

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Neutrino Interactions

Minerba Betancourt International Neutrino Summer School 2018 May 29 2018

South Pole Recap

- Cons
 - Temperature
 - Isolation
 - Weather
- Pros
 - Only one, but very big one
 - Technically nothing can go south over there which makes it perfect for science and experiments!

milab

Recap

- Yesterday we reviewed:
 - The different neutrino interactions
 - The Importance of neutrino interactions
 - Some of the challenges for cross section measurements
 - Looked examples of nuclear effects
 - Reviewed some techniques to constraint the flux

🚰 Fermilab

Outline

- Building cross section measurements
 - Event selection
 - Signal and backgrounds
 - Unfolding
 - Efficiency correction
 - Systematics
 - Extracting the cross section

Example: Measuring Differential Cross Section

- Let's review a measurement from the MINERvA experiment as an example
- We already talk about flux, number of target and number of neutrino interactions, let's review the other components

- The neutrino flux is hard to calculate and an important source of systematic uncertainty
- We have a prediction for the flux with uncertainties about ~8%

MINERvA Experiment

Design, calibration, and performance of the MINER

Nuclear Inst. and Methods in Physics Research, A, Volume 743, 11 April 2014, Pages 130-159

Selected Events

 $\left(\frac{d\sigma}{dx}\right)_{\alpha} = \frac{\sum_{j} U_{j\alpha} \left(N_{data,j} - N_{data,j}^{onga}\right)}{A_{\alpha}(\Phi T)(\Delta x)}$

- We make a selection based on the topology of the event
- But all we can measure is how energy is deposited in the detector
- We use our physics knowledge to infer what patterns of energy deposition correspond to our process, but it's not easy
 - Different processes can produce the same final state particles
 - Different initial interactions can produce the same final state particles
 - Some particles or configurations are difficult to detect (examples: neutral particles, two particles traveling right on top of one another)
- Even after our selection cuts, we have some background events that pass the cuts
- In the case of Quasi-Elastic scattering, what are we looking for in the detector?

Signal and Background

- Signal event: an event that denote the state of what the underlying $f(\Phi x)$ is To $k_{ing,j}^{bkgd}$ regardless of whether we manage to $(\overline{d_{ex}} t)$ the underlying $f(\Phi x)$ Δx
- Background event: is an event that passes our analysis cuts, but which is not actually

 a true signal event. These events mimic our signal

the resonance interactions produce pions, but these can be eus (final-state interactions), faking the signal

Simulations

• We use Monte Carlo simulations (GENIE) for the analysis

Neutrino Interaction Simulation `steps'

Costas Andreopoulos, Rutherford Appleton Lab.

gy and Q² Reconst

Background Prediction

 $\left(\frac{d\sigma}{dx}\right)_{\alpha} = \frac{\sum_{j} U_{j\alpha} \left(N_{data,j} - N_{data,j}^{ongu}\right)}{A_{\alpha}(\Phi T)(\Delta x)}$

Fermilab

- We know the Monte Carlo models do not reproduce the real data
- Data is used to constrain the backgrounds
- Data driven background fit methods can reduce model-dependence
- An example from a MINERvA background constraint:
 - Taking the shape of the signal and background distributions in the Monte Carlo simulation
 - The relative weights of each of these distributions are varied until we get the combination that best matches the shape of the data
- Looking at the sideband region helps us to constrain the background in the signal region

Background

- Background are very important part of the analysis
- This part of the analysis is where we spend most time in many analyzes
- To compute any cross section we need to remove the background
- Our simulation has some predictions for the background, can we just subtract the background?
- Remove the background as much as possible and we must constrain the remaining background

Background Subtraction

 $\left(\frac{d\sigma}{dx}\right)_{\alpha} = \frac{\sum_{j} U_{j\alpha} \left(N_{data,j} - N_{data,j}^{okga}\right)}{A_{\alpha}(\Phi T)(\Delta x)}$

 After the background is constrained with data, we subtract the predicted background contribution from each bin of the desire quantity we want to measure

After background subtraction

Cheryl Patrick, MINERvA 101

Cheryl Patrick, MINERvA 101

Cheryl Patrick, MINERvA 101

• To get the unsmearing matrix U, we must invert the migration matrix

Cheryl Patrick, MINERvA 101

Efficiency Correction

$$\left(\frac{d\sigma}{dx}\right)_{\alpha} = \frac{\sum_{j} U_{j\alpha} (N_{data,j} - N_{data,j}^{bkgd})}{A_{\alpha} (\Phi T) (\Delta x)}$$

- A measure of how often we select signal events
- Inefficiency comes from reconstruction and detector geometry

Efficiency Correction

$$\left(\frac{d\sigma}{dx}\right)_{\alpha} = \frac{\sum_{j} U_{j\alpha}(N_{data,j} - N_{data,j}^{bkgd})}{A_{\alpha}(\Phi T)(\Delta x)}$$

• Unfolded distributions are normalized by efficiency, flux and proton number to produce final cross section

Systematic Uncertainties

Phys. Rev. Lett. 111, 022501 (2013)

Phys. Rev. Lett. 111, 022502 (2013)

The data most prefer an empirical model that attempt scattering to neutrino-nucleus scattering

CCQE Signal Definitions

- Old CCQE measurements:
 - Signal is defined as an event in which the primary interaction is quasi-elastic (regardless of the final state particles)
 - Incoming (anti) neutrino energy between 1.5 and 10 GeV
- New definition for future CCQE measurements:
 - Signal is defined as CCQE-like, no pions in the final state
 - No cut on the neutrino energy
- Why do we change the definitions? CCQE-like is more clearly defined from an experimental point of view, depends less on the models

CC0pi Neutrino Event Selection and Signal Definition

- New Selection requires a cut on non-vertex recoil energy, events above 0,5 GeV are removed
- Track pions and protons; select events based on particle identification
- Look for Michel electrons at later time to remove events with pi+

• Signal definition:

- QE-like: defined by particles exiting the nucleus
- Any number of nucleons of all energy
- No pions, heavy baryons etc
- Additional constraint: muon angle <20 degrees because of the MINERvA-MINOS acceptance

Muon Transverse/Longitudinal Momentum vs Q²/E_v

- Decide what to measure:
 - Observables with less model dependence as possible

Minerba Betancourt 27

Cheryl Patrick's PhD thesis

CC0pi using the Proton Kinematics

- Q^2 is reconstructed using the leading proton from the event (different from the muon kinematic Q^2)
- Using the QE hypothesis and assuming scattering from a free nucleon at rest

$$Q^{2} = (M')^{2} - M_{p}^{2} + 2M'(T_{p} + M_{p} - M')$$

• Measurement: differential cross section as a function of the proton Q^2

Signal (CCQE-like):

Events with one muon, no pions and at least one proton with momentum> 450 MeV/c

CC0pi measurement on scintillator Phys. Rev. D. 91, 071301, 2015 CC0pi new measurements on Iron, lead and Carbon arXiv:1705.03791

Proton information allows to test FSI models

Reconstructed Muon Q² vs Proton Q² (Plastic)

 Comparing the Q² reconstructed from muon kinematics and the Q² reconstructed from proton kinematics

• Q² from proton kinematics is affected by final state interactions

Another Example for background constraints

- Multi SideBand Technique to constrain the background
- Q^2 is reconstructed using the leading proton from the muon kinematic Q^2)
- Using the QE hypothesis and assuming scattering from

$$Q^{2} = (M')^{2} - M_{p}^{2} + 2M'(T_{p} + M_{p} - M')$$

• Select four consecutive sidebands outside of the signal region

30

Different SideBands

• For each sideband, extract weights that force the data and simulation to match perfectly

Background factors for each sideband

Extracting the factors

- Take all the sidebands from one bin of Q^2 and make a fit to straight line
- The fit extracts scale factors simultaneously for RES and DIS

Background Scale Factors

- Extracting scale factors for each bin of Q^2

 Example of the scale factors we apply to the simulation before the background subtraction
 Fermilab

Effect of 2p2h and RPA

 Comparisons of differential cross sections with different simulations no 2p2h, 2p2h, and 2p2h+RPA

- There is an A dependence in the 2p2h model
- Most of the RPA suppression is below the proton threshold 450 MeV

Comparing with Generators (GENIE vs NuWro)

Data prefers the simulation with final state interactions

🚰 Fermilab

The A dependence in NuWro seems to be more favored by the data

$W(q_0, \mathbf{q})$ Identification of Multinucleon Effects

- Inclusive CC doub
 - q₀ is calorimetric Nucleus

on in q_0 and q_3

 $H_{adr_{O}n_{S}}$ is the three momentum transfer

is the four momentum transfer squared

$$- p_{\mu} \cos heta_{\mu}) - M_{\mu}^2 \qquad E$$

$$\mathsf{E}_{
u}=\mathsf{E}_{\mu}+q_{0}$$
 $q_{3}\equiv|\mathbf{q}|=\sqrt{Q^{2}+q_{0}^{2}}$

W(Prongelectron scattering

Similar measurement for neutrinos using the hadronic system and the lepton

Nuclear Effects at low Three Momentum Transfer

• Default nuclear model struggles to explain data

GENIE π production modified

Including more sophisticated nuclear models: (2p2h effects and RPA (a charge screening effect))
 GENIE π production modified
 0.20 < Reco. q₃/GeV < 0.30
 0.30 < Reco. q₃/GeV < 0.40

As an example of final state interaction effects, let's review a couple of examples from pion production

Charged current pion production

Charged pion production

 $\nu_{\mu} + \mathrm{CH} \rightarrow \mu^{-} + n\pi^{\pm} + X$

Neutral Pion production

 $\bar{\nu}_{\mu} + \mathrm{CH} \rightarrow \mu^{+} + \pi^{0} + X'$

 $E_{\nu} = E_{\mu} + E_{H} (E_{H} \text{ determined calorimetrically})$ $Q^{2} = 2E_{\nu}(E_{\mu} - p_{\mu}\cos(\theta_{\mu\nu})) - m_{\mu}^{2}$ $W_{exp}^{2} = -Q^{2} + m_{N}^{2} + 2m_{N}E_{H} (m_{N} \text{ nucleon mass})$ $W_{gen} : W_{exp} \text{ w/o the assumption of a nucleon at rest}$

Phys.Rev. D94 (2016) no.5, 052005

Differential Cross Section as a Function of Q²

Shape comparisons

Coherent Pion Production by Neutrinos

- In 1978 the Aachen-Padova measured the v+A→v+A+ π^0 for the first time
- In 1782 the coherent production of a π⁰ in a neutrino interaction was proposed by D. Rein and L. Sehgal (Nucl. Pays. B223. 1983)

Coherent Pion Production Previous Measurements

SciBooNE experiment (CH) $\langle E_v \rangle = 1.1 \text{ GeV}, 2.2 \text{ GeV}$

Coherent Pion Production at MINERvA

• Two final state particles μ^{\mp} + π^{\pm}

∓2**⊥**

$$E_{\nu} = E_{\mu} + E_{\pi}$$

$$Q^{2} = 2E_{\nu}(E_{\mu} - P_{\mu}\cos\theta_{\mu}) - m_{\mu}^{2}$$

$$|t| = -Q^{2} - 2(E_{\pi}^{2} + E_{\nu}p_{\pi}\cos\theta_{\pi} - p_{\mu}p_{\pi}\cos\theta_{\mu\pi}) + m_{\pi}^{2}$$

COH

QE

RES W<1.4

1.4<W<2.0

250

1.4<W<2.0

W> 2.0 Other

300

W> 2.0

Other

🛟 Fermilab

Coherent Pion Production by Neutrinos

Present and Future

- We have several experiments studying different neutrino interactions and making precise cross section measurements
 - MINERvA, T2K, NOvA, MiniBooNE, ArgoNeut NOMAD and others..
- Future neutrino oscillation experiment (DUNE) will use new detector technology
 - New targets made of liquid argon
- Several experiments in the lab are leading the effort for the liquid argon (MicroBooNE, SBND and ICARUS)

Charged current candidate from MicrooBooNE

Next From MINERvA

- Measurements of quasi-elastic, pion production, DIS and inclusive on iron, lead and carbon using the NuMI medium energy beam yielding high statistics
- Measurements of nuclear effects for quasi-elastic and pion production with high statistics

Ongoing Effort with LAr

- Short-baseline neutrino program at Fermilab:
 - Search for a fourth type of neutrino (sterile neutrino)
 - Measure cross sections on liquid argon
- Three LAr Time Projection Chamber (TPC) detectors at different locations

- Liquid argon has excellent resolution for final state
 - Provide sample of events with multiple nucleons

Summary

- Some cross section measurements are challenging because nuclear effects are not easy to disentangle
- We need to understand the interplay between nuclear effects and cross sections in neutrino nucleus interactions
- However, cross sections are very important, since they help us perfect the nuclear model we have in our event generator (GENIE)
- The nuclear model is essential to transfer information from the near detector to the far detector in oscillation experiment
- Understanding the neutrino interactions with nuclei is vital for precision oscillation measurements

