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Neutrinos

Neutrinos proposed by Pauli in 1930 to conserve energy, momentum, and 
angular momentum in nuclear beta decay.

In 1956 Reines and Cowan 
detected anti-neutrinos from
Savannah River reactors:

⌫̄e + p ! n+ e+

n ! p+ e� + ⌫̄e

through coincidence of e+e- gamma rays and neutron capture.
Reines was a LANL T-division employee at the time.

Reines and Cowan were awarded the Nobel Prize in 1995.

Reines and Cowan discovered the electron (anti-) neutrino.
Later Lederman, Schwartz and Steinberger detected 
muon neutrino, receiving the Nobel Prize in 1988.



Nuclei

Rutherford
Geiger-Marsden apparatus (~1910)



Why study neutrino-nucleus scattering (accelerators) ?

mass differences,  
mixings from oscillations

SuperK

MicroBooNEMINERva



Neutrinos Oscillations and Masses

Neutrinos interact with matter in the flavor basis
but propagate in the mass basis ( in vacuum )

Neutrino oscillations first proposed in 1957 by Bruno Pontecorvo,
Maki, Nakagawa, and Sakata in 1962

Mixing angles, CP violating phases, Majorana Phases
+ MSW effect from forward scattering in matter

MajoranaCP-violating phase



Why study Neutrinos and Nuclei 

Neutrinos and nuclei are fundamental 
to some of the largest and most 

exciting experiments and observations

Double Beta decay
Majorana nature of 

the neutrino

Supernovae/ Neutron star mergers 
and nucleosynthesis

Accelerator Neutrino Measurements:

Coherent neutrino scattering at SNS

At high energies resonance and deep 
inelastic dominate



Recent Theory Status
Until recently our understanding of neutrino 
nucleus interactions has been very limited
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has been ignored in this analysis. We really need better
calculations. Fortunately, we are now finally in a position
to undertake them.

III. NUCLEAR MATRIX ELEMENTS AT
PRESENT

As we have noted, calculated matrix elements at
present carry large uncertainties. Matrix elements ob-
tained with di↵erent nuclear-structure approaches dif-
fer by factors of two or three. Figure 5 compares ma-
trix elements produced by the shell model [82, 113, 114],
di↵erent variants of the quasiparticle random phase ap-
proximation (QRPA) [81, 115–117], the interacting boson
model (IBM) [109], and energy density functional (EDF)
theory [118–120]. The strengths and weaknesses of each
calculation are discussed in detail later in this Section.

Some of these methods can be used to compute single-
� and 2⌫�� decay lifetimes. It is disconcerting to find
that predicted lifetimes for these processes are almost
always shorter than measured lifetimes, i.e. computed
single Gamow-Teller and 2⌫�� matrix elements are too
large [121–123]. The problems are usually “cured” by
reducing the strength of the spin-isospin Gamow-Teller
operator �⌧ , which is equivalent to using an e↵ective
value of the axial coupling constant that multiplies this
operator in place of its “bare” value of gA ' 1.27. This
phenomenological modification is sometimes referred to
as the “quenching” or “renormalization” of gA. In Sec. IV
we review possible sources of the renormalization, none
of which has yet been shown to fully explain the e↵ect,
and their consequences for 0⌫�� matrix elements.

A. Shell Model

The nuclear shell model is a well-established many-
body method, routinely used to describe the properties
of medium-mass and heavy nuclei [121, 124, 125], includ-
ing candidates for ��-decay experiments. The model,
also called the “configuration interaction method” (par-
ticularly in quantum chemistry [126, 127]), is based on
the idea that the nucleons near the Fermi level are the
most important for low-energy nuclear properties, and
that all the correlations between these nucleons are rele-
vant. Thus, instead of solving the Schrödinger equation
for the full nuclear interaction in the complete many-
body Hilbert space, one restricts the dynamics to a lim-
ited configuration space (sometimes called the valence
space) containing only a subset of the system’s nucleons.
In the configuration space one uses an e↵ective nuclear
interaction He↵, defined (ideally) so that the observables
of the full-space calculation are reproduced, e.g.

H |�ii = Ei |�ii ! He↵ |�̄ii = Ei |�̄ii . (17)

The states |�ii and |�̄ii are defined in the full space and
the configuration space, respectively, and have associated
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FIG. 5. Top panel: Nuclear matrix elements (M0⌫) for 0⌫��
decay candidates as a function of mass number A. All the
plotted results are obtained with the assumption that the ax-
ial coupling constant gA is unquenched and are from di↵erent
nuclear models: the shell model (SM) from the Strasbourg-
Madrid (black circles) [113], Tokyo (black circle in 48Ca) [114],
and Michigan (black bars) [82] groups; the interacting bo-
son model (IBM-2, green squares) [109]; di↵erent versions
of the quasiparticle random-phase approximation (QRPA)
from the Tübingen (red bars) [115, 116], Jyväskylä (orange
times signs) [81], and Chapel Hill (magenta crosses) [117]
groups; and energy density functional theory (EDF), relativis-
tic (downside cyan triangles) [118, 119] and non-relativistic
(blue triangles) [120]. QRPA error bars result from the use of
two realistic nuclear interactions, while shell model error bars
result from the use of several di↵erent treatments of short
range correlations. Bottom panel: Associated 0⌫�� decay
half-lives, scaled by the square of the unknown parameter
m�� .

energy Ei.

The configuration space usually comprises only a rela-
tively small number of “active” nucleons outside a core of
nucleons that are frozen in the lowest-energy orbitals and
not included in the calculation. The active nucleons can
occupy only a limited set of single-particle levels around
the Fermi surface. Many-body states are linear combi-
nations of orthogonal Slater determinants | ii (usually
from a harmonic-oscillator basis) for nucleons in those
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FIG. 1. Comparison of the experimental matrix ele-
ments R(GT ) with the theoretical calculations based on
the “free-nucleon” Gamow-Teller operator. Each transi-
tion is indicated by a point in the x-y plane, with the
theoretical value given by the x coordinate of the point
and the experimental value by the y coordinate.
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FIG. 2. Comparison of the experimental values of
the sums T (GT ) with the correspondig theoretical value
based on the “free-nucleon” Gamow-Teller operator.
Each sum is indicated by a point in the x-y plane, with the
theoretical value given by the x coordinate of the point
and the experimental value by the y coordinate.

TABLE I. Experimental and theoretical M(GT ) matrix elements. The experimental data have been taken from [19]. Iβ + Iϵ

are the branching ratios . All other quantities explained in the text.

Process 2Jπ
n , 2T π

n Q Iβ + Iϵ log ft M(GT ) W
(MeV) (%) Exp. Th.

41Sc(β+)41Ca 7−, 1 6.496 99.963(3) 3.461(7) 2.999 4.083 6.172
42Sc∗(β+)42Ca 12+, 2 3.851 100 4.17(2) 2.497 3.389 11.127
42Ti(β+)42Sc 2+, 0 6.392 55(14) 3.17(12) 2.038 2.736 3.086
43Sc(β+)43Ca 7−, 3 2.221 77.5(7) 5.03(2) 0.677 0.764 6.172

5−, 3 1.848 22.5(7) 4.97(3) 0.726 0.878
44Sc(β+)44Ca 4+

1 , 4 2.497 98.95(4) 5.30(2) 0.392 0.741 6.901
4+
2 , 4 0.998 1.04(4) 5.15(3) 0.466 0.205

4+
3 , 4 0.353 0.010(2) 6.27(8) 0.128 0.295

44Sc∗(β+)44Ca 12+, 4 0.640 1.20(7) 5.88(3) 0.324 0.276 11.127
45Ca(β−)45Sc 7−, 3 0.258 99.9981 5.983(1) 0.226 0.079 13.802
45Ti(β+)45Sc 7−, 3 2.066 99.685(17) 4.591(2) 1.123 1.551 6.172

5−, 3 1.342 0.154(12) 6.24(4) 0.168 0.280
7−, 3 0.654 0.090(10) 5.81(5) 0.276 0.397
9−, 3 0.400 0.054(5) 5.60(4) 0.351 0.712

45V(β+)45Ti 7−, 1 7.133 95.7(15) 3.64(2) 1.801 2.208 6.172
5−, 1 7.093 4.3(15) 5.0(2) 0.701 0.428

46Sc(β−)46Ti 8+, 2 0.357 99.9964(7) 6.200(3) 0.187 0.277 13.093
47Ca(β−)47Sc 7−, 5 1.992 19(10) 8.5(3) 0.012 0.262 16.331

5−, 5 0.695 81(10) 6.04(6) 0.212 0.235
47Sc(β−)47Ti 5−, 3 0.600 31.6(6) 6.10(1) 0.198 0.235 13.802

7−, 3 0.441 68.4(6) 5.28(1) 0.508 0.611

3

Beta Decay Double Beta Decay

overpredicted: gA quenching 1.27  ➡ ~1
Factor of >2 uncertainty

MiniBooN

Theory

Quasielastic Scattering

Under predicted by ~30%

How can we improve
our understanding?
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LO (ν = 0) NLO (ν = 2) NNLO (ν = 3)

N3LO (ν = 4)

FIG. 1: Two–nucleon force up to N3LO. Solid (dashed) lines denote nucleons (pions). Solid dots, filled circles, filled rectangles and crossed
circles refer to vertices with ∆i = 0, 1, 2 and 4, respectively.
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FIG. 2: np differential cross section and vector analyzing power at Elab = 25 MeV (left panel), Elab = 50 MeV (middle panel) and Elab = 96
MeV (right panel). The light (dark) shaded bands show the NNLO (N3LO) results. The Nijmegen PWA result is taken from [17]. For data see
[15].

chiral symmetry. Consequently, the chiral order ν is bounded
from below and for any given ν only a finite number of dia-
grams needs to be taken into account. Notice further that the
boundary ν∏ 2N°4, which follows from eq. (2) for connec-
ted diagrams, implies a rather natural picture, in which nu-
cleons interact mainly via 2N forces while many–body forces
provide small corrections.

As shown in Fig. 1, the general structure of the NN force in
the chiral EFT approach can be expressed as

V2N =VNN+V1π+V2π+V3π+ . . . , (3)

where the NN contact terms VNN and the pion–exchange con-
tributions can be obtained order–by–order, see eqs. (1) and

(2):

VNN = V (0)
NN +V (2)

NN +V (4)
NN + . . . ,

V1π = V (0)
1π +V (2)

1π +V (3)
1π +V (4)

1π + . . . ,

V2π = V (2)
2π +V (3)

2π +V (4)
2π + . . . ,

V3π = V (4)
3π + . . . . (4)

Here the superscript means the chiral order ν. The NN poten-
tial was first worked out up by Ordóñez, Ray and van Kolck
[5], who derived an energy–dependent, non–hermitian two–
nucleon (2N) potential up to next–to–next–to–leading order
(NNLO) in the chiral expansion and applied it to the nucleon–
nucleon system. The explicit energy dependence of the po-
tential is a severe complication for applications in three– (3N)
and more–nucleon systems. Energy–independent expressions
for the chiral potential at NNLO have been derived by seve-
ral groups independently using different methods [6–8] and

Basic building blocks: Nuclear interactions and currents

NN interactions

NN currents

856 Brazilian Journal of Physics, vol. 35, no. 3B, September, 2005

NLO NNLO N3LO Exp
Ed [MeV] °2.171 . . .°2.186 °2.189 . . .°2.202 °2.216 . . .°2.223 °2.224575(9)
AS [fm°1/2] 0.868 . . .0.873 0.874 . . .0.879 0.882 . . .0.883 0.8846(9)
ηd 0.0256 . . .0.0257 0.0255 . . .0.0256 0.0254 . . .0.0255 0.0256(4)

TABLE I: Deuteron observables at NLO, NNLO and N3LO in chiral EFT in comparison to the data.

FIG. 3: 3N force at NNLO. For notation see Fig. 1
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FIG. 4: Nd elastic observables at 65 MeV.

applied to the 2N system in [9]. Recently, N3LO correc-
tions to the 2N force have been calculated by Kaiser [10–
13] and applied to study the properties of the 2N system in
[14, 15]. In our N3LO analysis [15], a novel regularization
scheme for pion loop integrals in the 2π–exchange potential
is applied, which is based on the spectral–function representa-
tion [16] and allows for a better separation between the long–
and short–distance contributions compared to dimensional re-
gularization. Within this scheme, we found the 3π–exchange
contribution to the potential to be negligibly small. We have
fixed 24 LECs related to contact interactions with up to four
derivatives from a fit to np phase shifts in S–, P– and D–waves
and the corresponding mixing angles.

The resulting potential at N3LO leads to an accurate des-
cription of the phase shifts and the low–energy observables in
the 2N system. In Fig. 2 we show the NNLO and N3LO results
for np differential cross section and vector analyzing power
at three different energy. The bands correspond to the varia-
tion of the cut–offs in the spectral–function representation of
the potential and in the Lippmann–Schwinger equation. They
may serve as a rough estimation of the theoretical uncertainty,
which at N3LO is expected to be of the orderª 0.5%, 7% and
25% at laboratory energy ª 50, 150 and 250 MeV, respecti-
vely, see [15] for more details.

In Table I we show our predictions for the deuteron binding
energy, asymptotic S–wave normalization AS and asymptotic
D/S ratio at various orders in chiral EFT. All these observa-
bles are well described at N3LO.

III. THREE AND MORE NUCLEONS

3N and 4N systems have been studied at NLO [18] and
NNLO [19] in the chiral EFT framework solving rigorously
the Faddeev–Yakubovsky equations in momentum space.
Chiral 3N force starts formally to contribute at NLO (ν = 2),
see eq. (2). It is, however, well known that the leading 3N
force at this order vanishes provided one uses an energy–
independent formulation such as the method of unitary trans-
formation [8, 20], see also [21–23]. Consequently, only
the 2N interaction needs to be taken into account at NLO,
which is already completely fixed from the 2N system. The
first nonvanishing 3N forces appear at NNLO and are given
by the diagrams shown in Fig. 3 [19, 22]. While the 2π–
exchange contribution is parameter–free, the 1π–exchange
and contact interactions depend on one parameter each. These
two parameters cannot be determined in the 2N system and
were fixed from the triton binding energy and the nd doublet
scattering length. Our prediction for the α–particle binding
energy based upon the resulting parameter–free 3N Hamilto-
nian, BE(4He) = °29.51 . . .° 29.98 MeV, agrees well with
the empirical (corrected for missing nn and pp forces) num-
ber, °29.8 MeV.
We also observe good description of the 3N scattering data

at NNLO at low and intermediate energies. For example, dif-
ferential cross section and vector analyzing power for elastic
Nd scattering at Elab = 65 MeV are shown at NLO (light sha-
ded band) and NNLO (dark shaded band) in Fig. 4.
Recently, first and very promising parameter–free results

for the 1+ ground and 3+ excited states of 6Li were obtai-
ned using chiral forces at NLO and NNLO within the no–core
shell model framework [24]. At NNLO both the ground and
excited state energies are reproduced within the theoretical un-
certainty of 5.7% and 7.6% (based on the cut–off variation),
respectively.

IV. SUMMARY AND OUTLOOK

Chiral EFT provides a systematic framework to study the
low–energy dynamics of hadronic systems. Recent applica-
tions in the few–nucleon sector show promising results. The
two–nucleon system has been studied at N3LO. Accurate re-
sults for the deuteron and low–energy scattering observables
have been obtained. 3N, 4N and 6N systems have been analy-
zed at NNLO. For the first time, the chiral 3N force has been
included in few–body calculations. In the future, N3LO analy-
sis of the 2N system should be extended to heavier systems.
One should also consider reactions with external electroweak

3N interactions
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12C calculations:

GFMC for ground-state
+ current correlation matrix elements

~ 45 M core-hours

2A = 4096 spin amplitudes x 
12!/(6!6!) = 924 isospin amplitudes 
           (charge basis) for each sample 

ADLB

http://www.mcs.anl.gov/project/adlb-asynchronous-dynamic-load-balancer

Lusk, Pieper, …

computingnuclei.org

 0 = exp [�H⌧ ]  T



Light Nuclear Spectra
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FIG. 2 GFMC energies of light nuclear ground and excited states for the AV18 and AV18+IL7 Hamiltonians compared to
experiment.

TABLE I AV18+IL7 GFMC results for A  12 nuclear ground states, compared to experimental values (Amroun et al., 1994;
NNDC, 2014; Nörtershäuser and et al., 2009; Nörtershäuser et al., 2011; Purcell et al., 2010; Shiner et al., 1994; Tilley et al.,
2002, 2004). Numbers in parentheses are statistical errors for the GFMC calculations or experimental errors; errors of less than
one in the last decimal place are not shown.

AZ(J⇡;T ) E (MeV) r
p

[r
n

] (fm) µ (µ
N

) Q (fm2)
GFMC Expt. GFMC Expt. GFMC Expt. GFMC Expt.

2H(1+; 0) �2.225 �2.2246 1.98 1.96 0.8604 0.8574 0.270 0.286
3H( 1

2

+

; 1

2

) �8.47(1) �8.482 1.59 [1.73] 1.58 2.960(1) 2.979
3He( 1

2

+

; 1

2

) �7.72(1) �7.718 1.76 [1.60] 1.76 �2.100(1) �2.127
4He(0+; 0) �28.42(3) �28.30 1.43 1.462(6)
6He(0+; 1) �29.23(2) �29.27 1.95(3) [2.88] 1.93(1)
6Li(1+; 0) �31.93(3) �31.99 2.39 2.45(4) 0.835(1) 0.822 0.1(2) �0.082(2)
7He( 3

2

�
; 3

2

) �28.74(3) �28.86 1.97 [3.32(1)]
7Li( 3

2

�
; 1

2

) �39.15(3) �39.25 2.25 [2.44] 2.31(5) 3.24(1) 3.256 �3.9(2) �4.06(8)
7Be( 3

2

�
; 1

2

) �37.54(3) �37.60 2.51 [2.32] 2.51(2) �1.42(1) �1.398(15) �6.6(2)
8He(0+; 2) �31.42(3) �31.40 1.83(2) [2.73] 1.88(2)
8Li(2+; 1) �41.14(6) �41.28 2.11 [2.47] 2.20(5) 1.48(2) 1.654 2.5(2) 3.27(6)
8Be(0+; 0) �56.5(1) �56.50 2.40(1)
8B(2+, 1) �37.51(6) �37.74 2.48 [2.10] 1.11(2) 1.036 5.9(4) 6.83(21)
8C(0+; 2) �24.53(3) �24.81 2.94 [1.85]
9Li( 3

2

�
, 3

2

) �45.42(4) �45.34 1.96 [2.33] 2.11(5) 3.36(4) 3.439 �2.3(1) �2.74(10)
9Be( 3

2

�
, 1

2

) �57.9(2) �58.16 2.31 [2.46] 2.38(1) �1.29(1) �1.178 5.1(1) 5.29(4)
9C( 3

2

�
, 3

2

) �38.88(4) �39.04 2.44 [1.99] �1.35(4) �1.391 �4.1(4)
10Be(0+; 1) �64.4(2) �64.98 2.20 [2.44] 2.22(2)
10B(3+; 0) �64.7(3) �64.75 2.28 2.31(1) 1.76(1) 1.801 7.3(3) 8.47(6)
10C(0+; 1) �60.2(2) �60.32 2.51 [2.25]
12C(0+; 0) �93.3(4) �92.16 2.32 2.33

Carlson, et al, RMP 2015
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(purely imaginary) RME’s of magnetic multipole oper-
ators is [J � 1/2] + 1, and the allowed L’s are the odd
integers between 0 and 2 J . In the case of a J = 1 nu-
cleus, for example, it is possible to take q along the x̂

axis (✓ = ⇡/2), and determine M1 ⌘ h1||M1(q)||1i from
h11; q x̂ | jy(q x̂) | 11i =

p
⇡M1 . (117)

Finally, the small q behavior of the charge monopole
and quadrupole, and magnetic dipole RME’s is given by:

hJ ||C0(q = 0)||Ji =
r

2 J + 1

4⇡
Z , (118)

hJ ||C2(q)||Ji ' 1

12
p
⇡ c2J

q2 Q , J � 1 , (119)

hJ ||M1(q)||Ji ' ip
2⇡ c1J

q

2m
µ , J � 1/2 , (120)

where Q and µ are the quadrupole moment and mag-
netic moment, defined in terms of matrix elements of the
charge and current density operators j0�(x) and j�(x) re-
spectively as

Q = hJJ |
Z

dx j0�(x) (3 z
2 � x

2) | JJi , (121)

µ

2m
= hJJ | 1

2

Z
dx [x⇥ j�(x)]z | JJi . (122)

They are determined by extrapolating to zero a polyno-
mial fit (in powers of q2) to the calculated C2/q2 and
M1/q on a grid of small q values. Consequently, the lon-
gitudinal form factor at q = 0 is normalized as

F 2
L (q = 0) =

Z2

4⇡
, (123)

while the transverse form factor F 2
T (q) vanishes at q = 0.

Note that experimental data for F 2
L (q) are often reported

in the literature as normalized to one at q = 0.
In QMC, matrix elements are evaluated as described

in Sec. III.B.2. The results of elastic and inelastic elec-
tromagnetic form factors for 6Li are shown in Fig. 15.
The calculations have been performed within the im-
pulse approximation (IA), and two-body operators added
(IA+MEC). Overall, the agreement with the experimen-
tal data is excellent. The contribution of MEC is gen-
erally small but its inclusion improve the agreement be-
tween theory and data. In particular, the inclusion of
MEC shift the longitudinal form factor (both elastic and
inelastic) to slightly lower values, and sensibly increase
the transverse inelastic.

In Fig. 16 the longitudinal form factor of 12C is shown.
The calculation has been performed including only one-
body operators (empty symbols), and one- plus two-body
operators (Lovato et al., 2013). The experimental data
are from a compilation by Sick (1982, 2013), and are well
reproduced by theory over the whole range of momentum
transfers. The two-body contributions are negligible at
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FIG. 15 The 6Li longitudinal elastic (upper left panel), in-
elastic (bottom left), and transverse elastic (upper right), and
inelastic (bottom right) calculated with VMC in the impulse
approximation (IA), and with the addition of MEC contri-
butions. The results are compared to the experimental data
indicated in the legend.
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ators (red filled circles) calculated with GFMC. The results
are compared to the experimental data.
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FIG. 17 GFMC propagated energy versus imaginary time for
the first two 0+ states of 12C.

low q, and become appreciable only for q > 3 fm�1, where
they interfere destructively with the one-body contribu-
tions bringing theory into closer agreement with experi-
ment.

D. Second 0+ state of 12C: Hoyle state

The second 0+ state of 12C is the famous Hoyle state,
the gateway for the triple-alpha burning reaction in stars.
It is a particularly di�cult state for shell model calcula-
tions as it is predominantly a four-particle four-hole state.
However the flexible nature of the variational trial func-
tions allows to directly describe this aspect of the state.

To do this two di↵erent types of single-particle wave
functions have been used in the |�N i of Eq. (30): 1) the
five conventional 0+ LS-coupled shell model states and
2) states that have an explicit three-alpha structure; the
first alpha is in the 0s shell, the second in the 0p shell and
the third in either the 0p or 1s0d shells. The latter can
have four nucleons in 1s or four in 0d or two in 1s and
two in 0d. In addition we allow the third alpha to have
two nucleons in 0p and two in 1s0d (a two-particle two-
hole excitation). This gives us a total of 11 components
in |�N i; a diagonalization gives the  T for the ground
and excited 0+ states.

The resulting ground state has less than 1% of its  T

in the 1s0d shell while the second state has almost 70% in
the 1s0d shell. The GFMC propagation is then done for
the first two states; the resulting energies are shown as a
function of imaginary time ⌧ in Fig. 17 which has results
for two di↵erent initial sets of  T . The GFMC rapidly
improves the variational energy and then produces stable,
except for Monte Carlo fluctuations, results to large ⌧ .
The resulting ground state energy is very good, �93.3(4)
MeV versus the experimental value of �92.16 MeV. How-
ever the Hoyle state excitation energy is somewhat too
high, 10.4(5) versus 7.65 MeV.

Figure 18 shows the resulting VMC and GFMC den-
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FIG. 18 VMC and GFMC point-proton densities for the first
two 0+ states of 12C. The experimental band was unfolded
from electron scattering data in Ref. (De Vries et al., 1987)
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FIG. 19 VMC and GFMC E0 transition form factor between
the first two 0+ states of 12C in the impulse approximation.
The data is from Chernykh et al. (2010)

sities for one of the sets of  T . The GFMC propagation
builds a dip at r = 0 into the ground-state density which
results in good agreement with the experimental value.
However the Hoyle-state density is peaked at r = 0 in
both the VMC and GFMC calculations. A possible in-
terpretation of these results is that the ground state is
dominated by an approximately equilateral distribution
of alphas while the Hoyle state has an approximately lin-
ear distribution.

The calculated impulse E0 transition form factor is
compared to the experimental data in Fig. 19. The insert
is scaled such that (linear) extrapolation to k2 = 0 gives
the B(E0). The GFMC more than doubles the VMC
result and gives excellent agreement with the data.

Hoyle state transition form factor

Electromagnetic form factors

2 Nucleon charge operators
(relativistic corrections)

are small



Scaling with momentum transfer : ‘y’-scaling
incoherent sum over scattering from single nucleons

PWIA often good for q >> kF;  used in many fields 
(neutron scattering, …)

quently discuss scaling and the related superscaling. For
light nuclei and nonrelativistic final states, exact calcula-
tions can be performed. For lower momentum transfers,
an alternative approach, the use of the Euclidean re-
sponse, is available and presented. We then study the
results obtained after a longitudinal/transverse !L /T"
separation of the cross section, and their impact on the
Coulomb sum rule. A bothersome correction, namely,
the effect of Coulomb distortion on the cross sections, is
addressed as well. We also show how data for an impor-
tant model system for nuclear theory, infinite nuclear
matter, can be obtained. Last, we address other fields of
quasielastic scattering and discuss their common aspects.

II. ELECTRON-NUCLEUS SCATTERING IN THE
IMPULSE APPROXIMATION

A. Electron-nucleus cross section

The differential cross section of the process

e + A → e! + X , !1"

in which an electron of initial four-momentum ke
#!Ee ,ke" scatters off a nuclear target to a state of four-
momentum ke!#!Ee! ,ke!", the target final state being un-
detected, can be written in the Born approximation as
!Itzykson and Zuber, 1980"

d2!

d"e!dEe!
=

#2

Q4

Ee!

Ee
L$%W$%, !2"

where #=1/137 is the fine-structure constant, d"e! is the
differential solid angle in the direction specified by ke!,
Q2=−q2, and q=ke−ke!#!& ,q" is the four-momentum
transfer.

The tensor L$%, which can be written neglecting the
lepton mass as

L$% = 2$ke
$ke!

% + ke
%ke!

$ − g$%!keke!"% , !3"

where g$%#diag!1,−1,−1,−1" and !keke!"=EeEe!
−ke ·ke! is fully specified by the measured electron kine-
matic variables. All information on target structure is
contained in the tensor W$%, whose definition involves
the initial and final nuclear states &0' and &X', carrying
four-momenta p0 and pX, as well as the nuclear current
operator J$,

W$% = (
X

)0&J$&X')X&J%&0''!4"!p0 + q − pX" , !4"

where the sum includes all hadronic final states.
The most general expression of the target tensor of

Eq. !4", fulfilling the requirements of Lorentz covari-
ance, conservation of parity, and gauge invariance, can
be written in terms of two structure functions W1 and W2
as

W$% = W1*− g$% +
q$q%

q2 +
+

W2

M2*p0
$ −

!p0q"
q2 q$+*p0

% −
!p0q"

q2 q%+ , !5"

where M is the target mass and the structure functions
depend on the two scalars Q2 and !p0q". In the target
rest frame, !p0q"=m& and W1 and W2 become functions
of the measured momentum and energy transfer &q& and
&.

Substitution of Eq. !5" into Eq. !2" leads to

d2!

d"e!dEe!
= * d!

d"e!
+

M

( ,W2!&q&,&" + 2W1!&q&,&"tan2)

2- , !6"

where ) and !d! /d"e!"M=#2 cos2!) /2" /4Ee sin4!) /2" de-
note the electron scattering angle and the Mott cross
section, respectively.

The right-hand side of Eq. !6" can be rewritten sin-
gling out the contributions of scattering processes in-
duced by longitudinally !L" and transversely !T" polar-
ized virtual photons. The resulting expression is

d2!

d"e!dEe!
= * d!

d"e!
+

M
, Q4

&q&4
RL!&q&,&"

+ *1
2

Q2

&q&2
+ tan2)

2
+RT!&q&,&"- , !7"

where the longitudinal and transverse structure func-
tions are trivially related to W1 and W2 through

RT!&q&,&" = 2W1!&q&,&" !8"

and

Q2

&q&2
RL!&q&,&" = W2!&q&,&" −

Q2

&q&2
W1!&q&,&" . !9"

In principle, calculations of W$% of Eq. !4" at moder-
ate momentum transfer !&q & *0.5 GeV/c" can be carried
out within nuclear many-body theory !NMBT", using
nonrelativistic wave functions to describe the initial and
final states and expanding the current operator in pow-
ers of &q & /m !Carlson and Schiavilla, 1998", where m is
the nucleon mass. The available results for medium-
heavy targets have been obtained mostly using the
mean-field approach, supplemented by inclusion of
model residual interactions to take into account long-
range correlations !Dellafiore et al., 1985".

FIG. 2. Schematic representation of the IA regime, in which
the nuclear cross section is replaced by the incoherent sum of
cross sections describing scattering off individual nucleons, the
recoiling !A−1"-nucleon system acting as a spectator.
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duce large effects in combination with ground-state
wave functions calculated including the short-range n-p
correlations. As most previous calculations were based
on independent-particle-type wave functions, the small-
ness of the resulting MEC contributions is thus under-
stood. To verify this point further, Carlson et al. have
repeated their calculation using the same operators, but
with a Fermi-gas wave function. Instead of an enhance-
ment factor of 1.47 coming from MEC at !q !
=600 MeV/c, they find a factor of 1.06 only, i.e., an eight
times smaller MEC effect.

The results of Carlson et al. also show, somewhat sur-
prisingly, that the MEC contribution is large at low mo-
mentum transfer. It decreases toward the larger Q2, in
agreement with the expectation that at very large Q2 it
falls "Sargsian, 2001# like Q−4 relative to quasielastic
scattering.

From the above discussion it becomes clear that the
Euclidean response, despite inherent drawbacks, is a
valuable quantity. Since the final continuum state does
not have to be treated explicitly, calculations of much
higher quality can be performed than for the response,
and the role of two-body currents can be treated quan-
titatively. Comparison between data and calculation has
shown in particular that for a successful prediction of
MEC, correlated wave functions for the ground state are
needed; such wave functions today are available up to
A$12 and for A=!. Unfortunately, the usage of the
Euclidean response for the time being is restricted to a
regime in which relativistic effects are not too large,
such that they can be included as corrections.

X. L ÕT SEPARATION AND COULOMB SUM RULE

In the impulse approximation, and when neglecting
the "small# contribution from nucleonic convection cur-
rents, the longitudinal and transverse response functions
RL and RT contain the same information and have the
same size. This has sometimes been called scaling of the
zeroth kind "see Sec. VII#. It was realized early on, how-
ever, that the transverse response receives significant
contributions from meson exchange currents and " ex-
citation "which are of a largely transverse nature#. It is
therefore clear that there is a high premium on separat-
ing the L and T responses, both because the L response
is easier to interpret and because of the additional infor-
mation contained in the T response.

The separation of the L and T responses is performed
using the Rosenbluth technique, which is justified only
in the single-photon exchange approximation. The cross
section, divided by a number of kinematical factors

d#

d$d%

&

#Mott

!q!4

Q4 = &RL"!q!,%# +
!q!2

2Q2RT"!q!,%# = ' ,

"65#

is a linear function of the virtual photon polarization

& = %1 +
2!q!2

Q2 tan2(

2
&−1

"66#

with q "Q# being the 3- "4-# momentum transfer and &
varying from 0 to 1 for scattering angles ( between 180°
and 0°. The slope of the linear function yields RL and
the intercept at &=0 yields RT. Figure 30 shows an early
example for an L /T separation, and demonstrates the
excess observed for the transverse strength.

While conceptually very straightforward, this L/T
separation is difficult in practice. It involves data taking
at the same !q!, but varying &, i.e., varying beam energy.
For an accurate separation of RL and RT, obviously the
largest possible range in &, hence beam energy, is re-
quired. As data are usually not taken at constant !q!, but
at a given beam energy and variable energy loss, obtain-
ing the responses at constant !q! involves interpolations
of the data. We show in Fig. 31 two examples for a
Rosenbluth separation, performed on the low- and
large-% side of the quasielastic peak, which also illus-
trate the importance of the forward angle "high-energy#
data for the determination of RL, i.e., the slope of the fit.

The Rosenbluth technique is applicable in the plane-
wave Born approximation, and fails once Coulomb dis-
tortion of the electron waves is present. Neglect of dis-
tortion is justified for the lightest nuclei alone, and only
if RT is not much bigger "or much smaller# than RL.
When one of the two contributions gets too small, even
minor corrections due to Coulomb distortion can have
large effects. At large !q!, for instance, even the determi-
nation of the proton charge form factor via the Rosen-
bluth technique is significantly affected by Coulomb cor-
rections "Arrington and Sick, 2004#. In order to extract
RL and RT in the presence of Coulomb distortion, the
data must first be corrected for these effects; this is dis-
cussed in Sec. XI.

Here we concentrate on the discussion of the longitu-

FIG. 30. Longitudinal "lower data set# and transverse re-
sponses of 12C "Finn et al., 1984#, plotted in terms of the scaling
function F"y#.
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Single-Nucleon Momentum Distributions
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Figure 2: Scaling function f(ψ′) as function of ψ′ for all nuclei A ≥ 12 and all
kinematics. The values of A corresponding to different symbols are shown in the
insert.

For helium, additional data at low q were measured by Zghiche et al., Dytman et
al., Meziani et al., Sealock et al. and von Reden et al. [14, 20]-[24]; high-q data
were obtained by Day et al. and Rock et al. [25, 26]. For carbon, low momentum
transfer data are available from experiments performed by Barreau et al., Baran
et al. and O’Connell et al. [27]-[30]; at high q cross sections are available from the
experiments of Day et al. and Heimlich et al. [25, 31]. For oxygen an experiment
has been performed by Anghinolfi et al. [32]. For medium-weight nuclei the data
available include those for aluminum at high q measured by Day et al. [25], and
the ones for calcium measured by Deady et al., Meziani et al., Yates et al. and
Williamson et al. [33]-[36] at low q. For iron experiments have been performed by
Altemus et al., Meziani et al., Baran et al., Sealock et al. and Hotta et al. at low
q [37, 34, 29, 23, 38]; at high q measurements have been made by Day et al. and
Chen et al. [25, 39]. For heavy nuclei inclusive cross sections have been measured
by Day et al. for gold at high q [25], and by Zghiche et al., Blatchley et al. and
Sealock et al. for nuclei between tungsten and uranium at low q [20, 40, 23].

Not all of these data can be used, however, as some have not been corrected
for radiative effects, are known to have problems such as “snout scattering” or
have a floating normalization; some data are only available in the form of figures,
but not as numerical values, and thus are not useful in the present context.

To begin with (see also [13]), we have taken the available data for the nuclei

Scaling of the 1st kind (w/ p)
Donnelly & Sick (1999)



Back to Back Nucleons (total Q~0)
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FIG. 6 VMC proton momentum distributions in T = 0 light
nuclei.

tightly bound, and the fraction of nucleons at zero mo-
mentum decreases. As nucleons are added to the p-shell,
the distribution at low momenta becomes broader, and
develops a peak at finite k. The sharp change in slope
near k = 2 fm�1 to a broad shoulder is present in all these
nuclei and is attributable to the strong tensor correlation
induced by the pion-exchange part of the NN potential,
further increased by the two-pion-exchange part of the
3N potential. Above k = 4 fm�1, the bulk of the mo-
mentum density appears to come from short-range spin-
isospin correlations.

Two-nucleon momentum distributions, i.e., the proba-
bility of finding two nucleons in a nucleus with relative
momentum q = (k1�k2)/2 and total center-of-mass mo-
mentumQ = k1+k2, provide insight into the short-range
correlations induced by a given Hamiltonian. They can
be formulated analogously to Eqs. (66,68), and projected
with total pair spin-isospin ST , or as pp, np, and nn
pairs. Again, a large collection of VMC results has been
published (Wiringa et al., 2014) and figures and tables
are available on-line (Wiringa, 2014b).

Experiments to search for evidence of short-range cor-
relations have been a recent focus of activity at Je↵er-
son Laboratory. In an (e, e0pN) experiment on 12C at
JLab, a very large ratio ⇠ 20 of pn to pp pairs was
observed at momenta q=1.5–2.5 fm�1 for back-to-back
(Q = 0) pairs (Subedi et al., 2008). VMC calculations
for ⇢pN (q,Q = 0) are shown in Fig. 7 as blue diamonds
for pn pairs and red circles for pp pairs for T = 0 nuclei
from 4He to 12C (Schiavilla et al., 2007; Wiringa et al.,
2014). The pp back-to-back pairs are primarily in 1S0

states and have a node near 2 fm�1, while the pn pairs
are in deuteron-like 3S1 �3 D1 states where the D-wave
fills in the S-wave node. Consequently, there is a large
ratio of pn to pp pairs in this region. This behavior is
predicted to be universal across a wide range of nuclei.
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FIG. 8 VMC proton-proton momentum distributions in 4He
averaged over the directions of q and Q as a function of q for
several fixed values of Q from 0 to 1.25 fm�1.

As Q increases, the S-wave node in pp pairs will gradu-
ally fill in, as illustrated for 4He in Fig. 8, where ⇢pp(q,Q)
is shown as a function of q for several fixed values of Q,
averaged over all directions of q and Q. In contrast,
the deuteron-like distribution in pn pairs is maintained
as Q increases, as shown in Fig. 9, with only a gradual
decrease in magnitude because there are fewer pairs at
high total Q. Recently, these momentum distributions
for 4He have been tested in new JLab experiments and
found to predict the ratio of pp to pn pairs at higher
missing momentum very well (Korover et al., 2014).

2-nucleon momentum 
distributions

np vs. pp
Wiringa et al.; Carlson, et al, RMP 2015
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Electron Scattering:
Longitudinal and Transverse Response

RT (q,!) =
X

f

h0| j†(q) |fihf | j(q) |0i �(w � (Ef � E0))

Transverse (current) response:

RL(q,!) =
X

f

h0| ⇢†(q) |fihf | ⇢(q) |0i �(w � (Ef � E0))

Longitudinal (charge) response:

Two-nucleon currents required by current conservation
Response depends upon all the excited states of the nucleus

j =
X

i

ji +
X

i<j

jij + ... π



Sum Rules: Longitudinal Response

S (q) = h 0 | j†(q) j(q) 0 i Gives an indication of total strength,
but not energy dependence

p

p+q

p

final states

PWIA

p

p+
k

p+q - 
π

Energy dependence
pion exchange

final state interaction

p

p+q

p

final states

Sum Rule
determined by
pp correlations



Vector Response
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Sum Rule: Constructive Interference 
between 1- and 2-body currents

w/ tensor correlations
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12C EM response

3

elastic contribution. The low-lying excitation spectrum
of 12C consists of J⇡ =2+, 0+

2

(Hoyle), and 4+ states with
excitation energies E?

f �E
0

experimentally known to be,
respectively, 4.44, 7.65, and 14.08 in MeV units [35]. The
contributions of these states to the quasi-elastic longitu-
dinal and transverse response functions extracted from
inclusive (e, e0) cross section measurements are not in-
cluded in the experimental results. Therefore, before
comparing experiment with the present theory, which
computes the total inelastic response rather than just the
quasi-elastic one, we need to remove these contributions
explicitly. This is simply accomplished by first defining

E↵(q, ⌧) = E↵(q, ⌧)�
X

f

|hf |O↵(q)|0i|2 e�(Ef�E0)/⌧ ,

(4)
where in the sum only the states f =2+, 0+

2

, and 4+

are included, and then inverting E(q, ⌧) (the energies Ef

di↵er from E?
f , since the former include recoil kinetic en-

ergies). We do not attempt a GFMC calculation of the
excitation energies of these states or associated transi-
tion form factors—it would require explicit calculations
of these states or propagating exp [�(H�E

0

) ⌧ ]O↵(q)|0i
to computationally prohibitive large values of ⌧ . Rather,
we use the experimental energies and form factors, listed
in Table I, to obtain E↵(q, ⌧) from the GFMC-calculated
E↵(q, ⌧). Because of the fast drop of these form fac-
tors with increasing momentum transfer, the correction
in Eq. (4) for the longitudinal channel (↵=L ) is sig-
nificant at q = 300 MeV/c, but completely negligible at
q = 570 MeV/c. In the case of the transverse channel
(↵=T ), possible contributions from E2 and E4 transi-
tions to the 2+ and 4+ states are too small [36, 37] to
have an impact on ET (q, ⌧).

The longitudinal and transverse response functions ob-
tained by maximum-entropy inversion of the E↵(q, ⌧)’s
are displayed in Figs. 1 and 2, respectively. Theoreti-
cal predictions corresponding to GFMC calculations in
which only one-body terms or both one- and two-body
terms are retained in the electromagnetic operators O↵—
denoted by (red) dashed and (black) solid lines and la-
beled GFMC-O

1b and GFMC-O
1b+2b, respectively—are

compared to the experimental response functions deter-
mined from the world data analysis of Jourdan [10] and,
for q=300 MeV/c, from the Saclay data [9]. The (red
and gray) shaded areas show the uncertainty derived
from the dependence of the 1b and 1b+2b results on
the default model adopted in the maximum-entropy in-
version [17]. This uncertainty is quite small. Lastly,
the (green) dash-dotted lines correspond to plane-wave-
impulse-approximation (PWIA) calculations using the
single-nucleon momentum distribution N(p) of 12C ob-
tained in Ref. [7] (see Ref. [1] for details on the PWIA
calculation).

Figures 1–2 immediately lead to the main conclusions
of this work: (i) the dynamical approach outlined above

(with free nucleon electromagnetic form factors) is in
excellent agreement with experiment in both the lon-
gitudinal and transverse channels; (ii) as illustrated by
the di↵erence between the PWIA and GFMC one-body-
current predictions (curves labeled PWIA and GFMC-
O

1b), correlations and interaction e↵ects in the final
states redistribute strength from the quasi-elastic peak to
the threshold and high-energy transfer regions; and (iii)
while the contributions from two-body charge operators
tend to slightly reduce RL(q,!) in the threshold region,
those from two-body currents generate a large excess of
strength in RT (q,!) over the whole !-spectrum (curves
labeled GFMC-O

1b and GFMC-O
1b+2b), thus o↵setting

the quenching noted in (ii) in the quasi-elastic peak.

FIG. 1. (Color online) Electromagnetic longitudinal response
functions of 12C for q in the range (300–570) MeV. Exper-
imental data are from Refs. [9, 10]. See text for further
explanations.

As a result of this study, a consistent picture of the
electromagnetic response of nuclei emerges, which is at
variance with the conventional one of quasi-elastic scat-
tering as being dominated by single-nucleon knock-out.
This fact also has implications for the nuclear weak re-
sponse probed in inclusive neutrino scattering induced

4

by charge-changing and neutral current processes. In
particular, the energy dependence of the cross section
is quite important in extracting neutrino oscillation pa-
rameters. An earlier study of the sum rules associated
with the weak transverse and vector-axial interference re-
sponse functions in 12C found [38] a large enhancement
due to two-body currents in both the vector and axial
components of the neutral current. Only neutral weak
processes have been considered so far, but one would
expect these conclusions to remain valid in the case of
charge-changing ones. In this connection, it is important
to realize that neutrino and anti-neutrino cross sections
di↵er only in the sign of this vector-axial interference re-
sponse, and that this di↵erence is crucial for inferring
the charge-conjugation and parity violating phase, one
of the fundamental parameters of neutrino physics, to
be measured at the Deep Underground Neutrino Exper-
iment (DUNE)[39].

FIG. 2. (Color online) Same as Fig. 1 but for the electromag-
netic transverse response functions. Because pion production
mechanisms are not included, the present theory underesti-
mates the (transverse) strength in the � peak region, see in
particular the q=570 MeV/c case.

We conclude by updating in Fig. 3 the results for the

Coulomb sum rule of 12C obtained in Ref. [5]. The theo-
retical calculation (solid line) and analyses of the experi-
mental data (empty and full circles) are from that work.
We recall that the empty circles are obtained by inte-
grating RL(q,!) up to !

max

, the highest measured en-
ergy transfer, while the full circles also include the “tail”
contribution for ! > !

max

and into the time-like region
(! > q), which cannot be accessed in (e, e0) scattering
experiments, by assuming that the longitudinal response
in 12C is proportional to that of the deuteron [5]. As
the direct calculations demonstrate in Figs. 1–2, there
is non-vanishing strength in the time like-region (see in
particular the top panels of these figures which extend
to ! > q), and this strength needs to be accounted for
before comparing theory to experiment.
The square data points in Fig. 3 have been obtained

by adding to the full circles the contribution due to the
low-lying J⇡ =2+, 0+

2

, and 4+ states. Given the choice of
normalization for SL(q) in Fig. 3, this contribution is sim-
ply given by the sum of the squares—each multiplied by
Z =6—of the (longitudinal) transition form factors listed
in Table I. Among these, the dominant is the form factor
to the 2+ state at 4.44 MeV excitation energy. The con-
tributions associated with these states, in particular the
2+, were overlooked in the analysis of Ref. [5] and, to the
best of our knowledge, in all preceding analyses—the dif-
ference between total inelastic and quasi-elastic strength
alluded to earlier was not fully appreciated. While they
are negligible at large q (certainly at q=570 MeV/c),
they are significant at low q. They help to bring theory
into excellent agreement with experiment.
Figures 1 and 2 clearly demonstrate that the picture

of interacting nucleons and currents quantitatively de-
scribes the electromagnetic response of 12C in the quasi-
elastic regime. The key features necessary for this suc-
cessful description are a complete and consistent treat-
ment of initial-state correlations and final-state interac-
tions and a realistic treatment of two-nucleon currents,
all fully and exactly accounted for in the GFMC calcula-
tions. In the transverse channel the interference between
one- and two-body current (schematically, 1b-2b) con-
tributions is largely responsible for enhancement in the
quasi-elastic peak, while this interference plays a minor
role at large !, where 2b-2b contributions become dom-
inant. The absence of explicit pion production mech-
anisms in this channel restricts the applicability of the
present theory to the quasi-elastic region of RT (q,!), for
!’s below the �-resonance peak. Finally, the so-called
quenching of the longitudinal response near the quasi-
elastic peak emerges in this study as a result of initial-
state correlations and final-state interactions.

A critical reading of the manuscript by Ingo Sick is
gratefully acknowledged. This research is supported
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EM observables well-reproduced

What about neutrinos and weak currents?

2

into account. These two-body operators, multiplied by
hadronic form factors so as to regularize their short-range
behavior in configuration space, were then constrained to
reproduce the GT matrix element contributing to tritium
� decay by adjusting the poorly known N -to-� axial cou-
pling constant (see Ref. [19] for a recent summary).

Yet, the calculations of Ref. [11] were based on ap-

proximate VMC wave functions to describe the nuclear
states involved in the transitions. This shortcoming was
remedied in the subsequent GFMC study of Ref. [12],
which, however, only retained the one-body GT opera-
tor. Adding to the GFMC-calculated one-body matrix
elements the VMC estimates of two-body contributions
obtained in Ref. [11] led Pervin et al. [12] to speculate
that a full GFMC calculation of these A=6–7 weak tran-
sitions might be in agreement with the measured values.

The last three decades have witnessed the emergence
of chiral e↵ective field theory (�EFT) [20]. In �EFT,
the symmetries of quantum chromodynamics (QCD), in
particular its approximate chiral symmetry, are used to
systematically constrain classes of Lagrangians describ-
ing, at low energies, the interactions of nucleons and �
isobars with pions as well as the interactions of these
hadrons with electroweak fields [21, 22]. Thus �EFT
provides a direct link between QCD and its symmetries,
on one side, and the strong and electroweak interac-
tions in nuclei, on the other. Germane to the subject
of the present letter are, in particular, the recent �EFT
derivations up to one loop of nuclear axial currents re-
ported in Refs. [23, 24]. Both these studies were based on
time-ordered perturbation theory and a power-counting
scheme à la Weinberg, but adopted di↵erent prescrip-
tions for isolating non-iterative terms in reducible contri-
butions. There are di↵erences—the origin of which is yet
unresolved—in the loop corrections associated with box
diagrams in these two independent derivations.

The present study reports on VMC and GFMC calcu-
lations of weak transitions in 6He, 7Be, and 10C, based on
the Argonne v18 (AV18) two-nucleon [25] and Illinois-7
(IL7) three-nucleon [26] interactions, and axial currents
obtained either in the meson-exchange [19] or �EFT [23]
frameworks mentioned earlier. The AV18+IL7 Hamilto-
nian reproduces well the observed spectra of light nuclei
(A=3–12), including the 12C ground- and Hoyle-state
energies [3]. The meson-exchange model for the nuclear
axial current has been most recently reviewed in Ref. [19],
where explicit expressions for the various one-body (1b)
and two-body (2b) operators are also listed (including fit-
ted values of the N -to-� axial coupling constant). The
�EFT axial current [23, 27] consists of 1b, 2b, and three-
body (3b) operators. The 1b operators read

j1b5,± = �g
A

AX

i=1

⌧
i,±

✓
�
i

�r
i

�
i

·r
i

� �
i

r2
i

2m2

◆
, (1)

where ⌧
i,± = (⌧

i,x

± i ⌧
i,y

)/2 is the standard isospin rais-

ing (+) or lowering (�) operator, and �
i

and �ir
i

are,
respectively, the Pauli spin matrix and momentum oper-
ator of nucleon i. The 2b and 3b operators are illustrated
diagrammatically in Fig. 1 in the limit of vanishing mo-
mentum transfer considered here. Referring to Fig. 1,
the 2b operators are from contact [CT, panel (a)], one-
pion exchange (OPE) [panels (b) and (f)], and multi-pion
exchange (MPE) [panels (c)-(e) and (g)],

j2b5,± =
AX

i<j=1

h
jCT
5,±(ij) + jOPE

5,± (ij) + jMPE
5,± (ij)

i
, (2)

and the 3b operators are from MPE [panels (h)-(i)],

j3b5,± =
AX

i<j<k=1

jMPE
5,± (ijk) . (3)

Configuration-space expressions for these 2b and 3b op-
erators are reported in Ref. [27].

FIG. 1. Diagrams illustrating the (non-vanishing) contribu-
tions to the 2b and 3b axial currents. Nucleons, pions, and
external fields are denoted by solid, dashed and wavy lines,
respectively. The circle in panel (b) represents the vertex im-

plied by the L(2)
⇡N chiral Lagrangian [28], involving the LECs

c3 and c4. Only a single time ordering is shown; in particular,
all direct- and crossed-box diagrams are accounted for. The
power counting of the various contributions is also indicated.
See text for further explanations.

The 1b operator in Eq. (1) includes the leading or-
der (LO) GT term and the first non-vanishing correc-
tions to it, which come in at next-to-next-to-leading or-
der (N2LO) [27]. Long-range 2b corrections from OPE
enter at N3LO, panel (b) in Fig. 1, involving the low-
energy constants (LECs) c3 and c4 in the sub-leading

L(2)
⇡N

chiral Lagrangian [28], as well as at N4LO, panel (f).
In terms of the expansion parameter Q/⇤

�

—where Q
specifies generically the low-momentum scale and ⇤

�

=1
GeV is the chiral-symmetry-breaking scale—they scale as
(Q/⇤

�

)3 and (Q/⇤
�

)4, respectively, relative to the LO.
Loop corrections from MPE, panels (c)-(e) and (g), come
in at N4LO, as do 3b currents, panels (h)-(i). Finally, the
contact 2b current at N3LO, panel (a), is proportional to
a LEC, denoted as z0.
The short-range behavior of the 2b and 3b operators

is regularized by including a cuto↵ C⇤(k)= exp(�k4/⇤4)

Vector and Axial currents: beta decay
5 response functions in inclusive scattering
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gs ex
LO 2.334 2.150

N2LO –3.18⇥10�2 –2.79⇥10�2

N3LO(CT) 2.79⇥10�1 2.36⇥10�1

OPE –2.99⇥10�2 –2.44⇥10�2

N4LO(2b) –1.61⇥10�1 –1.33⇥10�1

N4LO(3b) –6.59⇥10�3 –4.86⇥10�3

TABLE II. Individual contributions to the 7Be ✏-capture
Gamow-Teller RMEs obtained at various orders in the chiral
expansion of the axial current (⇤=500 MeV) with VMC wave
functions. The rows labeled LO and N2LO refer to, respec-
tively, the first term and the terms proportional to 1/m2 in
Eq. (1); the rows labeled N3LO(CT) and OPE, and N4LO(2b)
and N4LO(3b), refer to panel (a) and panels (b) and (f), and
to panels (c)-(e), (g) and panel (h) in Fig. 1, respectively.

The contributions of the axial current order-by-order in
the chiral expansion are given for the GT matrix ele-
ment of the 7Be ✏ capture in Table II. Those beyond
LO, with the exception of the CT at N3LO, have oppo-
site sign relative to the (dominant) LO. The loop cor-
rections N4LO(2b) are more than a factor 5 larger (in
magnitude) than the OPE. This is primarily due to the
accidental cancellation between the terms proportional
to c3 and c4 in the OPE operator at N3LO (which also
occurs in the tritium GT matrix element [27]). It is also
in line with the chiral filter hypothesis [35–37], according
to which, if soft-pion processes are suppressed—as is the
case for the axial current—then higher-order chiral cor-
rections are not necessarily small. Indeed, the less than
3% overall correction due to terms beyond LO reported
in Table I (row N4LO) comes about because of destruc-
tive interference between two relatively large (⇠ 10%)
contributions from the CT and the remaining [primarily
N4LO(2b)] terms considered here.

Ratios of GFMC to experimental values for the GT
RMEs in the 3H, 6He, 7Be, and 10C weak transitions
are displayed in Fig. 2—theory results correspond to
�EFT axial currents at LO and including corrections
up to N4LO. The experimental values are those listed
in Table I, while that for 3H is 1.6474(24) [27]. These
values have been obtained by using g

A

=1.2723(23) [38]
and K/

⇥
G2

V

�
1 +�V

R

�⇤
=6144.5(1.4) sec [39], where

K =2⇡3 ln 2/m5
e

=8120.2776(9) ⇥ 10�10 GeV�4 sec and
�V

R

= 2.361(38)% is the transition-independent radiative
correction [39]. In the case of the � decays, but not for
the ✏ captures, the transition-dependent (�0

R

) radiative
correction has also been accounted for. Lastly, in the ✏
processes the rates have been obtained by ignoring the
factors B

K

and B
L1 which include the e↵ects of electron

exchange and overlap in the capture from the K and L1
atomic subshells. As noted by Chou et al. [14] following
Bahcall [40, 41], such an approximation is expected to be
valid in light nuclei, since these factors only account for

1 1.1 1.2

Ratio to EXPT

10C 10B

7Be 7Li(gs)
6He 6Li
3H 3He

7Be 7Li(ex)

gfmc 1b
gfmc 1b+2b(N4LO)
Chou et al. 1993 - Shell Model - 1b

FIG. 2. (Color online) Ratios of GFMC to experimental
values of the GT RMEs in the 3H, 6He, 7Be, and 10C weak
transitions. Theory predictions correspond to the �EFT axial
current in LO (blue circles) and up to N4LO (magenta stars).
Green squares indicate ‘unquenched’ shell model calculations
from Ref. [14] based on the LO axial current.

a redistribution of the total strength among the di↵erent
subshells (however, it should be noted that B

K

and B
L1

were retained in Ref. [11], and led to the extraction of
experimental values for the GT RMEs about 10% larger
than reported here).
We find overall good agreement with data for the 6He

�-decay and ✏ captures in 7Be, although the former is
overpredicted by ⇠ 2%, a contribution that comes almost
entirely from 2b and 3b chiral currents. The experimental
GT RME for the 10C �-decay is overpredicted by ⇠ 10%,
with two-body currents giving a contribution that is com-
parable to the statistical GFMC error. The presence of
a second (1+; 0) excited state at ⇠ 2.15 MeV can poten-
tially contaminate the wave function of the 10B excited
state at ⇠ 0.72 MeV, making this the hardest transition
to calculate reliably. In fact, a small admixture of the
second excited state (' 6% in probability) in the VMC
wave function brings the VMC reduced matrix element
in statistical agreement with the the measured value, a
variation that does not spoil the overall good agreement
we find for the reported branching ratios of 98.54(14)%
(< 0.08%) to the first (second) (1+, 0) state of 10B [14].
Because of the small energy di↵erence of these two levels,
it would require an expensive GFMC calculation to see if
this improvement remains or is removed; in lighter sys-
tems we have found that such changes of the trial VMC
wave function are removed by GFMC.

We note that correlations in the wave functions sig-
nificantly reduce the matrix elements, a fact that can
be appreciated by comparing the LO GFMC (blue cir-
cles in Fig. 2) and the LO shell model calculations
(green squares in the same figure) from Ref. [14]. More-
over, preliminary variational Monte Carlo studies, based

• Contact fit to Tritium beta decay 
• Substantial reduction due to two-body correlations
• Modest 2N current contribution
• Good description of experimental data, explains ‘quenching’
• Many calculations with larger nuclei underway
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ing.
The energy dependence of the cross section is espe-

cially relevant for neutrino experiments, since it directly
impacts the analysis of these experiments in terms of
oscillation parameters and CP-violating phase. Earlier
studies of integral properties of the response, either sum
rules [13] or Laplace transforms of the response itself, so
called Euclidean response functions [18, 20], have indi-
cated that two-nucleon currents are important. However,
these properties only provide indirect information on the
strength distribution as a function of !.

The di↵erential cross section for ⌫ and ⌫ inclusive scat-
tering o↵ a nucleus induced by neutral-weak currents can
be expressed as [17]

d�

d! d⌦
=
G2

F

2⇡2
k0E0 cos2

✓

2

"
R00(q,!) +

!2

q2
Rzz(q,!)

� !

q
R0z(q,!) +

⇣
tan2

✓

2
+

Q2

2 q2

⌘
Rxx(q,!)

⌥ tan
✓

2

s

tan2
✓

2
+

Q2

q2
Rxy(q,!)

#
, (1)

where � (+) refers to ⌫ (⌫), k0 and E0 are the momentum
and energy of the outgoing neutrino, q and ! are the
momentum and energy transfers with Q2 = q2�!2 being
the four-momentum transfer, ✓ is the outgoing neutrino
scattering angle relative to the incident neutrino beam
direction, and GF = 1.1803 ⇥ 10�5 GeV�2 as obtained
from an analysis of super-allowed 0+ ! 0+ �-decays [21].

The nuclear response functions are schematically given
by

R↵�(q,!) =
X

f

hf |jNC
↵ (q,!)|0ihf |jNC

� (q,!)|0i⇤

⇥ �(Ef � ! � E0) , (2)

where |0i and |fi represent the nuclear initial ground-
state and final bound- or scattering-state of energies E0

and Ef , and jNC
↵ (q,!) denotes the appropriate compo-

nents of the weak neutral current (NC). Explicit expres-
sions for these currents and response functions are listed
in Ref. [17]; here, it su�ces to note that the subscripts 0
and z refer to, respectively, the charge ⇢NC and longitu-
dinal component of the current jNC , and x and y to the
transverse components of jNC . The momentum transfer
q is taken along the spin quantization axis—the z axis.

The calculation of the response functions proceeds
along similar lines to that of Ref. [19]. We compute the
Laplace transforms of R↵�(q,!) with respect to ! which
reduce to the following current-current correlators

E↵�(q, ⌧)=h0|jNC †
↵ (q,!qe)e

�(H�E0)⌧ jNC
� (q,!qe)|0i

FIG. 1. (Color online) Neutral-current response functions in
12C at momentum transfer q=570 MeV/c, corresponding to
the AV18/IL7 Hamiltonian and obtained with one-body only
(dashed lines) and one- and two-body (solid lines) currents.
The narrow bands indicate the uncertainty in the maximum-
entropy inversion. The vector and axial contributions are
shown separately in all cases but for R

xy

. See text for further
explanations.

Vector
Axial
Total
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FIG. 2. (Color online) Weak neutral ⌫ (black curves) and
⌫ (red curves) di↵erential cross sections in 12C at q=570
MeV/c, obtained with one-body only and one- and two-body
terms in the NC. The final neutrino angle is indicated in
each panel. The insets show ratios of the ⌫ to ⌫ (central-
value) cross sections. Also shown are the PWIA results.

contributions as the momentum and energy transfers in-
crease from the threshold regime of relevance in discrete
transitions between low-lying states, to the intermediate
regime (⇠ 50–100 MeV) of interest to neutrino scatter-
ing in astrophysical environments or neutrinoless double
beta decay [26, 27], to the quasielastic regime being stud-
ied here.

In Fig. 2 we show the ⌫ and ⌫ di↵erential cross sec-

tions and the ⌫/⌫ ratios for a fixed value of the three-
momentum transfer as function of the energy transfer
for a number of scattering angles. In terms of these vari-
ables, the initial energy E of the neutrino is given by

E =
!

2

"
1 +

s

1 +
Q2

!2 sin2(✓/2)

#
, (4)

and its final energy E0 =E � !: for example, at ✓=15�

the initial energy decreases from 2.2 GeV to 1.6 GeV as
! increases from threshold to 450 MeV; at ✓=120� the
initial energy increases from roughly 0.3 GeV to slightly
over 0.5 GeV as ! varies over the same range. Thus the
present results computed at fixed q=570 MeV/c as a
function of ! span a broad kinematical range in terms
of E and E0—the kinematical variables most relevant for
the analysis of accelerator neutrino experiments.
Because of the cancellation in Eq. (1) between the dom-

inant contributions proportional to the Rxx and Rxy re-
sponse functions, the ⌫ cross section decreases rapidly rel-
ative to the ⌫ cross section as the scattering angle changes
from the forward to the backward hemisphere. For this
same reason, two-body current contributions are smaller
for the ⌫ than for the ⌫ cross section, in fact becoming
negligible for the ⌫ backward-angle cross section. As the
angle changes from the forward to the backward hemi-
sphere, the ⌫ cross section drops by almost an order of
magnitude, and in the limit ✓= 180� is just proportional
to Rxx(q,!)�Rxy(q,!).
For comparison, we also show results obtained in the

plane-wave impulse approximation (PWIA), in which
only one-body currents are retained jNC

↵ =
P

i j
NC
↵ (i).

In PWIA the struck nucleon with initial momentum p
absorbs the external field momentum q and transitions
to a particle state of momentum p+ q without further
interactions with the spectator nucleons. In its simplest
formulation, the PWIA response functions are

RPWIA
↵� (q,!) =

Z
d3p

(2⇡)3
n(p)r↵�(p,q,!)

⇥ �
h
! � E � (p+ q)2

2m
� p2

2(A� 1)m

i
. (5)

In the above equation E is the average removal energy,
n(p) is the momentum distribution of the struck nucleon,
which we take from [28], and the single-nucleon coupling
to the external neutral-current field is given by

r↵�(p,q,!) =
1

4

X

⌘,⌘0

hp+ q, ⌘0|jNC
↵ (1)|p, ⌘i

⇥ hp, ⌘|jNC
� (1)|p+ q, ⌘0i , (6)

where ⌘ (⌘0) indicates the spin-isospin state of the initial
(final) nucleon. The comparison between the PWIA and
the one-body GFMC curves highlights how correlations
and final state interactions quench the quasielastic peak,

Cross sections

anti-ν
ν
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to collective excitations of electric-dipole type in the nu-
cleus. In the large q limit, the one-body sum rules di↵er
from unity because of relativistic corrections in OL(q),
primarily the Darwin-Foldy term which gives a contri-
bution �⌘/(1 + ⌘) to S1b

L (q), where ⌘ ' q2/(4m2), and
because of the convection term in OT (q), which gives a
contribution ' (4/3)CT Tp/m to S1b

T (q), where Tp is the
proton kinetic energy in the nucleus.

In contrast to SL, the transverse sum rule has large
two-body contributions. This is consistent with studies
of Euclidean transverse response functions in the few-
nucleon systems (Carlson et al., 2002), which suggest that
a significant portion of this excess transverse strength
is in the quasi-elastic region. Overall, the calculated
SL(q) and ST (q) are in reasonable agreement with data.
However, a direct calculation of the response functions
is clearly needed for a more meaningful comparison be-
tween theory and experiment. Such calculations will be
forthcoming in the near future.

While sum rules of NC or CC weak sum rules are of a
more theoretical interest, they nevertheless provide useful
insights into the nature of the strength seen in the quasi-
elastic region of the response and, in particular, into the
role of two-body terms in the electroweak current. Those
corresponding to weak NC response functions and rela-
tive to 12C are shown in Fig. 24: results S1b (S2b) cor-
responding to one-body (one- and two-body) terms in
the NC are indicated by the dashed (solid) lines. Note
that both S1b

↵� and S2b
↵� are normalized by the same fac-

tor C↵� , which makes S1b
↵�(q) ! 1 in the large q limit.

In the small q limit, S1b
00 (q) and S1b

0z (q) are much larger
than S1b

↵� for ↵� 6= 00, 0z. In a simple ↵-cluster pic-

ture of 12C, one would expect S1b
↵�(

12C)/C↵�(12C) '
3S1b

↵�(
4He)/C↵�(4He), as is indeed verified in the ac-

tual numerical calculations to within a few %, except for
S1b
00 /C00 and S1b

0z /C0z at low q . 1 fm �1, where these
quantities are dominated by the elastic contribution scal-
ing as A2.

Except for S2b
00 (q), the S2b

↵�(q) sum rules are consid-

erably larger than the S1b
↵�(q), by as much as 30-40%.

This enhancement is not seen in calculations of neutrino-
deuteron scattering (Shen et al., 2012); the deuteron
R↵�(q,!) response functions at q = 300 MeV/c are dis-
played in Fig. 25 (note that R00 is multiplied by a factor
of 5). Two-body current contributions in the deuteron
amount to only a few percent at the top of the quasielas-
tic peak of the largest in magnitude Rxx and Rxy, but
become increasingly more important in the tail of these
response functions, consistent with the notion that this
region is dominated by NN physics (Lovato et al., 2013).
The very weak binding of the deuteron dramatically
reduces the impact of NN currents, which are impor-
tant only when two nucleons are within 1–2 inverse pion
masses.
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A�3 are stronger than in the deuteron. The NN density
distributions in deuteron-like (T=0 and S=1) pairs are
proportional to those in the deuteron for separations up
to ' 2 fm, and this proportionality constant, denoted as
RAd (Forest et al., 1996), is larger than A/2; in 4He and
16O the calculated values of RAd are 4.7 and 18.8, respec-
tively. Similarly, experiments at BNL (Piasetzky et al.,
2006) and JLab (Subedi et al., 2008) find that exclusive
measurements of back-to-back pairs in 12C at relative mo-
menta around 2 fm�1 are strongly dominated by np (ver-
sus nn or pp) pairs. In this range and in the back-to-back

Sum rules in 12C: neutral current scattering
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Whatever the case may be, the amount of material an experiment needs to reach a given level of sensitivity is
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Our collaboration intends to reduce the uncertainty considerably; this section describes our approach.
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Matrix Element for light Majorana neutrino exchange)
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FIG. 3. (Color online) Normalized momentum transfer distribu-
tion CGT (p) for the Gamow-Teller part of M ′0ν in 136Xe. The dashed
line is the unquenched (one-body current) distribution and the filled
area represents the range of the distributions produced by the variants
of the calculation that include two-body currents. For these latter, the
average momentum ⟨p⟩ is about 230 MeV and

√
⟨p2⟩ ∼ 255 MeV,

vs about 190 MeV and 225 MeV in Ref. [7].

Another difference between the QRPA and the shell model
is that the QRPA works in a much larger single-particle
space (at the price of working with only a particular kind
of correlation). This larger space presumably means larger
contributions at high momentum transfer. Since the quenching
decreases with momentum transfer, the contributions of the
high-angular-momentum multipoles are less affected by the
two-body currents than their low-angular-momentum coun-
terparts. The large QRPA model space therefore makes the
quenching of 0νββ decay less than it would be in a shell
model calculation. To demonstrate that fact, we show in Fig. 3
the distribution in momentum transfer (normalized to 1) of
the Gamow-Teller part of the 0ν matrix element for 136Xe;
the inset in Fig. 2 of Ref. [7] shows the same distribution. The
shapes of our curve and that in Ref. [7] are visibly different and,
indeed, the averages ⟨p⟩ and

√
⟨p2⟩ are 15 or 20 percent larger

in QRPA than in the shell model, both for the unquenched and
quenched variants.

IV. DISCUSSION

It is clear, in today’s terminology, that some of the
quenching of spin operators in nuclei is due to the use of
restricted model spaces and some to many-body currents.
Model-space truncation can exclude strength that may be
pushed to high energies, and the omission of two-body currents
leaves delta-hole excitations, among other things, unaccounted
for. The question of which effect is more important is still
open. If two-body currents are behind most of the quenching,
as recent fits of the c parameters seem to suggest, then the
spin operators in 2νββ decay (and ordinary beta decay as
well) are very likely more quenched than those in 0νββ
decay, and existing calculations of 0νββ decay that do not
include quenching are at least roughly correct. We have
seen that the quenching of 0νββ decay is mild in the
QRPA, even a bit milder than in the shell model, and in
sharp contrast to the severe quenching discussed, e.g., in
Ref. [17].

It is of course possible that, as older meson-exchange
models suggest [1], the effects of many-body currents are small
at all momentum transfer. In that event the quenching of 0νββ
decay would be unrelated to the two-body currents and could
be similar in magnitude to the quenching of 2νββ decay, a state
of affairs that would make 0νββ experiments less sensitive to
a Majorana neutrino mass than we currently believe. A strong
argument that this state of affairs is real, however, has yet to
be presented. It seems likely to us that the quenching of 0νββ
matrix elements is around the size indicated by the χEFT plus
QRPA analysis carried out here or the χEFT plus shell-model
analysis of Ref. [7].
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[4] E. Epelbaum, W. Glöckle, and U.-G. Meißner, Nucl. Phys. A

747, 362 (2005).
[5] T. S. Park, L. E. Marcucci, R. Schiavilla, M. Viviani, A. Kievsky,

S. Rosati, K. Kubodera, D.-P. Min, and M. Rho, Phys. Rev. C
67, 055206 (2003).

[6] D. Gazit, S. Quaglioni, and P. Navratil, Phys. Rev. Lett. 103,
102502 (2009).

[7] J. Menéndez, D. Gazit, and A. Schwenk, Phys. Rev. Lett. 107,
062501 (2011).

[8] P. Klos, J. Menéndez, D. Gazit, and A. Schwenk, Phys. Rev. D
88, 083516 (2013).

[9] J. D. Holt, J. Menendez, and A. Schwenk, Eur. Phys. J. A 49, 39
(2013).
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of turning o↵ the momentum dependence of gV,A(q2) is
less than 5%.

For the weak-magnetic contributions GT-MM, some
care has to be taken when removing the form factors.
As evident from Eqs. (A5) and (A6), in the absence of
gV (q2), both VGT,MM and VT,MM are singular at r ! 0.
To compute the GT-MM matrix element in the second
line of Table IV we used the regularization of the delta
function in Eq. (27), with R = 0.6 fm. Varying R be-
tween 0.6 and 0.8 fm does not have an appreciable e↵ect
on the result. The good agreement for the values of GT-
MM in the first and second line of Table IV indicates that
the result does not strongly depend on the way the region
of large q2 is regulated. For the T-MM matrix element,

the second line of Table IV is obtained by naively using
the potential VT,MM (r) in Eq. (A6). Here the divergence
at r = 0 does not spoil the evaluation of the associated
matrix element. Again this is due to the fact that the
tensor operator T (Sab) gives zero on pairs in relative
S-wave. In fact, the ⌧+a ⌧+b is selecting out valence (nn)
pairs in the initial state. These are largely in a 1S

0

rela-
tive state, with some 3P

0

components which are however
zero at short-range due to an angular momentum barrier.
While in Table IV we only report results for the impact

of form factors on the light neutrino-exchange potentials,
the same features are shared by matrix elements of the
V⇡⇡ and V⇡N potentials, as they are proportional to to
the AP and PP components in IV. The same holds for
the VNN potential, which is analogous to GT-MM. In
particular, changing the regularization of the delta func-
tion potential from Eq. (27) to a dipole form factor, ei-
ther gV (q2) or gA(q2) has little e↵ect on the F-NN and
GT-NN matrix elements.
The impact of the axial and vector form factors on

the 10He!10Be and 12Be!10C transitions is illustrated
in Fig. 5. The solid and dashed lines denote the distri-
butions C̄(q) defined in Eq. (26), with and without the
dipole form factors for gV,A(q2). We see that the dipole
form factors start to have an e↵ect at around q ⇠ 200
MeV, and cut o↵ the distributions for q & 500 MeV. The
e↵ect is similar for the F-⌫ and GT-⌫, which are mostly
long-distance, and the pion-range GT-⇡⇡ and GT-⇡N
matrix elements, which are induced by heavy LNV new
physics.

In the third row of Table IV, we report results ob-
tained by regulating the matrix elements with the F (r)
function defined in Eq. (28) with RL = 0.7 fm. We stud-
ied the sensitivity of our results with respect to variation
of RL 2 {0.6, 0.8} fm and found that the most a↵ected
matrix elements are those characterized by the presence
of the node. For example, by comparing the second and
the third rows in the table we can see that GT-⌫ and
F-⌫ undergo a ⇠ 18% and ⇠ 13% variation, respectively,
whereas T-⌫ is essentially una↵ected by the regulator
function. This is because the T-like operators are already
zero at short-distances.

Finally, in the forth row of Table IV we report re-
sults obtained by artificially turning o↵ the “one-pion-
exchange-like” correlation operators in the nuclear wave
functions as discussed in Sec. III. Turning the correlations
o↵ has a dramatic e↵ect on the tensor matrix elements,
which become statistically equal to zero. The GT-⌫ and
F-⌫ magnitudes increase by ⇠ 10% with respect to the
correlated results given in the first row of the table. The
e↵ect of the “one-pion-exchange-like” correlations is rep-
resented in Fig. 6, where the blue triangles (solid line)
in the left (right) panel represent the r-space (q-space)
GT-AA transition distribution obtained by turning o↵
the correlations to be compared with the red dots (solid
line) obtained with the correlated wave function.

In closing this section, we reiterate that 0⌫�� matrix
elements involve on average values of momentum transfer
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* Relative size of the matrix elements is approximately the same in all nuclei
* Short-range terms approximately the same in all nuclei
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Less quenching than in single beta decay

Includes possible short-range contributions



Outlook
• More quantitative understanding of neutrinos and neutrino-nucleus 

interactions is being developed 

• Good Description of data in light nuclei across a range 
of energy and momenta 

• Important to extract neutrino properties from experiment
• Mixing angles
• Hierarchy
• CP violation
• Absolute mass scale 

• And to understand astrophysical environments and observations
• R-process nucleosynthesis in supernovae / n-star mergers
• Neutron star cooling
• R-process nucleosynthesis and weak matrix elements


