SOLAR NEUTRINOS

Carlos Peña Garay Canfranc Underground Laboratory

May 21st, 2018

INSS 18, Mainz

PROGRAM: 2 LECTURES

First Lecture

IA) How does the Sun shine? A few stories and heroes (before 1989)

IB) Standard Solar Models (quick tour by A. Serenelli)

IC) Solar Neutrino fluxes at the Earth

Second Lecture

2D) How does the Sun shine? A few stories and heroes I (after 1989)

2E) Solar Neutrino Experiments and Lessons in Neutrino Physics

2F) Roadmap of future solar neutrino research

HOW DOES THE SUN SHINE? A global effort !

- XIX century: Debate on the Age of the Sun

Radioactivity (1896), Theory of relativity (1905).

- Ernest Rutherford (1904) proposed radioactivity as the source of Solar power.
- Francis Aston (1920) discovery: ⁴He is lighter than 4 ¹H
- Arthur Eddington (1920) propose burning of ¹H into ⁴He
- Cecilia Payne (1925): The Sun is made mostly of H and He

Quantum mechanics (1925)

- George Gamov (1928): quantum tunnelling
- Bethe-Weizsäcker-Zyklus (1938) : CNO cycle
- Hans Bethe (1939): pp chain and CNO cycle

Energy Production in Stars*

H. A. BETHE Cornell University, Ithaca, New York (Received September 7, 1938) The first mechanism starts with the combination of two protons to form a deuteron with positron emission, viz.

$$\mathbf{H} + \mathbf{H} = \mathbf{D} + \boldsymbol{\epsilon}^+. \tag{1}$$

The deuteron is then transformed into He⁴ by further capture of protons; these captures occur very rapidly compared with process (1). The second mechanism uses carbon and nitrogen as catalysts, according to the chain reaction

$$C^{12} + H = N^{13} + \gamma, \qquad N^{13} = C^{13} + \epsilon^{+}$$

$$C^{13} + H = N^{14} + \gamma, \qquad O^{15} = N^{15} + \epsilon^{+}$$

$$N^{14} + H = O^{15} + \gamma, \qquad O^{15} = N^{15} + \epsilon^{+}$$

$$N^{15} + H = C^{12} + He^{4}.$$
(2)

SOLAR NEUTRINO PROBLEM

After WWII:

- Willy Fowler et al: calculate and measure the most important cross sections of pp chain and CNO cycle

In the late 1950s, pp chain is identified as the main mechanism of energy generation.

 $4^{1}\mathrm{H} \longrightarrow {}^{4}\mathrm{He} + 2e^{+} + 2\nu_{e} + \mathrm{energy}$

First solar Model Calculation (1962)

- Ray Davis (1964) Solar Neutrinos: Experimental
- John Bahcall (1964) Solar Neutrinos: Experimental

"proposal to verify that nuclear reactions power the Sun"

- Homestake experiment (since 1968): Fewer neutrinos than predicted Solar Neutrino Problem identified
- Solar Neutrino Problem solutions proposed
- Pontecorvo (1960s) Neutrino oscillations
- Lincoln Wolfenstein (1978) Matter effects in neutrino propagation
- Stanislav Mikheiev, Alexei Smirnov (1985) Resonant conversion-MSW effect
- Masatoshi Koshiba, Kamiokande experiment (since 1986): Fewer neutrinos
- 1989 "Neutrino Astrophysics" book by John Bahcall
- Since 1990s: Helioseismology and new neutrino experiments

A LOOK INSIDE STANDARD SOLAR MODELS

Stellar structure basic assumptions:

self-gravitating spherically symmetric object with no rotation nor magnetic field

6. Microphysics: Equation of State, Radiative Opacities, Nuclear Cross Sections

Stellar structure – Hydrostatic equilibrium 1/2

1D Euler equation – Eulerian description (fixed point in space)

$$\left. \rho \frac{\partial v}{\partial t} \right|_{r} + \rho v \frac{\partial v}{\partial r} = -\frac{\partial P}{\partial r} + f$$

Numerically, Lagrangian description (fixed mass point) is easier (1D)

$$\frac{\partial}{\partial t}\Big|_{m} = \frac{\partial}{\partial t}\Big|_{r} + \frac{\partial r}{\partial t}\Big|_{m} \frac{\partial}{\partial r} \qquad \text{here } m \text{ denotes a concentric mass shell}$$

and using $f = -\frac{Gm}{r^2}$ and $\delta m = 4\pi r^2 \rho \delta r$ Euler equation becomes

$$\frac{\partial P}{\partial m} = -\frac{Gm}{4\pi r^4} - \frac{1}{4\pi r^2} \frac{\partial^2 r}{\partial t^2} \bigg|_{m}$$

Stellar structure – Hydrostatic equilibrium 2/2

$$\frac{\partial P}{\partial m} = -\frac{Gm}{4\pi r^4} - \frac{1}{4\pi r^2} \frac{\partial^2 r}{\partial t^2}$$

Hydrodynamic time-scale τ_{hydr} :

$$P = 0 \Longrightarrow \frac{Gm}{r^2} \approx \frac{r}{\tau_{hydr}^2} \Longrightarrow \tau_{hydr} \approx \frac{1}{2} (G\overline{\rho})^{\frac{1}{2}} \approx 27 \min$$

 τ_{hydr} << any other time-scale in the solar interior:

hydrostatic equilibrium is an excellent approximation

$$\frac{\partial P}{\partial m} = -\frac{Gm}{4\pi r^4} \tag{1}$$

Stellar structure – Energy equation 1/2

 L_m is the energy flux through a sphere of mass *m*; in the absence of energy sources

$$\frac{\partial L_m}{\partial m}dt = -dq$$

where dq = du + PdV.

Additional energy contributions (sources or sinks) can be represented by a total specific rate ε (erg g⁻¹ s⁻¹)

$$\frac{\partial L_m}{\partial m} = \varepsilon - \frac{dq}{dt}$$

Possible contributions to ε : nuclear reactions, neutrinos (nuclear and thermal), axions, etc.

Stellar structure – Energy equation 2/2

In a standard solar model we include nuclear and neutrino contributions (thermal neutrinos are negligible):

 $\varepsilon = \varepsilon_n - \varepsilon_v$ (taking $\varepsilon_v > 0$)

$$\frac{\partial L_m}{\partial m} = \varepsilon_n - \varepsilon_v - T \frac{ds}{dt} \equiv \varepsilon_n - \varepsilon_v + \varepsilon_g \tag{3}$$

In the present Sun the integrated contribution of ε_g to the solar luminosity is only ~ 0.02% (theoretical statement)

Solar luminosity is almost entirely of nuclear origin \Rightarrow

Luminosity constrain:
$$L_{\odot} = \int \frac{\partial L_m}{\partial m} dm \approx \int (\varepsilon_n - \varepsilon_v) dm$$

Stellar structure – Energy transport Radiative transport 1/2

Mean free path of photons $l_{ph}=1/\kappa\rho$ (κ opacity, ρ density)

Typical values $\langle \kappa \rangle = 0.4 \text{ cm}^2 \text{g}^{-1}$, $\langle \rho \rangle = 1.4 \text{ g cm}^{-3} \Rightarrow l_{\text{ph}} \approx 2 \text{ cm}$

 $l_{\rm ph}/R_{\odot} \approx 3 \times 10^{-11} \Rightarrow$ transport as a diffusion process

If D is the diffusion coefficient, then the diffusive flux is given by $\vec{F} = -D\vec{\nabla}U$ and in the case of radiation $D = \frac{1}{3}cl_{ph}$ and $U = aT^4$ where *c* is the speed of light and *a* is the radiation-density constant and U is the radiation energy density.

In 1-D we get

$$F = -\frac{4ac}{3} \frac{T^3}{\kappa \rho} \frac{\partial T}{\partial r}$$

Stellar structure – Energy transport Radiative transport 2/2

The flux F and the luminosity L_m are related by F and the transport equation can be written as

$$=\frac{L_m}{4\pi r^2}$$

 $\frac{\partial T}{\partial r} = -\frac{3}{16\pi ac} \frac{\kappa \rho L_m}{r^2 T^3}$

a

or, in lagrangian coordinates

$$\frac{\partial T}{\partial m} = -\frac{3}{64\pi^2 ac} \frac{\kappa L_m}{r^4 T^3}$$

Using the hydrostatic equilibrium equation, we define the radiative temperature gradient as

$$\nabla_{rad} = \frac{d \ln T}{d \ln P} \bigg|_{rad} = \frac{3}{16\pi acG} \frac{\kappa L_m P}{mT^4}$$

and finally
$$\frac{\partial T}{\partial m} = -\frac{GmT}{4\pi r^4 P} \nabla_{rad} \qquad (4)$$

Stellar structure – Energy transport Convective transport 1/3

Stability condition:

$$\Delta \rho_b < \Delta \rho_s \Rightarrow \frac{d \ln \rho}{dr} \bigg|_b \Delta r < \frac{d \ln \rho}{dr} \bigg|_s \Delta r$$

Using hydrostatic equilibrium, and $d \ln \rho = \alpha d \ln P - \delta d \ln T$

$$\frac{d\ln T}{dr}\Big|_{b} > \frac{d\ln T}{dr}\Big|_{S} \Rightarrow \frac{d\ln T}{dr}\Big|_{ad} > \frac{d\ln T}{dr}\Big|_{rad}$$

Stellar structure – Energy transport Convective transport 2/3

Divide by
$$\frac{d \ln P}{dr}$$
 and get

$$\frac{d\ln T}{d\ln P}\Big|_{ad} > \frac{d\ln T}{d\ln P}\Big|_{rad} = \nabla_{ad} > \nabla_{rad}$$

Schwarzschild criterion for dynamical stability

When does convection occur?

 $\nabla_{rad} = \frac{3}{16\pi acG} \frac{\kappa L_m P}{mT^4} \Rightarrow \begin{cases} \text{large } L_m \text{ (e.g. cores of stars } M_* > 1.3 M_{\odot}) \\ \text{regions of large } \kappa \text{ (e.g. solar envelope)} \end{cases}$

Stellar structure – Energy transport

Convective transport 3/3

Using definition of ∇_{rad} and $F = \frac{L_m}{4\pi r^2}$ we can write $F = \frac{4acG}{3} \frac{T^4m}{\kappa Pr^2} \nabla_{rad}$ and, if there is convection: $F = F_{rad} + F_{conv}$

where
$$F_{rad} = \frac{4acG}{3} \frac{T^4m}{\kappa Pr^2} \nabla$$

 ∇ is the actual temperature gradient and satisfies $\nabla_{ad} < \nabla < \nabla_{rad}$

 F_{conv} and ∇ must be determined from convection theory (solution to full hydrodynamic equations)

Easiest approach: Mixing Length Theory (involves 1 free param.)

Energy transport equation

$$\frac{\partial T}{\partial m} = -\frac{GmT}{4\pi r^4 P}\nabla$$

(4b)

Stellar structure – Composition changes 1/4

Relative element mass fraction: $X_i = \frac{n_i m_i}{\rho}; \sum_i X_i = 1$ X hydrogen mass fraction, Y helium and "metals" Z = 1 - X - Y

The chemical composition of a star changes due to

- Convection
- Microscopic diffusion
- •Nuclear burning

•Additional processes: meridional circulation, gravity waves, etc. (not considered in SSM)

Stellar structure – Composition changes 2/4 Convection (very fast) tends to homogenize composition $\frac{\partial n_i}{\partial t}\Big|_{conv} = \frac{\partial}{\partial m} \left(\left(4\pi r^2 \rho\right)^2 D_{conv} \frac{\partial n_i}{\partial m} \right)$

where D_{conv} is the same for all elements and is determined from convection treatment (MLT or other)

Microscopic diffusion (origin in pressure, temperature and concentration gradients). Very slow process: $\tau_{diff} >> 10^{10} \text{yrs}$

$$\frac{\partial n_i}{\partial t}\Big|_{diff} = \frac{\partial}{\partial m} \left(4\pi\rho r^2 n_i w_i\right)$$

here w_i are the diffusion velocities (from Burgers equations for multicomponent gases, Burgers 1969)

Dominant effect in stars: sedimentation $H^{\uparrow} - Y \& Z \downarrow$

Stellar structure – Composition changes 3/4

Nuclear reactions (2 particle reactions, decays, etc.)

$$\frac{\partial n_i}{\partial t}\Big|_{nuc} = -\sum_j \frac{n_i n_j}{1 + \delta_{ij}} < \sigma v >_{ij} + \sum_{kl} \frac{n_k n_l}{1 + \delta_{kl}} < \sigma v >_{kl} + \text{e.t.}$$

here $<\sigma v >= \int_0^\infty v \sigma(v) \Phi(v) dv$
 $\Phi(v)$ is the relative velocity distrib. and $\sigma(v)$ is cross section

Sun: main sequence star \rightarrow hydrogen burning low mass \rightarrow pp chains (~99%), CNO (~1%) Basic scheme: 4p \rightarrow ⁴He + 2 β ⁺ + 2 ν_e + ~25/26 MeV

hydrogen burning – pp chains

hydrogen burning – CNO cycle

CNO cycle is regulated by ¹⁴N+p reation (slowest)

A LOOK INSIDE STANDARD SOLAR MODELS

Stellar structure basic assumptions:

self-gravitating spherically symmetric object with no rotation nor magnetic field

6. Microphysics: Equation of State, Radiative Opacities, Nuclear Cross Sections

Other Inputs

Meteoritic abundances

CI Chondrites

- Mass spectroscopy very accurate!
- But volatile elements (form gaseous components) are depleted
 H, He, C, N, O and Ne

need a conversion factor from the solar to meteoritic scale

Meteoritic abundances

CI Chondrites

depleted in $H \rightarrow$ coupling meteoritic abundances to astronomical scale using Si

A(el) = const + log N(el)

assuming A(Si) = 7.54 const = 1.54 to match Si abundance on both scales

Grevesse & Sauval (1989)

- 1D hydrostatic solar model
- LTE

old 1D LTE

Asplund, Grevesse, Sauval, Scott, 2009, ARAA

- 3D hydrodynamical solar model
- NLTE, where available

new 3D NLTE

Significantly lower solar metal mass fraction Z

- Z=0.0169 (GS 1998)
- Z=0.0134 (AGSS 2009)

Element	GS98	AGSS09
С	8.52	8.43
Ν	7.92	7.83
0	8.83	8.69
Ne	8.08	7.93
Mg	7.58	7.53
\mathbf{Si}	7.56	7.51
Ar	6.40	6.40
Fe	7.50	7.45
Z/X	0.0229	0.0178

Other Inputs

Qnt.		Central va	lue	σ (%)	Ref.	Element	GS98	AGSS09met
$^{3}\text{He}(^{3}\text{He}, 2p)^{4}\text{He}$	Ie	$5.21 { m MeV}$	Ъ	5.2	1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		0.40.1.0.05
$^{3}\mathrm{He}(^{4}\mathrm{He},\gamma)^{7}\mathrm{Be}$	e	$5.6 \cdot 10^{-4} \text{ M}$	eVb	5.2	1	С	8.52 ± 0.06	8.43 ± 0.05
$^7\mathrm{Be}(\mathrm{e}^-, u_\mathrm{e})^7\mathrm{Li}$	i	Eq (40) SI	FII	2.0	1	Ν	7.92 ± 0.06	7.83 ± 0.05
$^{3}\mathrm{He}(\mathrm{p,e^{+}}\nu_{\mathrm{e}})^{4}\mathrm{H}$	[e	$8.6 \cdot 10^{-20}$ M	leV b	30.2	1	О	8.83 ± 0.06	8.69 ± 0.05
${ m ^{16}O(p,\gamma)^{17}F}$		$1.06 \cdot 10^{-2}$ N	feV b	7.6	1	Ne	8.08 ± 0.06	793 ± 010
$ au_{\odot}$		$4.57 \cdot 10^{9}$	yr	0.44	2	110	0.00 ± 0.00	1.55 ± 0.10
diffusion		1.0	-	15.0	2	Mg	7.58 ± 0.01	7.53 ± 0.01
L⊙		$3.8418 \cdot 10^{33} \epsilon$	$ m ergs^{-1}$	0.4	2	Si	7.56 ± 0.01	7.51 ± 0.01
						\mathbf{S}	7.20 ± 0.06	7.15 ± 0.02
S(0))	Uncert. %	$\Delta S(0)$)/S(0)	Ref.	Ar	6.40 ± 0.06	6.40 ± 0.13
S_{11} 4.03 · 10	0^{-2}	5 1	0.5	% [†]	1,2,3	Б		
S17 2.13 · 1	10	5 4.7	± 2	4%	4	Fe	7.50 ± 0.01	7.45 ± 0.01
S_{114} 1.59 · 1	10	³ 7.5	-4.	2%	5	$(Z/X)_{\odot}$	0.02292	0.01780

Nuclear Cross Sections

Solar Abundances in log(Z/A) + I2

Other Inputs

Opacity tables (calculations)

Iron opacity (1/4 solar density) Sandia Lab

Standard Solar Model – What we do 1/2

Solve eqs. 1 to 5 with good microphysics, starting from a Zero Age Main Sequence (chemically homogeneous star) to present solar age

Fixed quantities			
Solar mass	M⊙=1.989×10 ³³ g 0.1%	Kepler's 3 rd law	
Solar age	t_{\odot} =4.57 ×10 ⁹ yrs 0.5%	Meteorites	

Quantities to match			
Solar luminosity	$L_{\odot}=3.842 \times 10^{33} \text{erg s}^{-1}$ 0.4%	Solar constant	
Solar radius	$R_{\odot}=6.9598 \times 10^{10} cm$ 0.1%	Angular diameter	
Solar metals/hydrogen ratio	$(Z/X)_{\odot} = 0.0229$	Photosphere and meteorites	

- Dating the Solar System
 - Ratio ²³⁸U/²³⁵U known and constant (in space, not in time) in solar system material
 - Primordial isotopic composition of lead (Pb) known from meteoritic samples with very low abundances of U or Th
- Measure the ratio ²⁰⁶Pb/²⁰⁴Pb and ²⁰⁷Pb/²⁰⁴Pb in your sample, and, taking into account that ²⁰⁴Pb does not change, write

$${}^{206}Pb^* = \left[\left(\frac{{}^{206}Pb}{{}^{204}Pb} \right) - \left(\frac{{}^{206}Pb}{{}^{204}Pb} \right)_{PRIM} \right] {}^{204}Pb_{PRIM} = {}^{238}U\left[e^{\lambda_{238}T} - 1 \right]$$
$${}^{207}Pb^* = \left[\left(\frac{{}^{207}Pb}{{}^{204}Pb} \right) - \left(\frac{{}^{207}Pb}{{}^{204}Pb} \right)_{PRIM} \right] {}^{204}Pb_{PRIM} = {}^{235}U\left[e^{\lambda_{235}T} - 1 \right]$$

$$\frac{{}^{206}Pb^*}{{}^{207}Pb^*} = \frac{{}^{238}U}{{}^{235}U} \left[\frac{e^{\lambda_{238}T} - 1}{e^{\lambda_{235}T} - 1} \right]$$

is only function of T

Standard Solar Model – What we do 2/2

3 free parameters:

• Convection theory has 1 free parameter: α_{MLT} determines the temperature stratification where convection is not adiabatic (upper layers of solar envelope)

• 2 of the 3 quantities determining the initial composition: X_{ini} , Y_{ini} , Z_{ini} (linked by $X_{ini}+Y_{ini}+Z_{ini}=1$). Individual elements grouped in Z_{ini} have relative abundances given by solar abundance measurements (e.g. GS98, AGS05)

Construct a 1M_• initial model with X_{ini} , Z_{ini} , $(Y_{ini}=1-X_{ini}-Z_{ini})$ and α_{MLT} , evolve it during t_• and match $(Z/X)_{•}$, L_• and R_• to better than one part in 10⁻⁵

Standard Solar Model – Predictions

- Eight neutrino fluxes: production profiles and integrated values.
- Chemical profiles X(r), Y(r), $Z_i(r) \rightarrow$ electron and neutron density profiles (needed for matter effects in neutrino studies)
- Thermodynamic quantities as a function of radius: *T*, *P*, density (ρ), sound speed (*c*)
- Surface helium Y_{surf} (Z/X and 1=X+Y+Z leave 1 degree of freedom)
- Depth of the convective envelope, R_{CZ}

Standard Solar Model Solar neutrino spectra

Flux	B16-GS98	B16-AGSS09met	Solar^{a}
$\Phi(pp)$	$5.98(1 \pm 0.006)$	$6.03(1 \pm 0.005)$	$5.971_{(1-0.005)}^{(1+0.006)}$
$\Phi(\mathrm{pep})$	$1.44(1 \pm 0.01)$	$1.46(1 \pm 0.009)$	$1.448(1 \pm 0.009)$
$\Phi(hep)$	$7.98(1 \pm 0.30)$	$8.25(1 \pm 0.30)$	$19^{(1+0.63)}_{(1-0.47)}$
$\Phi(^7\text{Be})$	$4.93(1 \pm 0.06)$	$4.50(1 \pm 0.06)$	$4.80^{(1+0.050)}_{(1-0.046)}$
$\Phi(^{8}B)$	$5.46(1 \pm 0.12)$	$4.50(1 \pm 0.12)$	$5.16^{(1+0.025)}_{(1-0.017)}$
$\Phi(^{13}N)$	$2.78(1 \pm 0.15)$	$2.04(1 \pm 0.14)$	≤ 13.7
$\Phi(^{15}O)$	$2.05(1 \pm 0.17)$	$1.44(1 \pm 0.16)$	≤ 2.8
$\Phi(^{17}\mathrm{F})$	$5.29(1 \pm 0.20)$	$3.26(1 \pm 0.18)$	≤ 85

Table 6. Model and solar neutrino fluxes. Units are: 10^{10} (pp), 10^9 (⁷Be), 10^8 (pep, ¹³N, ¹⁵O), 10^6 (⁸B, ¹⁷F) and 10^3 (hep) cm⁻²s⁻¹. ^aSolar values from Bergström et al. (2016).

Standard Solar Model

Internal structure

Standard Solar Model Neutrino production

$$ppI \begin{cases} p+p \rightarrow^{2}H + e^{+} + v_{e} + \gamma \\ {}^{2}H + p \rightarrow^{3}He + \gamma \\ {}^{3}He + {}^{3}He \rightarrow^{4}He + 2p + \gamma \end{cases}$$

Distribution of neutrino fluxes $\frac{d(Flux)}{d(R/R_{\odot})} = N_F 4\pi r^2 \rho \phi$

Standard Solar Model Neutrino production

$$\xrightarrow{12} C + p \rightarrow^{13} N + \gamma$$

$$\xrightarrow{13} N \rightarrow^{13} C + e^{+} + \nu_{e} + \gamma$$

$$CN-cycle^{13} C + p \rightarrow^{14} N + \gamma$$

$$\xrightarrow{14} N + p \rightarrow^{15} O + \gamma$$

$$\xrightarrow{15} O \rightarrow^{15} N + e^{+} + \nu_{e} + \gamma$$

$$\xrightarrow{15} N + p \rightarrow^{12} C + {}^{4} He + \gamma$$

$$\xrightarrow{15} C+N (+O) = Const.$$

Standard Solar Model Solar neutrinos and matter effects

in different matter potentials

The Sun as a pulsating star - Overview of Helioseismology 1/4

- Discovery of oscillations: Leighton et al. (1962)
- Sun oscillates in $> 10^5$ eigenmodes
- Frequencies of order mHz (5-min oscillations)
- Individual modes characterized by radial *n*, angular *l* and longitudinal *m* numbers

The Sun as a pulsating star - Overview of Helioseismology 2/4

- Doppler observations of spectral lines: velocities of a few cm/s are measured
- Differences in the frequencies of order μ Hz: very long observations are needed. BiSON network (low-*l* modes) has data collected for ~ 5000 days
- Relative accuracy in frequencies 10⁻⁵

The Sun as a pulsating star - Overview of Helioseismology 3/4

Solar oscillations are acoustic waves (p-modes, pressure is the restoring force) stochastically excited by convective motions
Outer turning-point located close to temperature inversion layer. Inner turning-point varies, strongly depends on *l* (centrifugal barrier)

Credit: Jørgen Christensen-Dalsgaard

The Sun as a pulsating star - Overview of Helioseismology 4/4

- Oscillation frequencies depend on ρ , P, g, c
- Inversion problem: using measured frequencies and from a reference solar model determine solar structure

$$\frac{\delta\omega_i}{\omega_i} = \int K^i_{c^2,\rho}(r) \frac{\delta c^2}{c^2}(r) dr + \int K^i_{\rho,c^2}(r) \frac{\delta\rho}{\rho}(r) dr + F_{surf}(\omega_i)$$

Output of inversion procedure: $\delta c^2(\mathbf{r})$, $\delta \rho(\mathbf{r})$, R_{CZ} , Y_{SURF}

Relative difference of *c* between Sun and BP00

Standard Solar Model Helioseismology

Solar Abundances Problem

 $\frac{\langle \delta \rangle}{\langle \delta \rangle}$ Best determinations of solar abundances $\alpha_{\rm II}$ lead so a wrong beating solar model $\gamma_{\rm II}$

	B16-GS98	B16-AGSS09met	Solar
$Y_{ m S}$	0.2426 ± 0.0059	0.2317 ± 0.0059	0.2485 ± 0.0035
$R_{\rm CZ}/{ m R}_{\odot}$	0.7116 ± 0.0048	0.7223 ± 0.0053	0.713 ± 0.001
$\langle \delta c/c \rangle$	$0.0005\substack{+0.0006\\-0.0002}$	$\textbf{0.0021} \pm \textbf{0.001}$	0^a
α_{MLT}	2.18 ± 0.05	2.11 ± 0.05	-
$Y_{\rm ini}$	0.2718 ± 0.0056	0.2613 ± 0.0055	-
Z_{ini}	0.0187 ± 0.0013	0.0149 ± 0.0009	-
$Z_{\rm S}$	0.0170 ± 0.0012	0.0134 ± 0.0008	-
$Y_{\rm C}$	0.6328 ± 0.0053	$\textbf{0.6217} \pm 0.0062$	-
$Z_{\mathbf{C}}$	0.0200 ± 0.0014	$\textbf{0.0159} \pm 0.0010$	-

PROGRAM: 2 LECTURES

First Lecture

IA) How does the Sun shine? A few stories and heroes (before 1989)

IB) Standard Solar Models (quick tour by A. Serenelli)

IC) Solar Neutrino fluxes at the Earth

Second Lecture

2D) How does the Sun shine? A few stories and heroes I (after 1989)

2E) Solar Neutrino Experiments and Lessons in Neutrino Physics

2F) Roadmap of future solar neutrino research