Correlations, Fluctuations and the QCD Phase diagram

- A. Bzdak, VK, N. Strodthoff: arXiv:1607.07375
- A. Bzdak, VK, V. Skokov: arXiv:1612.05128
- A. Bzdak, VK: arXiv:1707.02640
- J. Steinheimer, A. Bzdak, D. Oliinychenko, and VK: in preparation

The phases of matter: An old question

discussed for many years

gets more colorful ...

What we know about the Phase Diagram

What we "hope" for

Is there a critical point?

Nothing you cannot find in LA...

Cumulants and phase structure

What we always see....

"T_c" ~ 160 MeV

Derivatives

How to measure derivatives

At
$$\mu = 0$$
:

$$Z = tr e^{-\hat{E}/T + \mu/T\hat{N}_B}$$

$$\langle E \rangle = \frac{1}{Z} tr \hat{E} e^{-\hat{E}/T + \mu/T\hat{N}_B} = -\frac{\partial}{\partial 1/T} \ln(Z)$$

$$\langle (\delta E)^2 \rangle = \langle E^2 \rangle - \langle E \rangle^2 = \left(-\frac{\partial}{\partial 1/T}\right)^2 \ln(Z) = \left(-\frac{\partial}{\partial 1/T}\right) \langle E \rangle$$

$$\langle (\delta E)^n \rangle = \left(-\frac{\partial}{\partial 1/T}\right)^{n-1} \langle E \rangle$$

Cumulants of Energy measure the temperature derivatives of the EOS Cumulants of Baryon number measure the chem. pot. derivatives of the EOS

How to measure derivatives

At
$$\mu = 0$$
:

$$Z = tr e^{-\hat{E}/T + \mu/T\hat{N}_B}$$

$$\langle E \rangle = \frac{1}{Z} tr \hat{E} e^{-\hat{E}/T + \mu/T\hat{N}_B} = -\frac{\partial}{\partial 1/T} \ln(Z)$$

$$\langle (\delta E)^2 \rangle = \langle E^2 \rangle - \langle E \rangle^2 = \left(-\frac{\partial}{\partial 1/T}\right)^2 \ln(Z) = \left(-\frac{\partial}{\partial 1/T}\right) \langle E \rangle$$

$$\langle (\delta E)^n \rangle = \left(-\frac{\partial}{\partial 1/T}\right)^{n-1} \langle E \rangle$$

Cumulants of Energy measure the temperature derivatives of the EOS Cumulants of Baryon number measure the chem. pot. derivatives of the EOS

Cumulants of (Baryon) Number

$$K_n = \frac{\partial^n}{\partial (\mu/T)^n} \ln Z = \frac{\partial^{n-1}}{\partial (\mu/T)^{n-1}} \langle N \rangle$$

$$K_1 = \langle N \rangle, \ K_2 = \langle N - \langle N \rangle \rangle^2, \ K_3 = \langle N - \langle N \rangle \rangle^3$$

Cumulants scale with volume (extensive): $K_n \sim V$

Volume not well controlled in heavy ion collisions

Cumulant Ratios:
$$\frac{K_2}{\langle N \rangle}, \frac{K_3}{K_2}, \frac{K_4}{K_2}$$

Simple model

What to expect from experiment?

K₄/K₂ follows expectation, K₃/K₂ no so much.....

Let's take the preliminary STAR data at face value

Further insights: Correlations

Cumulants
$$K_n = \frac{\partial^n}{\partial \hat{\mu}^n} P/T^4$$

 $K_{2} = \langle N - \langle N \rangle \rangle^{2} = \langle (\delta N)^{2} \rangle$ $\rho_{2}(p_{1}, p_{2}) = \rho_{1}(p_{1})\rho_{1}(p_{2}) + C_{2}(p_{1}, p_{2}), \quad C_{2}: \text{Correlation Function}$

 $K_3 = \left< (\delta N)^3 \right>$

 $\rho_3(p_1, p_2, p_3) = \rho_1(p_1)\rho_1(p_2)\rho_1(p_3) + \rho_1(p_1)C_2(p_2, p_3) + \rho_1(p_2)C_2(p_1, p_3) + \rho_1(p_3)C_2(p_1, p_2) + C_3(p_1, p_2, p_3)$

From Cumulants to Correlations (no anti-protons)

Defining integrated correlations function

$$C_n = \int dp_1 \dots dp_n C_n(p_1, \dots, p_n)$$

Simple Algebra leads to relation between correlations C_n and K_n

$$C_2 = -K_1 + K_2,$$

$$C_3 = 2K_1 - 3K_2 + K_3,$$

$$C_4 = -6K_1 + 11K_2 - 6K_3 + K_4,.$$

or vice versa

$$K_{2} = \langle N \rangle + C_{2}$$

$$K_{3} = \langle N \rangle + 3C_{2} + C_{3}$$

$$K_{4} = \langle N \rangle + 7C_{2} + 6C_{3} + C_{4}$$

Correlations near the critical point

M. Stephanov, 0809.3450, PRL 102

Scaling of Cumulants K_n with correlation length ξ

$$K_2 \sim \xi^2, \ K_3 \sim \xi^{4.5}, \ K_4 \sim \xi^7$$

Cumulants from Correlations

$$K_2 = \langle N \rangle + C_2$$

$$K_3 = \langle N \rangle + 3C_2 + C_3$$

$$K_4 = \langle N \rangle + 7C_2 + 6C_3 + C_4$$

Consequently:

$$C_2 \sim \xi^2, \ C_3 \sim \xi^{4.5}, \ C_4 \sim \xi^7$$

Correlations C_n pick up the most divergent pieces of cumulants K_n!

Preliminary Star Data (X. Luo, PoS Cpod 2014 (019))

Significant four particle correlations!

Four particle correlation dominate K₄ for central collisions at 7.7 GeV

$$K_2 = \langle N \rangle + C_2$$

$$K_3 = \langle N \rangle + 3C_2 + C_3$$

$$K_4 = \langle N \rangle + 7C_2 + 6C_3 + C_4$$

Correlations

Reduced correlation function

Reduced correlation function

$$c_{k} = \frac{\int \rho_{1}(y_{1}) \cdots \rho_{1}(y_{k}) c_{k}(y_{1}, \dots, y_{k}) dy_{1} \cdots dy_{k}}{\int \rho_{1}(y_{1}) \cdots \rho_{1}(y_{k}) dy_{1} \cdots dy_{k}}$$

$$C_k = \langle N \rangle^k c_k$$

Independent sources such as resonances, cluster, p+p:

$$c_k \sim \frac{\langle N_s \rangle}{\langle N \rangle^k} \sim \frac{1}{\langle N \rangle^{k-1}}$$

For example two particle correlations:

 $c_2 \sim \frac{\text{Number of sources}}{\text{Number of all pairs}} = \frac{\text{Number of correlated pairs}}{\text{Number of all pairs}} = \frac{1}{\langle N \rangle}$

Centrality dependence

Centrality dependence

Rapidity dependence

$$C_k(\Delta Y) = \int_{\Delta Y} dy_1 \dots dy_k
ho_1(y_1) \dots
ho_1(y_k) c_k(y_1, \dots, y_k)$$

Assume: $\rho_1(y) \simeq const.$

short range correlations:

$$c_k(y_1, \dots, y_k) \sim \delta(y_1 - y_2) \dots \delta(y_{n-1} - y_k)$$

 $C_k(\Delta Y) \sim \Delta Y \to K_k \sim \Delta Y$

Long range correlations:

$$c_k(y_1,\ldots,y_k)=const.$$

 $C_k(\Delta Y)\sim (\Delta Y)^k$

Preliminary Star data are consistent with long range correlations

7.7 GeV central 19.6 GeV central

Long range correlations

NB: Data are consistent with small "repulsive" component

$$c_2(y_1, y_2) = c_2^0 + \gamma_2(y_1 - y_2)^2 \quad \gamma_2 > 0$$

Energy dependence

Note: anti-protons are non- negligible above 19.6 GeV Data are protons only

Can we understand these correlations?

• Two particle correlations can be understood by simple Glauber model + Baryon number conservation

Four particle correlations are orders of magnitudes larger in the data

Can we understand these correlations?

- Three and four particle correlations require lots of "fantasy"...
- For example, if about 40% of the nucleons are come in 8nucleon clusters one can get near the data...

Shape of probability distribution

Simple two component model

Summary

- Fluctuations sensitive to phase structure: - measure "derivatives" of EOS
- Measurements are difficult
- Cumulants contain information about correlations
- Preliminary STAR data:
 - Significant four particle correlations at 7.7 and 11.5 GeV
 - Dip in K₄/K₂ at 19.6 GeV is due to negative two-particle correlations
 - Centrality dependence (at 7.7 GeV) indicates independent sources for N_{part} < 150 and "collective" correlations for N_{part}>200.
 - At about the same centrality three- and four particle correlations change sign!
 - •New dynamics?

Summary

- Preliminary STAR data continued:
 - For central 7.7 and 11.5 GeV two and three particle correlations are negative and four particle are positive.
- Other more mundane effects may contribute
 - Fluctuations of system size (N_{part})
 - May explain 2-particle correlations
 - Fail to reproduce the magnitude of 3- and 4- particle correlations
- Understanding 3- and 4 particle correlations requires "desperate measures"!

Thank You

Simple two component model

Difficult to see in the real data with efficiency ε =0.6

Phase Diagrams

Maybe it's better to look at the Phase diagram in density.

Kitamura H., Ichimaru S., J. Phys. Soc. Japan 67, 950 (1998).

Curious similarity

(2013)

Jan Steinheimer

Things to consider

- Fluctuations of conserved charges ?!
- Volume Fluctuations
- Net-protons different from net-baryons
 - Isospin fluctuations
- "Stopping" fluctuations
- Higher cumulants probe the tails. Statistics!
- The detector "fluctuates" !
 - Efficiency effects

Finite efficiency

Unfolding needed if we want to know what the true cumulants are Tricky with a real detector

Compare Data with Lattice QCD

Example: "Charge" susceptibility

$$\chi_Q = \int d^3x < \rho(x)\rho(0) > = \int d^3p < \tilde{\rho}(p)\tilde{\rho}(0) >$$

Equivalence of *integrated* coordinate space and momentum space correlation function

Experiment almost never integrates ALL of momentum space!

Lattice (hopefully) does integrate over all coordinate space

Correlations: Lattice vs Data

$$\langle n(y_1)(n(y_2)-\delta(y_1-y_2))\rangle = \langle n(y_1)\rangle\langle n(y_2)\rangle (1+C(y_1,y_2))\rangle$$

 $C(y_1, y_2) \sim \exp(\frac{-(y_1 - y_2)^2}{2\sigma^2})$

$$\frac{\langle (\delta N)^2 \rangle}{\langle N \rangle} = 1 + \langle N \rangle \int_{\Delta/2}^{\Delta/2} C(y 1, y 2) dy 1 dy_2$$

Lattice QCD

