Neutrino

Phenomenolog

and Theo

Boris Kayser INSS May, 2018 Lecture 4 How Non-Relativistic Must Neutrinos Be For Us To Be Sensitive To Whether They Are Dirac Or Majorana Particles?

The insensitivity when the neutrinos are relativistic is due to their *helicity h* substituting for a conserved lepton number.

Example: (Anti)Neutrinos from π^- decay are of ~ 100 % right-handed (RH) helicity, whether Dirac or Majorana.

Suppose they interact with some target to make either an electron or a positron.

The interaction is described by —

$$\begin{array}{c}
\pounds_{CC} \propto \overline{e} \gamma^{\lambda} \frac{\left(1 - \gamma_{5}\right)}{2} v J_{\lambda}^{\text{Target}} + \overline{v} \gamma^{\lambda} \frac{\left(1 - \gamma_{5}\right)}{2} e J_{\lambda}^{\text{Target} \dagger} \\
\text{Creates } e^{-\int_{-}^{-} \int_{-}^{-} \frac{1}{2} v J_{\lambda}^{\text{Target}} + \overline{v} \gamma^{\lambda} \frac{\left(1 - \gamma_{5}\right)}{2} e J_{\lambda}^{\text{Target} \dagger} \\
\begin{array}{c}
\downarrow_{Creates } e^{+} \\
\underline{Not} \ e^{-}
\end{array}$$

Owing to the LH chiral projection operator $(1 - \gamma_5)/2$, the amplitude for a Majorana neutrino to make an e^- , which comes from the first term alone, contains a factor that, in the rest frame of the target, is —

$$1 - 2h\sqrt{\left(E - m\right)/\left(E + m\right)} \equiv F(h, E)$$

3

The factor is -

$$1 - 2h\sqrt{\left(E - m\right)/\left(E + m\right)} \equiv F(h, E)$$

When the neutrino is highly relativistic in the target rest frame, E >> m, and F(h, E) = 0. An e^- will not produced, even in the Majorana case.

When *E* is smaller, but still far from *m*, $F(h,E) \simeq m/E$. A Majorana neutrino can now produce an e^- .

When $E \simeq m$, $F(h, E) \simeq 1$, and a Majorana neutrino can produce an e^- with no suppression at all.

The See-Saw Mechanism

(Gell-Mann, Ramond, and Slansky; Yanagida;) Mohapatra and Senjanovic; Minkowski The See-Saw Mechanism is the most popular hypothesis for explaining how the neutrino masses, athough not zero, can be so small.

We saw that when an underlying ν has only a Majorana mass, the resulting mass eigenstate is a Majorana neutrino.

We will now see, illustrated by the See-Saw picture, that when there are *both* Dirac and Majorana masses, *two* Majorana mass eigenstates result.

The See-Saw

We include *both* Dirac and Majorana mass terms: We assume that, in terms of underlying fields, the mass sector is —

$$\mathcal{L}_{m} = -m_{D}\overline{N}_{R}v_{L} - \frac{m_{R}}{2}(N_{R})^{c}N_{R} + \text{h.c.}$$
$$= -\frac{1}{2}\left[\overline{(v_{L})^{c}}, \overline{N}_{R}\right] \begin{bmatrix} 0 & m_{D} \\ m_{D} & m_{R} \end{bmatrix} \begin{bmatrix} v_{L} \\ (N_{R})^{c} \end{bmatrix} + \text{h.c.}$$

We have used $(V_L)^c m_D (N_R)^c = \overline{N}_R m_D V_L$.

$$M_{v} = \begin{bmatrix} 0 & m_{D} \\ m_{D} & m_{R} \end{bmatrix}$$
 is called the neutrino mass matrix.

7

No SM principle prevents m_R from being extremely large.

But we expect m_D to be of the same order as the masses of the quarks and charged leptons.

Thus, we assume that $m_R >> m_D$.

 M_{ν} can be diagonalized by the transformation —

$$Z^T M_{\mathcal{V}} Z = D_{\mathcal{V}}$$

With
$$\rho \equiv m_D/m_R \ll 1$$
,
 $Z \approx \begin{bmatrix} 1 & \rho \\ -\rho & 1 \end{bmatrix} \begin{bmatrix} i & 0 \\ 0 & 1 \end{bmatrix}$
Makes eigenvalues positive

and $D_{v} \approx \begin{bmatrix} m_{D}^{2}/m_{R} & 0\\ 0 & m_{R} \end{bmatrix}$

What Happened?

The Majorana mass term split a Dirac neutrino into two Majorana neutrinos.

The Heavy See-Saw Partner Neutrinos N, and the Origin of the Matter-Antimatter Asymmetry of the Universe

The Cosmic Puzzle

Today: $B \equiv #(Baryons) - #(Antibaryons) \neq 0$.

Standard cosmology: Right after the Big Bang, B = 0.

Also, $L \equiv #(Leptons) - #(Antileptons) = 0.$

How did B = 0 \blacksquare $B \neq 0$?

Sakharov: $B = 0 \implies B \neq 0$ requires \mathscr{L} and \mathscr{L} .

Ø is easy to achieve, but the required degree and kind of P is harder.

The CP in the quark mixing matrix, seen in B and K decays, leads to much too small a $B - \overline{B}$ asymmetry.

If *quark* \mathcal{CP} cannot generate the observed $B - \overline{B}$ asymmetry, can some scenario involving *leptons* do it?

The candidate scenario: *Leptogenesis*, a very natural consequence of the See-Saw picture. (Fukugita, Yanagida)

We will now need the See-Saw picture with *several* neutrinos.

The straightforward (type-I) See-Saw model adds to the SM 3 heavy neutrinos N_i , with —

The Yukawa interaction causes the decays —

 $N \to \ell^{-} + H^{+}, \ N \to \ell^{+} + H^{-}, \left(\overline{N} = N, \text{ so the decays in each line} \right)$ $N \to \nu + H^{0}, \ N \to \overline{\nu} + \overline{H}^{0}. \left(\overline{N} = N, \text{ so the decays in each line} \right)$

Note: Today, there is only a *neutral* SM Higgs particle.

However, we are going to use the SM + See-Saw model in the early universe.

It has not yet cooled to the temperature at which $\langle H^0 \rangle_0$ turns on, and the charged Higgs particles are "eaten" by the *W* bosons.

At this early time, *H*⁺ and *H*⁻ are physical particles.

The N_i are heavy, but they would have been made during the *hot* Big Bang.

They would then have quickly decayed via the decay modes we just identified.

Phases in the Yukawa coupling matrix y would have led to \mathscr{L} and \mathscr{L} effects.

In particular, such phases would have led to -

and
$$\Gamma\left(N \to \ell^{-} + H^{+}\right) \neq \Gamma\left(N \to \ell^{+} + H^{-}\right)$$
$$\int \mathcal{L} \text{ and } \mathcal{L} \text{ and } \mathcal{L} \text{ for } \mathcal$$

17

How Phases Lead To CP Non-Invariance

CP always comes from *phases*.

Therefore, *CP* always requires an *interference* between (at least) two amplitudes.

For example, an interference between two Feynman diagrams.

Let us consider how a CP-violating rate difference between two CP-mirror-image processes arises. Suppose some process P has the amplitude —

$$A = M_{1}e^{i\theta_{1}}e^{i\delta_{1}} + M_{2}e^{i\theta_{2}}e^{i\delta_{2}}$$
CP-invariant
magnitude
CP-even
"strong" phase

Then the CP-mirror-image process \overline{P} has the amplitude —

$$\overline{A} = M_1 e^{i\theta_1} e^{-i\delta_1} + M_2 e^{i\theta_2} e^{-i\delta_2}$$

Then the rates for \overline{P} and P differ by -

$$\overline{\Gamma} - \Gamma = |\overline{A}|^2 - |A|^2 = 4M_1M_2\sin(\theta_1 - \theta_2)\sin(\delta_1 - \delta_2)$$

$$\overline{\Gamma} - \Gamma = |\overline{A}|^2 - |A|^2 = 4M_1M_2\sin(\theta_1 - \theta_2)\sin(\delta_1 - \delta_2)$$

A CP-violating rate difference requires 3 ingredients:

- •Two interfering amplitudes
- •These two amplitudes must have different CP-even phases
- •These two amplitudes must have different CP-odd phases

How Do *St* Inequalities Between N Decay Rates Come About?

Let us look at an example.

This example illustrates that *P* in *any decay* always involves amplitudes *beyond* those of lowest order in the Hamiltonian.

Tree

Loop

$$\Gamma\left(N_{1} \rightarrow e^{-} + H^{+}\right) = \left|y_{e1}K_{\text{Tree}} + y_{\mu 1}^{*}y_{\mu 2}y_{e2}K_{\text{Loop}}\right|^{2}$$

$$\left|\begin{array}{c}K_{\text{inematical factors}}\right|^{2}$$

$$\Gamma\left(N_1 \rightarrow e^- + H^+\right) = \left|y_{e1}K_{\text{Tree}} + y_{\mu 1}^* y_{\mu 2} y_{e2}K_{\text{Loop}}\right|^2$$

When we go to the CP-mirror-image decay, $N_1 \rightarrow e^+ + H^-$, all the coupling constants get complex conjugated, but the kinematical factors do not change. *From Hermiticity of H*

$$\Gamma \left(N_1 \to e^+ + H^- \right) = \left| y_{e1}^* K_{\text{Tree}} + y_{\mu 1} y_{\mu 2}^* y_{e2}^* K_{\text{Loop}} \right|^2$$

Then –

$$\Gamma\left(N_{1} \rightarrow e^{-} + H^{+}\right) - \Gamma\left(N_{1} \rightarrow e^{+} + H^{-}\right)$$
$$= 4 \operatorname{Im}\left(y_{e1}^{*}y_{\mu 1}^{*}y_{e 2}y_{\mu 2}\right) \operatorname{Im}\left(K_{\mathrm{Tree}}K_{\mathrm{Loop}}^{*}\right)$$

The inequalities —

$$\Gamma\left(N \to \ell^{-} + H^{+}\right) \neq \Gamma\left(N \to \ell^{+} + H^{-}\right)$$
and

$$\Gamma\left(N \to v + H^0\right) \neq \Gamma\left(N \to \overline{v} + \overline{H^0}\right)$$

violate CP in the leptonic sector, and violate lepton number L.

Starting with a universe with L = 0, these decays would have produced one with $L \neq 0$, containing unequal numbers of SM leptons and antileptons.

Next –

The Standard-Model *Sphaleron* process, which does not conserve Baryon Number B, or Lepton Number L, but does conserve B - L, acts.

There is now a nonzero Baryon Number B. Eventually, there are baryons, but ~ no antibaryons. Reasonable couplings y give the observed value of \mathcal{B}_{26}

How Heavy Must the N_i Be?

Once the Higgs vev turns on,

$$y\overline{V}_{L}\overline{H^{0}}N_{R} \Longrightarrow y\overline{V}_{L}\left\langle\overline{H^{0}}\right\rangle_{0}N_{R} \equiv m_{D}\overline{V}_{L}N_{R}$$

This is the Dirac mass term in the See-Saw model.

The see-saw relation is then
$$M_{\nu} \sim \frac{\sqrt[4]{v^2 y^2}}{M_N} \sim \frac{V^2 y^2}{M_N}$$
 SM Higgs vev
Light neutrino

This relation, the light ν masses, and the $y^2 \sim 10^{-5}$ called for by the observed cosmic baryon asymmetry,

Such heavy particles cannot be produced at the LHC or any foreseen accelerator.

So how can we get evidence that leptogenesis occurred?

Generically, leptogenesis and light-neutrino *CP* imply each other.

They both come from phases in the same Yukawa coupling matrix y.

We've already seen that the phases in y are the origin of CP violation in heavy N decays.

Now we will see that in the See-Saw model, they are also the origin of the phases in the mixing matrix U.

The Oscillation – Leptogenesis Connection

The See-Saw Relation

Through U, the phases in y lead to \mathcal{L} in light neutrino oscillation.

$$P(\stackrel{(-)}{\nu_{\alpha}} \to \stackrel{(-)}{\nu_{\beta}}) =$$

$$= \delta_{\alpha\beta} - 4 \sum_{i>j} \Re(U^*_{\alpha i} U_{\beta i} U_{\alpha j} U^*_{\beta j}) \sin^2(\Delta m^2_{ij} \frac{L}{4E})$$

$$\stackrel{(-)}{=} 2 \sum_{i>j} \Im(U^*_{\alpha i} U_{\beta i} U_{\alpha j} U^*_{\beta j}) \sin(\Delta m^2_{ij} \frac{L}{2E})$$

If the oscillation CP phase δ proves to be large, it could explain almost the entire Baryon – Antibaryon asymmetry by itself. (*Pascoli, Petcov, Riotto*)

Electromagnetic Properties of Neutrinos

But for a Majorana neutrino —

Anti
$$(v) = v$$

Dipole Moments

In the Standard Model, loop diagrams like — Why doesn't this diagram produce a dipole moment for a *Majorana* neutrino??

produce, for a *Dirac* neutrino of mass m_v , a magnetic dipole moment —

 $\mu_{v} = 3 \times 10^{-19} (m_{v}/1eV) \mu_{B}$ (Marciano, Sanda; Lee, Shrock; Fujikawa, Shrock)

A *Majorana* neutrino cannot have a magnetic or electric dipole moment:

$$\mathbf{\mu} \begin{bmatrix} \mathbf{f} \\ \mathbf{e}^+ \end{bmatrix} = -\mathbf{\mu} \begin{bmatrix} \mathbf{f} \\ \mathbf{e}^- \end{bmatrix}$$

But for a Majorana neutrino,

$$\overline{\mathbf{v}}_i = \mathbf{v}_i$$

Therefore,

$$\overrightarrow{\mu}\left[\overrightarrow{\mathbf{v}_{i}}\right] = \overrightarrow{\mu}\left[\mathbf{v}_{i}\right] = 0$$

Both *Dirac* and *Majorana* neutrinos can have *transition* dipole moments, leading to —

One can look for the dipole moments this way.

How big must they be to be visible?

We must seek an excess, beyond the event rate expected from W (and Z) exchange, at low e recoil kinetic energy T.

To be sensitive to an effective dipole moment μ , we must be able to go to —

$$T/m_{e} < (\mu/10^{-10} \mu_{B})^{2}$$

Sterile Neutrino One that does not couple to the SM W or Z boson

A "sterile" neutrino may well couple to some non-SM particles. These particles could perhaps be found at LHC or elsewhere. The heavy See-Saw partner neutrinos N_i interact with the rest of the world only through the Yukawa coupling —

$$\mathcal{L}_{\text{Yukawa}} = \sum_{\substack{\alpha = e, \mu, \tau \\ i = 1, 2, 3}} y_{\alpha i} \begin{bmatrix} \nabla_{\alpha L} \overline{H^0} - \overline{\ell}_{\alpha L} \overline{H^-} \end{bmatrix} N_{iR} + h.c.$$
SM lepton doublet
SM Higgs
doublet

The N_i do not couple to the SM W or Z boson.

 \therefore The N_i are sterile neutrinos.

Are there also *light* sterile neutrinos with masses $\sim 1 \text{ eV}$?

I don't know of any compelling models, but they are possible.

The Freedom a 4th Neutrino Flavor Gives to CP Violation Let $P[v_{\alpha} \rightarrow v_{\beta}] - P[\overline{v}_{\alpha} \rightarrow \overline{v}_{\beta}] \equiv \Delta P_{\alpha\beta}$ be a CP-violating $v - \overline{v}$ difference in vacuum.

Assuming CPT invariance, $P[\nu_{\beta} \rightarrow \nu_{\alpha}] = P[\overline{\nu}_{\alpha} \rightarrow \overline{\nu}_{\beta}]$. Then $\Delta P_{\beta\alpha} = -\Delta P_{\alpha\beta}$. In particular, $\Delta P_{\alpha\beta} = 0$ when $\beta = \alpha$.

Conservation of probability

$$\sum_{A \amalg \beta} P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \sum_{A \amalg \beta} P(\overline{\nu}_{\alpha} \rightarrow \overline{\nu}_{\beta}) = 1.$$

Then
$$\sum_{A \amalg \beta} \Delta P_{\alpha\beta} = \sum_{\beta \neq \alpha} \Delta P_{\alpha\beta} = 0.$$

When there are only 3 neutrino flavors, there are only 3 independent (potentially) nonzero CP-violating differences $\Delta P_{\alpha\beta}$ to be measured: $\Delta P_{e\mu}, \Delta P_{\mu\tau}$, and $\Delta P_{\tau e}$.

$$\sum_{\beta \neq \alpha} \Delta P_{\alpha\beta} = 0 \quad \blacksquare$$

 $\Delta P_{e\mu} + \Delta P_{e\tau} = 0 \quad \text{and} \quad \Delta P_{\mu e} + \Delta P_{\mu \tau} = 0 \ . \label{eq:elements}$

Then
$$\Delta P_{e\mu} = \Delta P_{\mu\tau} = \Delta P_{\tau e}$$

If CP is not violated in $(\overline{v}_{\mu}) \rightarrow (\overline{v}_{e})$, then it is not violated in *any* oscillation channel.

When there are 4 neutrino flavors, assuming CPT invariance, there are 6 independent (potentially) nonzero CP-violating differences $\Delta P_{\alpha\beta}$: $\Delta P_{e\mu}, \Delta P_{\mu\tau}, \Delta P_{\tau e}, \Delta P_{es}, \Delta P_{\mu s}, \text{ and } \Delta P_{\tau s}.$ Sterile flavor

Now $\sum_{\beta \neq \alpha} \Delta P_{\alpha\beta} = 0$ only implies such relations as —

$$\Delta P_{e\mu} = \Delta P_{\mu\tau} + \Delta P_{\mu s}$$

The CP-violating differences $\Delta P_{\alpha\beta}$ in different active-to-active oscillation channels are no longer required to be equal.

Neutrino Physics References

Books

The Physics of Massive Neutrinos, B. K., with F. Gibrat-Debu and F. Perrier (World Scientific, Singapore, 1989).

Physics of Neutrinos, M. Fukugita and T. Yanagida (Springer, Berlin/Heidelberg, 2003).

Fundamentals of Neutrino Physics and Astrophysics, C. Giunti and C. Kim (Oxford University Press, Oxford, 2007).

The Physics of Neutrinos, V. Barger, D. Marfatia, and K. Whisnant (Princeton University Press, Princeton, 2012).

Papers

"Neutrino Masses, Mixing, and Oscillations," K. Nakamura and S. Petcov, in C. Patrignani et al. (Particle Data Group), Chin. Phys. C, **40**, 100001 (2016) and 2017 update. Also at http://pdg.lbl.gov/2017/reviews/contents_sports.html.

"Neutrino Mass, Mixing, and Flavor Change," B. K., in **Neutrino Mass**, eds. G. Altarelli and K. Winter (Springer, Berlin/Heidelberg, 2003). Also eprint hepph/0211134. This paper discusses a number of the topics covered in the lectures. "Neutrino Oscillation Physics," B. K., in **Proceedings of** the International School on AstroParticle Physics, eds. G. Bellini and L. Ludhova (IOS Press, Amsterdam, 2012), and in **Proceedings of the 2011 European School of** High-Energy Physics, eds. C. Grojean and M. Mulders (CERN, Geneva, 2014). Also arXiv:1206.4325 [hep-ph]. This paper derives the probability for neutrino oscillation without assuming that all neutrino mass eigenstates in a beam have the same energy, or else the same momentum.

"On the Properties of Neutrinos," A. B. Balantekin and B. K., to appear in **Annu. Rev. Nucl. Part. Sci. 68**. Also arXiv:1805.00922 [hep-ph].

"Neutrino electromagnetic interactions: a window to new physics," C. Giunti and A. Studenikin, **Rev. Mod. Phys. 87**, 531 (2015). Also arXiv:1403.6344 [hep-ph].

"Light Sterile Neutrinos: A White Paper," K. Abazajian et al., arXiv:1204.5379.

