Neutrino detection techniques from MeV to EeV

David Seckel Univ. of Delaware May 22, 2018

Neutrino detection techniques from MeV to EeV

David Seckel Univ. of Delaware May 22, 2018

What does it mean to "detect a neutrino"?

Rudiation

Rudiation

which propagates

What does it mean to "detect a neutrino"?

Rudiation

which propagates

and some is detected

What does it mean to "detect a neutrino"?

Rudiation

which propagates

and some is detected

Outline

- Lots of moving parts
- Intro and basics
 - Science goals
 - Neutrino properties
 - Requirements
 - Cases
- Strategies
- Cascades and tracks
 - EM cascades
 - Hadronic Cascades
 - Tracks
 - Air/dense
- Imaging cascades & tracks
 - Radiation, Propagation, "Camera"

• Optical techniques

Radio techniques

Science Goals

- Man made
 - reactor
 - accelerator/beam
 - Red October
- Natural
 - relics of BB
 - radioactive decays
 - solar
 - supernovae
 - natural beams
 - atmospheric
 - astrophysical

- Study neutrino properties
- Monitor sources

- Study neutrino properties Different from y
- Source properties
 - internal properties _
 - source distributions and evolution
- Propagation probes (MSW, Γ) ۲
- Study neutrino flux as background ullet

Astrophysical neutrinos

- SM particle astrophysics
 - extreme objects (multi-messenger ...)
 - acceleration processes within source
 - propagation, e.g. flavor mixing
- SM cosmology
 - evolution of sources
 - propagation, e.g. cosmogenic production
- Particle physics
 - probe higher energies
 - Standard model (σ), new interactions
 - · particles other than SM neutrinos?
 - Lorentz invariance
 - is $U_{\alpha i}$ universal?

$$\begin{split} \mathscr{L}_{F} &= \sum_{i} \overline{\psi}_{i} \left(i \not{\partial} - m_{i} - \frac{m_{i}H}{v} \right) \psi_{i} & \text{mass} \\ &- \frac{g}{2\sqrt{2}} \sum_{i} \overline{\Psi}_{i} \gamma^{\mu} (1 - \gamma^{5}) (T^{+} W^{+}_{\mu} + T^{-} W^{-}_{\mu}) \Psi_{i} & \text{CC} \\ &- e \sum_{i} Q_{i} \overline{\psi}_{i} \gamma^{\mu} \psi_{i} A_{\mu} & \text{Charge} \\ &- \frac{g}{2\cos\theta_{W}} \sum_{i} \overline{\psi}_{i} \gamma^{\mu} (g^{i}_{V} - g^{i}_{A} \gamma^{5}) \psi_{i} Z_{\mu} . & \text{NC} \\ & g^{i}_{V} \equiv t_{3L}(i) - 2Q_{i} \sin^{2} \theta_{W}, \\ & g^{i}_{A} \equiv t_{3L}(i), \end{split}$$

Defines most interactions of neutrinos with matter. Also $WWZ, WW\gamma$

Processes

• Charged current

• Neutral current

HE Processes

• Glashow resonance

• $\gamma \nu$ and "W – bremsstrahlung"

 ν –production

• Scattering

ullet

HE Production

• hadronic cascades

$$\begin{array}{c} \pi_{i} \mathcal{P}_{i} \mathsf{K} \\ & \stackrel{\circ}{\longrightarrow} \bigcirc \longrightarrow \bigcirc & \pi^{\dagger} \pi^{\circ} \implies \bigvee_{\sqrt{\gamma}} \\ & \chi & \pi^{\dagger} & \stackrel{\circ}{\longrightarrow} \implies \bigvee_{\sqrt{\gamma}} \\ & \chi & & \uparrow \uparrow \end{array}$$

• γp - reactions

1

ν –interactions

• electron scattering

ν –interactions

• Charged current in nuclei

$$\langle A_{2+1}|(2|\rangle < |)T^{+}(2|\rangle < |)|A_{2}\rangle$$

Neutral currents

HE ν –interactions

•

Deep inelastic CC & NC

Cross-sections

neutrino energy for the CTEQ3 distributions.

QGRS

CTW

Propagation

• mass \neq flavor

$$A_{xB} = \Sigma U_{x} A_{z}^{(4)} U_{zB}$$

- detected flavor mix \neq source flavor mix
- attenuation in the earth

Strategies

- "requirements"
- rates
- Comments on HE and ME case

Requirements

- events N = 7 +
- $E spectrum \in \pm SE$
- $\widehat{\Omega}$ direction $\widehat{\Omega} \neq S\widehat{\Omega}$
- event topology: particle-id

- backgrounds: events are significant
 - radioactivity
 - cosmic ray muons
 - "other" neutrinos

Event rates

•
$$N_{ev} = \int \Gamma dt$$
 $\overline{\Gamma} = \phi A$ Point source
 $\overline{\Gamma} = \phi A SL$ Diffuse

•
$$\Gamma = \phi A \Rightarrow \Gamma = \int \frac{d\phi}{dE} A(\hat{\Lambda}, E) E(\hat{\Lambda}, E) dE$$

•
$$A = N_{t}\sigma = n_{t}V\sigma$$

= $\int a^{3}\vec{x} n(\vec{x}) \mathcal{E}(\vec{n},\vec{x})\sigma$

•
$$\Gamma = \phi A \Omega \Rightarrow \int \frac{d\phi}{dEd\Omega} A(\hat{n}, E) E(\hat{n}, E) d\hat{\Omega} dE$$

• Estimate analytically or simple simulation

... BUT ... real work needs monte carlo including event simulation, radiation and propagation, detector response, background estimation, and prototype analysis

$$A = N_{t} \sigma = n_{t} \vee \sigma$$
$$= \int a^{3} \vec{x} \ n(\vec{x}) \ \varepsilon(\vec{n}, \vec{x}) \sigma$$

ME and HE case

- Backgrounds ٠
 - ackgrounds
 cosmic ray muons 2 kh2 & icecube
 atmospheric neutrinos 70,000/gr e icecube
 detector noise (PMT or other sensor) 500 hz per Dom
- Low to medium energies
 - cr muons ... only upward events
- ME to HE •
 - cr muons can be vetoed ... contained events
- HE better vetos, can eliminate atmospheric neutrino from • upward sky.

HE strategy

$$N = \oint A \Pi t$$

$$A = N_{t} \sigma$$

$$N_{t} = n V = n A_{0} t$$

Cascades and tracks

- Image cascades and tracks to reconstruct event
- Cascades
 - Electromagnetic
 - Hadronic
 - Separating em and hadronic
- Tracks
 - mu
 - tau
- Density
 - water, air

em cascades

Electromagnetic cascades: longitudinal

• early - $E_s > E_c$ - critical energy ~ 80 MeV

Electromagnetic cascades: profiles

hadronic cascade

Hadronic cascades

Hadronic cascades in water/ice

- For $E_s > PeV$, almost all particles interact, energy remains hadronic
- For $E_s < \text{PeV}$, π^0 decays most energy transforms to an electromagnatic shower, but still a lot of hadrons
- Heavy quarks, slow to few TeV, and then decay. May lengthen shower. May provide "prompt" μ.
- Charged mesons below inelastic threshold stop and produce muons
- Target nuclei produce neutrons

Identifying hadronic cascades

- Hard ... X_{max} and sensor spacing ?
- Prompt light from μ
 - Heavy Q at neutrino vertex
 - prompt Q from hadronic processes
 - conventional μ Direct charm production
 $\nu d \rightarrow l^-(u, c \cdot sin^2\theta_c) \dots 5\%$ low energy
 $\nu s \rightarrow l^-(c, u \cdot sin^2\theta_c) \dots 40\%$ high energy
 $\nu c \rightarrow \nu c \qquad \dots 10\%$ high energy
 $\nu b \rightarrow l^- t \qquad \dots 10\%$ very high energy
 - $-\mu$: decay 2.2 μ s delay
 - $n: np \rightarrow D\gamma$ 2.2 MeV ~ms delay
 - luminescence (efficiency *e* vs *had*)

Tracks
$$\frac{dE}{dx} = x + BE$$

from the PDG ...

mu v tau

- Scale to X_0
- Physical size of showers in ice ~ few m. Difficult to image – often treated as point source. 10 cm radius, pancake is good approximation.
- Air X₀ = 300m at STP, longer at altitude. Showers are many km in length. Important for radio detection of showers. Transverse dimensions are 100's of m, shower curvature is important.

End of first day