indicate

an anomalous low pressure inside the matter created in the collisions near psNN=20 GeV, where a minimum is also
observed for the slope of net-proton directed flow. Apparently, these observations can be interpreted by softening of
equation-of-state due to presence of the first order phase transition. However, conclusions only can be made after
carrying out careful theoretical and model studies for the dynamical evolution of the system including the physics of
first order phase transition at finite µB.

2.5. Net-proton number fluctuations
Fluctuations of conserved quantities, such as baryon (B), charge (Q) and strangeness (S) numbers, have been

proposed as a sensitive probe to search for the signature of the QCD critical point in heavy-ion collisions [24]. These
fluctuations are sensitive to the correlation length (⇠) [24] and can be directly connected to the susceptibility of the
system computed in theoretical calculations, such as Lattice QCD [25, 26, 27] and HRG models [28]. The STAR
experiment has measured various order fluctuations of net-proton (Np � Np̄, proxy for net-baryon), net-charge and
net-kaon (proxy for net-strangeness) numbers in the Au+Au collisons at psNN=7.7, 11.5, 14.5, 19.6, 27, 39, 62.4 and
200 GeV [29, 30, 31].
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Figure 6. (Color online) Left: Energy dependence of �2 of net-proton distributions and Middle: S� divided by Skellam (Poisson) expeca-
tions for 0-5%, 5-10% and 70-80% centralities of Au+Au collisions at psNN=7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, 200 GeV measured by STAR.
The experimental data is compared with Poisson expectations (dashed lines) and the UrQMD transport model calculations (shade bands ). The
statistic and systematic errors are plotted as vertical bar and brackets, respectively. Right: A schematic sketch for theoretically predicted neg-
ative(red)/positive(blue) critical contribution regions for �2 near the QCD critical point and possible chemical freeze-out regions for Au+Au
collisions 14.5 (green), 16.5 (purple) and 19.6 GeV (black).

Figure 6 left shows the e�ciency corrected �2 of net-proton distributions as a function of psNN for 0-5%, 5-10%
and 70-80% centralities of Au+Au collisions measured by STAR [31, 32]. The protons and anti-protons numbers
are measured with transverse momentum 0.4 < pT < 2 GeV/c and at mid-rapidity |y| < 0.5. The �2 shows a clear
non-monotonic variation with psNN for 0-5% centrality with a minimum around 20 GeV. Above 39 GeV, the values of
�2 are close to the unity for both central and peripheral collisions and deviate significantly below unity for the 0-5%
most central collisions at 19.6 and 27 GeV, then become above unity at 0-5% centrality in the energies below 19.6
GeV. Another intriguing structure observed in psNN dependence for the �2 of net-proton distributions in Au+Au
collisons is the so called ”Oscillation”. Namely, the oscillation is a structure that represents two observations, the so

6

Dip at 19.6 GeV from  
NEGATIVE C2 !

Based on prelim. STAR data

Based on prelim. STAR data



Reduced correlation function
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where ”N = N ≠ ÈNÍ. Formulas for the higher order cumulants can be found in Ref. [XXX].
Now we can relate the cumulants in terms of the correlation functions and the mean particle number ÈNÍ = F

1

K
2

= F
1

+ C
2

, (11)
K

3

= F
1

+ 3C
2

+ C
3

, (12)
K

4

= F
1

+ 7C
2

+ 6C
3

+ C
4

, (13)

and vice versa,with K
1

= F
1

= ÈNÍ

C
2

= ≠K
1

+ K
2

, (14)
C

3

= 2K
1

≠ 3K
2

+ K
3

, (15)
C

4

= ≠6K
1

+ 11K
2

≠ 6K
3

+ K
4

, . (16)

Before we apply the above equations to extract the correlation strength from the STAR data, let us make a few
more remarks concerning these correlation functions.

Frequently in the literature, one refers to correlation function where the trivial dependence on the particle den-
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The advantage of the reduced correlation functions is that they are directly sensitive to the dynamics, and should
remain constant if the only change is that of the particle abundances. This will prove helpful when studying for
instance the centrality dependence of the correlations.

Also, the correlation functions Cn are often referred to as “factorial cumulants” [7]
Integrating over rapidity we obtain
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Finally we should point out that direct relation between correlation functions and cumulants can not be established
if one considers for example net-proton cumulants. In this case the additional knowledge of various factorial moments
is required. The relevant formulas are given in the Appendix

A. Comments

Before we analyze the existing data several comments are warranted.
(i) First it would be interesting to see how couplings scale with multiplicity if the correlations originate from several

independent sources of correlations. Suppose we have Ns sources of particles, each characterized by the multiplicity
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Before we apply the above equations to extract the correlation strength from the STAR data, let us make a few
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cn (y
1

, ..., yn) = Cn (y
1

, ..., yn)
fl

1

(y
1

) · · · fl
1

(yn) , (17)

which we shall refer to as reduced correlation functions or simply couplings. For example in terms of the reduced
correlation functions the two particle density would be given as

fl
2

(y
1

, y
2

) = fl
1

(y
1

) fl
2

(y
2

) [1 + c
2

(y
1

, y
2

)] . (18)

The advantage of the reduced correlation functions is that they are directly sensitive to the dynamics, and should
remain constant if the only change is that of the particle abundances. This will prove helpful when studying for
instance the centrality dependence of the correlations.

Also, the correlation functions Cn are often referred to as “factorial cumulants” [7]
Integrating over rapidity we obtain

Ck = ÈNÍk
ck (19)

where ÈNÍ =
´

�Y dN/dy depends on the rapidity interval �Y and we denote

ck =
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Using above definition we can write
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and analogously for K
5

and K
6

.

Finally we should point out that direct relation between correlation functions and cumulants can not be established
if one considers for example net-proton cumulants. In this case the additional knowledge of various factorial moments
is required. The relevant formulas are given in the Appendix

A. Comments

Before we analyze the existing data several comments are warranted.
(i) First it would be interesting to see how couplings scale with multiplicity if the correlations originate from several

independent sources of correlations. Suppose we have Ns sources of particles, each characterized by the multiplicity

For example two particle correlations:

Independent sources such as resonances, cluster, p+p:
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Based on prelim. STAR data
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C3

C4

7.7 GeV 19.6 GeV

Based on prelim. STAR data

Based on prelim. STAR data

Based on prelim. STAR data

Based on prelim. STAR data



Rapidity dependence
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short range correlations:

Assume:

Long range correlations:



Preliminary Star data are consistent 
with long range correlations
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7.7 GeV 
central

STAR preliminary

19.6 GeV 
central

STAR preliminary



Long range correlations
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FIG. 1. The cumulant ratio K4/K2 in central 0–5% Au +
Au collisions at

√
s = 7.7 GeV as a function of the number of

measured protons ⟨N⟩ for different acceptance windows in rapidity
and transverse momentum (in units of GeV). For all data points
pt > 0.4 GeV. The black solid line represents a prediction based
on a constant correlation function, see Eq. (17). The shaded band is
driven mostly by the large experimental uncertainty of K4. Based on
the preliminary STAR Collaboration data [42].

the couplings cn do not depend on rapidity and transverse
momentum either as can be seen from Eq. (8),

cn = c0
n. (18)

The multiparticle integrated correlation functions Cn =
⟨N⟩ncn and cumulants Kn, in turn, depend on the acceptance
only through their dependence on the number of protons ⟨N⟩,
see Eqs. (9)–(11). Therefore, in Fig. 1 we plot K4/K2 as
measured by the STAR Collaboration as a function of ⟨N⟩
for different rapidity and transverse momentum intervals.

The black solid line in Fig. 1 represents a prediction
based on a constant correlation function. In this calculation
we have three unknown parameters c0

2, c0
3, and c0

4. Since
these numbers do not depend on acceptance, we determine
them from the preliminary data for |y| < 0.5 (!y = 1) and
0.4 < pt < 2 GeV, that is, from the maximal acceptance
currently available. Here we use Eqs. (9)–(11) and the values
for ⟨N⟩, K2, K3, and K4 shown in Ref. [42].4 To determine
⟨N⟩ at a given acceptance region we assume the single-proton
rapidity distribution to be flat as a function of rapidity, i.e.,
⟨N⟩ = ⟨N!y=1⟩!y, and, for the transverse momentum single-
proton distribution, we take ρ(pt ) ∼ pt exp(−mt/T ) with
T = 0.27 GeV and mt = (m2 + p2

t )1/2 with m = 0.94 GeV.
Both these assumptions are well supported by experimental
data [52,53]. Having c0

n, we can predict the cumulants
or the correlation functions for any acceptance charac-

4We determine c0
n from the proton cumulants but compare to y and

pt dependences of the net-proton cumulants, which are the only data
currently available. Although at 7.7 GeV the number of antiprotons is
practically negligible, it results in a slight disagreement of the black
solid line with the blue star in Fig. 1.

terized by ⟨N⟩ whether in transverse momentum or in
rapidity.5

Interestingly we find that, except for one point at |y| < 0.5
and 0.4 < pt < 1.2 GeV, all the points follow within the
admittedly large experimental error bars one universal curve
consistent with a constant correlation function. The fact that the
rapidity dependence of the cumulant ratio K4/K2 is consistent
with long-range rapidity correlations already has been found
in Ref. [40]. That the transverse momentum dependence is
also consistent with long-range correlations is new. If correct,
it would, for example, imply that the cumulant ratio K4/K2
has roughly the same value (close to unity) for a transverse
momentum range of 0.8 GeV < pt < 2 GeV as the value
for the range of 0.4 GeV < pt < 0.8 GeV since, in both pt

windows, ⟨N⟩ is approximately the same. The result for the
pt range of 0.4 GeV < pt < 0.8 GeV has been published by
the STAR Collaboration in Ref. [5].

Of course, the error bars in the preliminary STAR Col-
laboration data are rather sizable and, therefore, a mild
dependence of the correlation function on rapidity (and
transverse momentum) cannot be ruled out. In addition, as
already mentioned in the Introduction, the preliminary, explicit
measurement of the two-proton correlation function [45,46]
does exhibit an increase with increasing rapidity difference of
a proton pair y1 − y2. To explore this further we next will allow
for some mild rapidity dependence of the correlation function.

B. Rapidity-dependent correlation

In the previous subsection we demonstrated that the STAR
Collaboration data for K4/K2 at 7.7 GeV are consistent with
a constant multiproton correlation function. Here we study
how sensitive the cumulant ratios and correlations are to a
certain (weak) rapidity dependence. To this end we consider
the leading correction to a constant correlation function, which
should be even in yi − yk . Thus we explore the following
Ansätze for the reduced correlation functions,

c2(y1,y2) = c0
2 + γ2(y1 − y2)2,

c3(y1,y2,y3) = c0
3 + γ3

1
3 [(y1 − y2)2 + (y1 − y3)2

+ (y2 − y3)2],

c4(y1,y2,y3,y4) = c0
4 + γ4

1
6 [(y1 − y2)2 + (y1 − y3)2

+ (y1 − y4)2 + (y2 − y3)2

+ (y2 − y4)2 + (y3 − y4)2], (19)

where γn measures the deviation from cn(y1, . . . ,yn) = const.
Note that we have constructed the correlation function such
that positive values of γn result in growing correlations with
rapidity separation between particles. We further note that the
above form for the two-proton reduced correlation function
c2(y1,y2) is supported by the preliminary STAR Collaboration
data [45,46] where γ2 > 0, that is, two protons do not want

5Based on the preliminary STAR Collaboration data for the
cumulants [42] we obtain c0

2 ≈ −1.1 × 10−3, c0
3 ≈ −1.7 × 10−4, and

c0
4 ≈ 7.3 × 10−5.

054905-4
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where ”N = N ≠ ÈNÍ. Formulas for the higher order cumulants can be found in Ref. [XXX].
Now we can relate the cumulants in terms of the correlation functions and the mean particle number ÈNÍ = F

1
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, (15)
C

4

= ≠6K
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+ 11K
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, . (16)

Before we apply the above equations to extract the correlation strength from the STAR data, let us make a few
more remarks concerning these correlation functions.

Frequently in the literature, one refers to correlation function where the trivial dependence on the particle den-
sity/multiplicity is removed

cn (y
1

, ..., yn) = Cn (y
1

, ..., yn)
fl

1

(y
1

) · · · fl
1

(yn) , (17)

which we shall refer to as reduced correlation functions or simply couplings. For example in terms of the reduced
correlation functions the two particle density would be given as
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2

) = fl
1

(y
1

) fl
2

(y
2

) [1 + c
2
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2

)] . (18)

The advantage of the reduced correlation functions is that they are directly sensitive to the dynamics, and should
remain constant if the only change is that of the particle abundances. This will prove helpful when studying for
instance the centrality dependence of the correlations.

Also, the correlation functions Cn are often referred to as “factorial cumulants” [7]
Integrating over rapidity we obtain

Ck = ÈNÍk
ck (19)

where ÈNÍ =
´

�Y dN/dy depends on the rapidity interval �Y and we denote

ck =
´

fl
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Using above definition we can write
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and analogously for K
5

and K
6

.

Finally we should point out that direct relation between correlation functions and cumulants can not be established
if one considers for example net-proton cumulants. In this case the additional knowledge of various factorial moments
is required. The relevant formulas are given in the Appendix

A. Comments

Before we analyze the existing data several comments are warranted.
(i) First it would be interesting to see how couplings scale with multiplicity if the correlations originate from several

independent sources of correlations. Suppose we have Ns sources of particles, each characterized by the multiplicity

ck = const. � Kn = Kn (�N�)

NB: Data are consistent with small “repulsive” component

c2(y1, y2) = c0
2 + �2(y1 � y2)

2 �2 > 0c2(y1, y2) = c0
2 + �2(y1 � y2)

2 �2 > 0
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Note: anti-protons are non- negligible above 19.6 GeV 
          Data are protons only

Based on prelim. STAR data



Can we understand these 
correlations?

• Two particle correlations can be understood by simple 
Glauber model + Baryon number conservation

34

6

where b = 40 for
p
s = 7.7 GeV. Our conclusions are not sensitive to small variations of b and changing the exponent

from 1.25 to 1. The results are presented in Fig. 3 by the solid curves. The dashed curves correspond to calculations
without volume (N

part

) fluctuations (no VF). The symbols represent the correlations after averaging over bins in
centrality of 5%, i.e. 0 � 5%, 5 � 10% etc. Only the five most central points are shown. For less central collisions,
the centrality averaging does not alter our results and points fall right on the solid lines. Clearly, the contribution
originating from N

part

fluctuations is important for the two particle correlation, C
2

; there is also some but less
significant e↵ect of N

part

fluctuations on the three particle correlation C
3

in central collisions. On the other hand,
when compared to the STAR data, fluctuations of wounded nucleons are all but irrelevant for the four particle
correlation, C

4

. In our model calculation, C
4

is negative for o↵-central collisions and it gets positive for large N
part

.
After averaging over centrality bins, the model predicts around �0.3 for C

4

while the analysis of the preliminary
STAR data gives ⇠ 170. Also, as already mentioned, the strong oscillations exhibited in C

3

and C
4

at large N
part

disappear after averaging over centrality bins. Obviously our model of independent stopping together with baryon
number conservation clearly fails to explain the preliminary STAR data, reported in Ref. [51] (see Fig. 1 therein).

FIG. 3. Multi-particle correlations Cn in Au+Au collisions at
p
s = 7.7 GeV. The leading terms, where fluctuations of the

number of wounded nucleons are not present, are denoted by “no VF”. Also shown as circles, triangles and squares are the
results for the five most central bins with a width of 5% of centrality.

Before we close this section, let us make a few more remarks. First, the results without the number of wounded
nucleon fluctuations presented in this section can be verified analytically. At a fixed N

part

, Eq. (9) reduces to

H(z;N
part

) = (1� p+ pz)Npart , (20)

and using Eq. (3) we obtain

C
2

= �p2N
part

, C
3

= 2p3N
part

, C
4

= �6p4N
part

. (21)

Since p < 1 this explains the relative magnitude of the correlation functions. Next, in our analysis we assumed that
each nucleon is stopped in �y with the same probability p. This is rather unphysical since nucleons that collide
once are expected to have significantly smaller p than nucleon from the centers which collide several times. However,
as long as we have independent stopping of the nucleons, individual stopping probabilities do not really change
our conclusions. Suppose that each nucleon is characterized by its own stopping probability, p

(i), i = 1, ..., N
part

.
Neglecting N

part

fluctuations we obtain at a given N
part

5

H(z;N
part

) =
YNpart

i=1

(1� p
(i) + p

(i)z), (22)

which obviously reduces to Eq. (20) if pi = p. Calculating Ck we observe that it is enough to replace N
part

pn !
P

i p
n
(i)

in Eq. (21) and thus the signs of Ck do not change. We conclude that this e↵ect cannot lead to a large and positive
C

4

as seen in the STAR data.
The corollary of this section is the following. The two-particle correlations obtained in our model of independent

nucleon stopping together with baryon-number conservation and fast isospin equilibration are of the same magnitude

5 The generating function of independent sources is given by a product of its generating functions.

Based on prelim. STAR data

Data

Model

Four particle correlations are orders of magnitudes larger in the data



Can we understand these 
correlations?

• Three and four particle correlations require lots of “fantasy”… 

• For example, if about 40% of the nucleons are come in 8-
nucleon clusters one can get near the data…
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FIG. 4. Integrated multi-particle correlations Cn in the model where particles are correlated in pairs (left) and quartets (right)
as a function of the probability for a pair (p2) or a quartet (p4) to end up in the rapidity bin. For larger values of p2 and p4
we obtain large values of C3 and C4. See the text for further explanation.

The multi-particle correlations Ck are given by the appropriate derivatives (at z = 1) of

C(z;N
part

) = ln [H(z;N
part

)]

= (N
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� 2M) ln (1� p
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(25)

resulting in

hNi = p
1

(N
part

� 2M) + 2p
2

M,

C
2

= �p2
1

(N
part

� 2M)� 2p
2

(2p
2

� 1)M,

C
3

= 2p3
1

(N
part

� 2M)� 4p2
2

(3� 4p
2

)M,

C
4

= �6p4
1

(N
part

� 2M) + 12p2
2

�
8p

2

� 8p2
2

� 1
�
M. (26)

Taking N
part

= 350, hNi = 0.12N
part

= 42 and M = 8 (8 pairs of protons) we obtain the relation between p
1

and p
2

.
In Fig. 4 (left) we plot 7C

2

, 6C
3

and C
4

as a function of p
2

. We observe that for p
2

> 0.5 both C
3

and C
4

have the
right signs and can reach substantial values.

The right panel of Fig. 4 shows the results of an analogues calculation where protons come in quartets instead of
pairs. In this case
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where M in this case is the number of proton quartets. In this calculation we use M = 4 so that the number of
correlated protons is the same as in the previous case. We observe that the signal for p

4

> 0.7 is much larger, and
all Cn agree qualitatively with the STAR data. We have also verified that the signal increases even further if protons
are clustered in even larger multiplets.

V. DISCUSSION AND CONCLUSIONS

Let first summarize the main findings of this paper.

• We have studied the proton correlations at low energies where proton-antiproton pair production can be ne-
glected. To this end we developed a minimal model which is based on independent stopping of nucleons, baryon
number conservation and fast isospin-exchange. We find that this model qualitatively reproduces the two-
proton correlations seen in the preliminary STAR data, while it underpredicts the magnitude of the four-proton
correlations by almost three orders of magnitude.

STAR C4

STAR C3

6

where b = 40 for
p
s = 7.7 GeV. Our conclusions are not sensitive to small variations of b and changing the exponent

from 1.25 to 1. The results are presented in Fig. 3 by the solid curves. The dashed curves correspond to calculations
without volume (N

part

) fluctuations (no VF). The symbols represent the correlations after averaging over bins in
centrality of 5%, i.e. 0 � 5%, 5 � 10% etc. Only the five most central points are shown. For less central collisions,
the centrality averaging does not alter our results and points fall right on the solid lines. Clearly, the contribution
originating from N

part

fluctuations is important for the two particle correlation, C
2

; there is also some but less
significant e↵ect of N

part

fluctuations on the three particle correlation C
3

in central collisions. On the other hand,
when compared to the STAR data, fluctuations of wounded nucleons are all but irrelevant for the four particle
correlation, C

4

. In our model calculation, C
4

is negative for o↵-central collisions and it gets positive for large N
part

.
After averaging over centrality bins, the model predicts around �0.3 for C

4

while the analysis of the preliminary
STAR data gives ⇠ 170. Also, as already mentioned, the strong oscillations exhibited in C

3

and C
4

at large N
part

disappear after averaging over centrality bins. Obviously our model of independent stopping together with baryon
number conservation clearly fails to explain the preliminary STAR data, reported in Ref. [51] (see Fig. 1 therein).

FIG. 3. Multi-particle correlations Cn in Au+Au collisions at
p
s = 7.7 GeV. The leading terms, where fluctuations of the

number of wounded nucleons are not present, are denoted by “no VF”. Also shown as circles, triangles and squares are the
results for the five most central bins with a width of 5% of centrality.

Before we close this section, let us make a few more remarks. First, the results without the number of wounded
nucleon fluctuations presented in this section can be verified analytically. At a fixed N

part

, Eq. (9) reduces to

H(z;N
part

) = (1� p+ pz)Npart , (20)

and using Eq. (3) we obtain

C
2

= �p2N
part

, C
3

= 2p3N
part

, C
4

= �6p4N
part

. (21)

Since p < 1 this explains the relative magnitude of the correlation functions. Next, in our analysis we assumed that
each nucleon is stopped in �y with the same probability p. This is rather unphysical since nucleons that collide
once are expected to have significantly smaller p than nucleon from the centers which collide several times. However,
as long as we have independent stopping of the nucleons, individual stopping probabilities do not really change
our conclusions. Suppose that each nucleon is characterized by its own stopping probability, p

(i), i = 1, ..., N
part

.
Neglecting N

part

fluctuations we obtain at a given N
part

5
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part

) =
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(i) + p

(i)z), (22)

which obviously reduces to Eq. (20) if pi = p. Calculating Ck we observe that it is enough to replace N
part

pn !
P

i p
n
(i)

in Eq. (21) and thus the signs of Ck do not change. We conclude that this e↵ect cannot lead to a large and positive
C

4

as seen in the STAR data.
The corollary of this section is the following. The two-particle correlations obtained in our model of independent

nucleon stopping together with baryon-number conservation and fast isospin equilibration are of the same magnitude

5 The generating function of independent sources is given by a product of its generating functions.

Singles Pairs

Proton-quartets = 8 nucleon clusters



Shape of probability distribution 
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K3 < �N�
K4 > �N�

K3 = �N � �N��3

K4 = �N � �N��4 � 3 �N � �N��2
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Simple two component model
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Summary
• Fluctuations sensitive to phase structure:  

- measure “derivatives” of EOS 
• Measurements are difficult 
• Cumulants contain information about correlations 
• Preliminary STAR data: 

- Significant four particle correlations at 7.7 and 11.5 GeV 
- Dip in K4/K2 at 19.6 GeV is due to negative two-particle 

correlations 
- Centrality dependence (at 7.7 GeV) indicates independent 

sources for Npart < 150 and “collective” correlations for 
Npart>200. 

- At about the same centrality three- and four particle 
correlations change sign! 
•New dynamics?
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Summary
• Preliminary STAR data continued: 

- For central 7.7 and 11.5 GeV two and three particle 
correlations are negative and four particle are positive. 

• Other more mundane effects may contribute  
- Fluctuations of system size (Npart) 

•May explain 2-particle correlations 
•Fail to reproduce the magnitude of 3- and 4- particle correlations 

• Understanding 3- and 4 particle correlations requires 
“desperate measures”! 

39
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Thank You



Simple two component model
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Difficult to see in the real data with efficiency ε=0.6
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Hydrogen



Things to consider

● Fluctuations of conserved charges ?! 
● Volume Fluctuations  
● Net-protons different from net-baryons 

● Isospin fluctuations 
● “Stopping” fluctuations  
● Higher cumulants probe the tails. Statistics! 
● The detector “fluctuates” !  

● Efficiency effects 
● …….
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Finite efficiency

K4/K2=5
STAR  

acceptance 
(protons)

Fraction of BARYONS 
observed

K4/K2=1

K4/K2=-1

K4/K2=-5

Unfolding needed if we want to know what the true cumulants are 
Tricky with a real detector



Compare Data with Lattice QCD 
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Example: “Charge” susceptibility

Equivalence of integrated coordinate space and momentum space  
correlation function

Experiment almost never integrates ALL of momentum space! 

Lattice (hopefully) does integrate over all coordinate space
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Correlations: Lattice vs Data

⟨(δN )2⟩
⟨N ⟩

=1+⟨N ⟩∫Δ/2

Δ/2
C ( y 1, y 2)dy 1 dy2

⟨n( y1)( n( y2)−δ( y1− y2) )⟩=⟨n( y1)⟩⟨n( y2)⟩ (1+C ( y1 , y2))

⟨(δN )2⟩
⟨N ⟩

Δ
σ

“Charge conservation”

“Lattice result”

C ( y1, y2)∼exp(
−( y1− y2)

2

2σ2
)
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Dh Dependence @ ALICE  
ALICE

PRL 2013

t

z

Dh

rapidity window

Same information as
� 2 particle corr.:
� Balance function

Alice Charge Flucts



Lattice QCD 
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Susceptibilities

Equation of state

Aoki et al, Nature 
443:675-678,2006

S. Borsanyi et al, JHEP 1011 (2010) 077 
Cross over transition

P. Braun-Munzinger et al. / Physics Reports 621 (2016) 76–126 99

Consequently, these susceptibilities also control the pressure at small values of the various chemical potentials. For
example, at small baryon number chemical potential, µb/T < 1, the pressure may be expressed in terms of a Taylor
series

P (T , µB)

T 4 = P (T , µB = 0)
T 4 +

X

n
cn (µ/T )n (50)

where the expansion coefficients are given by the baryon-number susceptibilities

cn = �B
n

n! . (51)

Due to the fermion sign problem, at present lattice QCD calculations can only be reliably carried out at vanishing chemical
potentials. Therefore, the above Taylor expansion for the pressure is employed in order to determine the QCD equation of
state for small chemical potentials [64,67,241]. Meanwhilemany susceptibilities at various orders and various combinations
of conserved charges have been calculated in lattice QCD. In the following we will discuss a selection of these results and
their interpretation also in the context of experiment.

5.1.1. Example: Net charge fluctuations
To illustrate how fluctuations may be utilized to explore the relevant degrees of freedom, let us briefly discuss the

fluctuations of the electric charge. In Refs. [242,243] it has been realized that the electric charge of particles contributes
in square to the fluctuations of the net-charge. Therefore, cumulants of the net-charge are in principle sensitive to the
fractional charge of quarks in a quark–gluon plasma. This can be easily seen by considering the variance of the net charge of
a gas of uncorrelated particles with charge q,

⌦
(�Q )2

↵ = q2
⌦
(�N)2

↵ = q2 hNi , (52)

where in the last step we have, for simplicity, assumed that the particle number follows a Poisson distribution. Since the
variance depends not only on the squared charge of the particles but also on the number of particles, it is advantageous to
scale the charge variance by another extensive quantity, such as the entropy, S, so that the ratio

R =
⌦
(�Q )2

↵

S
(53)

does not depend on the size of the system. A simple estimate using Boltzmann statistics gives [242,244]

RQGP = 1
24

(54)

for a two flavor quark–gluon plasma whereas for a gas of massless pions we get

R⇡ = 1
6
. (55)

In other words, due to the fractional charges of the quarks, the charge fluctuations per entropy in a QGP is roughly a factor
four smaller than that in a pion gas at the same temperature. In reality the hadronic phase is made out of more than pions,
and, taking into account hadronic resonances, the charge variance per entropy is reduced by about 30% which still leaves
roughly a factor three difference between a hadronic system and a QGP. Incidentally, the fact that charges contribute in
square to fluctuations has been utilized to identify the fractional charges in a quantum Hall system as well as the double
charge of cooper pairs in measurements of shot noise [245,246].

While our simple example is instructive, in reality one has to include strange quarks and hadrons, quantum statistics,
and possible correlations among quarks or hadrons. Therefore, a realistic calculation of R will require lattice QCD methods.
Since both the variance of the net charge and the entropy are well defined thermodynamic quantities this can be done, and
in Fig. 16 we show the lattice QCD result for the net-charge variance per entropy based on the results for the net-charge
variance from [247] and for the entropy density from [88]. We also show the results for a free pion gas and a QGPwith three
flavors of mass-less quarks, both using the proper quantum statistics, as well as that for a hadron resonance gas. We see
that the hadron resonance gas agrees well with the lattice results for temperatures up to T . 160MeV, which is close to the
pseudo-critical temperature of Tpc = 154 ± 9 MeV. For temperatures in the range of 160 MeV . T . 250 MeV the lattice
calculations are in between the prediction a resonance gas and that of a non-interacting QGP, indicating that some of the
correlations leading to resonance formation are still present in the system. With few exceptions, this trend is seen for most
quantities which have been calculated on the lattice, such as energy density, cumulant ratios etc.: Good agreement with the
hadron resonance gas up to the critical temperature, followed by a rather smooth transition to a free QGP which takes place
over a temperature interval of approximately �T ⇠ 100 MeV, where the correlations slowly disappear.
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Due to the fermion sign problem, at present lattice QCD calculations can only be reliably carried out at vanishing chemical
potentials. Therefore, the above Taylor expansion for the pressure is employed in order to determine the QCD equation of
state for small chemical potentials [64,67,241]. Meanwhilemany susceptibilities at various orders and various combinations
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their interpretation also in the context of experiment.

5.1.1. Example: Net charge fluctuations
To illustrate how fluctuations may be utilized to explore the relevant degrees of freedom, let us briefly discuss the
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in square to the fluctuations of the net-charge. Therefore, cumulants of the net-charge are in principle sensitive to the
fractional charge of quarks in a quark–gluon plasma. This can be easily seen by considering the variance of the net charge of
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R =
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does not depend on the size of the system. A simple estimate using Boltzmann statistics gives [242,244]

RQGP = 1
24

(54)

for a two flavor quark–gluon plasma whereas for a gas of massless pions we get

R⇡ = 1
6
. (55)

In other words, due to the fractional charges of the quarks, the charge fluctuations per entropy in a QGP is roughly a factor
four smaller than that in a pion gas at the same temperature. In reality the hadronic phase is made out of more than pions,
and, taking into account hadronic resonances, the charge variance per entropy is reduced by about 30% which still leaves
roughly a factor three difference between a hadronic system and a QGP. Incidentally, the fact that charges contribute in
square to fluctuations has been utilized to identify the fractional charges in a quantum Hall system as well as the double
charge of cooper pairs in measurements of shot noise [245,246].

While our simple example is instructive, in reality one has to include strange quarks and hadrons, quantum statistics,
and possible correlations among quarks or hadrons. Therefore, a realistic calculation of R will require lattice QCD methods.
Since both the variance of the net charge and the entropy are well defined thermodynamic quantities this can be done, and
in Fig. 16 we show the lattice QCD result for the net-charge variance per entropy based on the results for the net-charge
variance from [247] and for the entropy density from [88]. We also show the results for a free pion gas and a QGPwith three
flavors of mass-less quarks, both using the proper quantum statistics, as well as that for a hadron resonance gas. We see
that the hadron resonance gas agrees well with the lattice results for temperatures up to T . 160MeV, which is close to the
pseudo-critical temperature of Tpc = 154 ± 9 MeV. For temperatures in the range of 160 MeV . T . 250 MeV the lattice
calculations are in between the prediction a resonance gas and that of a non-interacting QGP, indicating that some of the
correlations leading to resonance formation are still present in the system. With few exceptions, this trend is seen for most
quantities which have been calculated on the lattice, such as energy density, cumulant ratios etc.: Good agreement with the
hadron resonance gas up to the critical temperature, followed by a rather smooth transition to a free QGP which takes place
over a temperature interval of approximately �T ⇠ 100 MeV, where the correlations slowly disappear.

Susceptibilities provide µB-dependence of EOS 

AND measure fluctuations 

present status: 6th order, 8th in the works 
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