

#### **11th International Neutrino Summer School**



Waldthausen/Mainz May 21 - June 1, 2018

## **Direct probes of neutrino mass** Tritium β-decay and EC of <sup>163</sup>Ho

KATHRIN VALERIUS | KIT-IKP (Institute for Nuclear Physics)







## **Complementary paths to the v mass scale**

CONTRACTOR OF THE OWNER



|                                     |                                       | e e                                                                                                                                                    |                                                                          |
|-------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
|                                     |                                       |                                                                                                                                                        | <sup>n</sup> P<br><sup>3</sup> He <sup>+</sup>                           |
|                                     | Cosmology                             | Search for 0vββ                                                                                                                                        | β-decay<br>& electron capture                                            |
| Observable                          | $M_{\nu} = \sum_{i} m_{i}$            | $m_{\beta\beta}^2 = \left \sum_i U_{ei}^2 m_i\right ^2$                                                                                                | $m_{\beta}^2 = \sum_i  U_{ei} ^2 m_i^2$                                  |
| Present upper limit                 | ~0.15 – 0.6 eV                        | ~0.1 – 0.4 eV                                                                                                                                          | 2 eV                                                                     |
| Potential: near-term<br>(long-term) | 60 meV<br>(15 meV)                    | 50 – 200 meV<br>(20 – 40 meV)                                                                                                                          | 200 meV<br>(40 – 100 meV)                                                |
| Model dependence                    | Multi-parameter<br>cosmological model | <ul> <li>Majorana nature of v,<br/>lepton number violation</li> <li>BSM contributions<br/>other than m(v)?</li> <li>Nuclear matrix elements</li> </ul> | <b>Direct,</b> only kinematics;<br>no cancellations in<br>incoherent sum |
|                                     | → Y. Wong                             | → S. Schönert                                                                                                                                          | → this lecture                                                           |

# A detailed look at how direct neutrino mass experiment works (continued)







K. Valerius | Neutrino mass measurements

## **Systematic uncertainties**



Complex beamline setup with many sub-components

many sources of systematics need to be considered by modelling & dedicated measurements



Ongoing: evaluation of systematics with commissioning data

## Statistical & systematic uncertainties



#### KATRIN's uncertainty budget (design sensitivity, ~2004):



system characterisation

## Example 1: High voltage and magnetic fields



#### Precision high-voltage monitoring and active regulation



- ➔ DC component: sub-ppm long-term stability monitored with precision HV divider
- → AC component: active compensation reduces 500 mV<sub>pp</sub> noise to  $\sigma$  < 20 mV (~1 ppm)

#### Field homogeneity across ø10 m analysing plane



- → Sophisticated numerical model KEMField code, New J. Phys. 19 (2017) 053012
- → Measurements with precision electron source (e-gun)

## **Example 2: Beta-spectrum model**





## **Example 3: Energy loss function**





## KATRIN milestone: gearing up for tritium with <sup>83m</sup>Kr





→ A versatile calibration tool, widely used in neutrino & DM experiments!

**Two-week KATRIN krypton campaign (July 2017):** 

Hardware readiness from source to detector with <sup>83m</sup>Kr as short-lived "tracer"



Data chain from raw data & slow control to high-level analysis tools



**System characterization:** sharp transmission of MAC-E filter, detector properties, system alignment, absolute energy scale calibration, ...

# A krypton line scan with the integrating spectrometer: real data





## Krypton demonstrates performance of overall KATRIN system





- ✓ Sharp resolution (~2 eV at 30 keV) and excellent linearity of energy scale
- ✓ New calibration method of HV meas.
   (< 5 ppm) based on relative line positions</li>

✓ Highly stable overall system from source to detector

Arenz et al. (KATRIN Collab.), JINST **13** (2018) P04020 and EPJ **C78** (2018) 368

## May 2018: KATRIN's very first tritium!



#### First tritium circulation on May 18th

First spectrum scans recorded on May 19th

- Nominal gas column in the source beam tube, but D<sub>2</sub> instead of T<sub>2</sub> for now
- Starting with mixing in only small amount of tritium (~ 1% of nominal activity)
- Stay tuned for NEUTRINO 2018!



Operation and analysis crew in the control room

- Looking forward to the KATRIN inauguration on June 11, 2018



## **Next steps for KATRIN**



#### Calibration & monitoring systems: major importance for systematics control





## **IV. Novel approaches**





## How to further improve v-mass sensitivity?



#### **Problems:**



energy resolutionsource luminosity



Ø100 m spectrometer ???

## How to further improve v-mass sensitivity?



#### **Problems:**



## How to further improve v-mass sensitivity?



#### **Problems:**



### **Novel developments**



## Several avenues towards improvement:





1st avenue



# Time-of-flight spectroscopy



[credit: Nicho Steinbrink]

## Measuring a differential β spectrum









Spectrometer as 24 m long "delay line" → very sensitive to small differences in surplus energy (especially at low surplus energies above the retardation potential)

## Measuring a differential β spectrum









TOF spectrum records full  $\beta$  spectrum  $\Rightarrow$  save meas. time by using only few voltage settings of MAC-E filter

Coincidence requirement

→ background suppression

#### **Technical realization?**

(a) pre-spectrometer as gated filter(b) radio frequency electron tagger





2nd avenue



## Frequency-based approach

"Never measure anything but frequency." — Arthur L. Schawlow

## **Cyclotron Radiation Emission Spectroscopy** (CRES)

uniform B-field.

magnetic trap

low-pressure

antenna array

gas cell



Pacific NW, CfA, Yale,

Livermore, KIT, U Mainz

Non-destructive measurement of electron energy via cyclotron frequency:

$$f(\gamma) = rac{1}{2\pi} rac{f_{
m c}}{\gamma} = rac{eB}{m_{
m e} + E_{
m kin}}$$

<sup>3</sup>H-<sup>3</sup>H

B

#### The challenge:

- Energy resolution:  $\Delta E/E \sim \Delta f/f \sim ppm$
- Frequency resolution:  $\Delta f \sim 1/\Delta t$  $\Delta t \sim 20 \ \mu s \rightarrow 1400 \ m at 18 \ keV$ need multiple passes in a trap



## UW Seattle, MIT, UCSB,

e<sup>-</sup>

# Cyclotron Radiation Emission Spectroscopy (CRES)



UW Seattle, MIT, UCSB, Pacific NW, CfA, Yale, Livermore, KIT, U Mainz

Non-destructive measurement of electron energy via cyclotron frequency:

$$f(\gamma) = \frac{1}{2\pi} \frac{f_{\rm c}}{\gamma} = \frac{eB}{m_{\rm e} + E_{\rm kin}}$$



uniform B-field, magnetic trap low-pressure gas cell

antenna array

## From theoretical idea to experimental reality within 5 years



➔ Proof of principle of CRES technique

## Towards tritium $\beta$ spectroscopy with CRES



#### Some practical points: frequency range



1 T magnetic field:
 cyclotron frequency
 in K band (IEEE)

<sup>83m</sup>Krypton has monoenergetic conversion electrons close to tritium endpoint

## Towards tritium $\beta$ spectroscopy with CRES



Some practical points: radiated power

#### Larmor formula

$$P(\gamma, \theta) = \frac{1}{4\pi\varepsilon_0} \frac{2}{3} \frac{q^4 B^2}{m_e^2} \left(\gamma^2 - 1\right) \sin^2 \theta$$



#### **Emitted power:**

- **1.7 fW** for 30.4 keV at θ = 90°
- **1.1 fW** for 18 keV at θ = 90°
- → Need Iow-noise cryogenic RF system



## **Project 8: phase I results**



#### First spectrogram of cyclotron radiation from single keV electrons (83mKr)



27

## **Project 8: phase I results**



 $^{83m}$ Kr lines at 17.8, 30.4, 32 keV clearly seen at  $\Delta$ E = 140 eV (FWHM)



28 [Asner et al., PRL 114 (2015) 162501; Ashtari E. et al., J. Phys. G 44 (2017) 054004] K. Valerius | Neutrino mass measurements

- Phase I (2010-2016): proof of principle
   Single-electron CRES demonstrated with conversion electron lines from <sup>83m</sup>Kr
- Phase II (2015-2018): tritium demonstrator
  - Improved waveguide, read-out, energy resolution, systematics studies
  - Continuous T<sub>2</sub>  $\beta$ -spectrum, m(v<sub>e</sub>) ~ 100 ...10 eV



#### Phase II set-up

T<sub>2</sub> data coming up soon!



- Phase III (2016-2020): large volume demonstrator
  - Open-bore MRI magnet: cryostat moved in on rails
  - Phased-array read-out, digital beam-forming
  - 10<sup>5</sup> Bq in 200 cm<sup>3</sup> volume (10-20 cm<sup>3</sup> effective)
  - Tritium data competitive with  $m(v_e) \sim 2 eV (1 yr)$
  - Ongoing design for trap, cryo-system, antenna array







#### • Phase IV (2017+): atomic tritium source

- goal: sub-eV sensitivity at inverted hierarchy scale
- R&D for large-volume magnetic trap for atomic tritium (< 50 mK)
- 10<sup>18</sup> atoms (~10<sup>9</sup> Bq activity) in fiducial volume of 10+ m<sup>3</sup>





#### • Phase IV (2017+): atomic tritium source

- goal: sub-eV sensitivity at inverted hierarchy scale
- 10<sup>18</sup> atoms in fiducial volume (~10<sup>9</sup> Bq activity)
- R&D for large-volume (> 10 m<sup>3</sup>) atomic tritium trap (< 1 K)







#### • Phase IV (2017+): atomic tritium source









3rd avenue



Calorimetric approach using <sup>163</sup>Ho



## v-mass from <sup>163</sup>Ho electron capture



#### **Challenges (experiment):**

- Production & purification of isotope <sup>163</sup>Ho
- Incorporation of <sup>163</sup>Ho into high-resolution detectors (2·10<sup>11</sup> atoms for 1 Bq)
- Operation & readout of large arrays



#### Challenges (theory & spectral shape):

- Understanding of calorimetric spectrum (nuclear & atomic physics + detector response)
- Independent determination of Q<sub>EC</sub> by Penning-trap mass spectrometry



### **Temperature sensors — technologies**









-separator ion implanter at Genova



#### **HOLMES** design & timeline:

- 6.5 x 10<sup>13</sup> nuclei <sup>163</sup>Ho (~300 Bq) per pixel
- ΔE ~ 1 eV, τ<sub>rise</sub>~ 1 µs;
   1000-pix array (1 eV goal) expected for 2018
- TES array + DAQ ready, first implant. coming up
- Spectrum measurements in preparation
- + 32 pixels for 1 month  $\rightarrow m_{\nu}$  sensitivity ~10 eV

## MMC technology: ECHo



Metallic Magnetic Calorimeters (MMC) with paramagnetic Au:Er sensor read out by SQUID



 $\delta T$  in absorber from EC-decay

⇒ change in magnetization M of sensor

signal: 
$$\delta \Phi_s \sim \frac{\partial M}{\partial T} \cdot \Delta T \sim \frac{\partial M}{\partial T} \cdot \frac{1}{C_{tot}} \cdot \delta E$$

- Fast rise time (~130 ns) and excellent linearity & resolution (ΔE<sub>FWHM</sub> < 5 eV)</li>
- Multiplexed readout of MMC arrays

## MMC technology: ECHo

#### Precision <sup>163</sup>Ho spectrum

first calorimetric measurement of OI-line



#### Ranitzsch *et al*., PRL 119 (2017) 122501





64-pix detectors optimized for implantation

microwave SQUID multiplexing readout





- ECHo-1k (2015-2018, taking data now)
  - prove scalability with medium-sized array: 100 detectors x 10 Bq
  - 1 yr meas. time for  $N_{event}$ ~10<sup>10</sup>:
    - → m(v<sub>e</sub>) < 10 eV
- Next step: ECHo-1M
  - large-scale experiment for sub-eV sensitivity 100 arrays of 1000 detectors, at 10 Bq each

3" wafer with 64 ECHo-1k chips





[The ECHo Collaboration, EPJ-ST 226 8 (2017) 1623]

## Direct v-mass determination: status and outlook



| Start of T <sub>2</sub> data in 2018 after extensive commissioning program                                                 | KATRIN                       | Long-term data-taking (5 yrs) for full sensitivity (0.2 eV)                                  |
|----------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------------|
| CRES proof of principle with $^{83m}$ Kr, testing new cell for T <sub>2</sub>                                              | Project 8                    | Develop CRES for $10 \rightarrow 2 \text{ eV}$ , and towards IH (atomic source)              |
| R&D for atomic source concept,<br>MAC-E + calorimeter                                                                      | PTOLEMY                      | Devise large-scale experiment to tackle m(v) and CvB                                         |
| current achievements                                                                                                       | <sup>3</sup> He <sup>+</sup> | next goals                                                                                   |
| <ul> <li>Advanced detector development<br/>(MMC and TES technologies)</li> <li>Test of scalable arrays, readout</li> </ul> | Ho                           | <ul> <li>Operate medium-size arrays<br/>(~10<sup>10</sup> counts) for 10 eV sens.</li> </ul> |
| <ul> <li>High-purity <sup>163</sup>Ho production<br/>and implantation</li> </ul>                                           | ECHo<br>HOLMES               | <ul> <li>Prepare large arrays<br/>(~10<sup>14</sup> counts) for sub-eV sens.</li> </ul>      |

## Direct v-mass determination: strong activities in experiment and theory!









## Summary / Take-away



## More physics questions for direct kinematic experiments



#### Examples:

How many neutrino states are there? Do neutrinos participate in novel (exotic) forms of interaction?





## Imprint of sterile neutrinos on β spectrum



Shape modification below  $E_0$  by active  $(m_a)^2$  and sterile  $(m_s)^2$  neutrinos:



additional kink in  $\beta$  spectrum at E = E<sub>0</sub> – m<sub>s</sub>

keV sterile v,  $m_s = 10 \text{ keV}$ 

light sterile v,  $m_s = 3 \text{ eV}$ 



# Can we detect heavy neutrino states in a direct mass measurement?



• ... close to the spectral endpoint  $E_0$ :



#### Tritium: KATRIN

Holmium: ECHo

light sterile neutrinos

### Can we detect heavy neutrino states in a direct mass measurement?



... close to the spectral endpoint  $E_0$ : •



light sterile neutrinos

[Steinbrink et al., JCAP 06 (2017) 015]

### Search for keV-scale sterile v with TRISTAN at KATRIN



- High count rates at ~few keV below endpoint
- Tiny sterile admixture  $\sin^2(\theta_s)$  expected
- Best sensitivity for differential measurement at resolution ~300 eV



initial ramp-up phase of KATRIN at reduced source strength





at KIT-IPE

# Can we detect heavy neutrino states in a direct mass measurement?



• ... further away from E<sub>0</sub>:

search for keV-scale sterile  $\nu$  as WDM candidates





### **Right-handed heavy neutrino states**

Required values of  $m_D^2$  to obtain small neutrino masses  $m_{\nu} \sim 10^{-10}$  GeV via seesaw mechanism:



Karlsruhe Institute of Technol

 $m_D^2 (\text{GeV}^2)$ 

 $m_{\nu} \approx \frac{m_D^2}{M_R}$ 

Well motivated extension of SM

