

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Neutrino Interactions

Minerba Betancourt International Neutrino Summer School 2018 May 28 2018

Outline

- History and Introduction
- Neutrino beam
- Neutrino interactions and neutrino cross sections
- Ingredients to compute cross sections
 - Flux

How did we discover neutrinos?

- Radioactivity: Nucleus emits particle due to nuclear instability
- While studying the beta decay, the energy did not seem to be conserved in beta decay?
 - We know energy is always conserved
 - Energy can neither be created nor destroyed only can be transformed into a different form
- In 1930, Pauli postulated the neutrino

Dear Radioactive Ladies and Gentlemen,

I have done a terrible thing.

I have postulated a particle that cannot be detected

The Discovery of Anti-Neutrino (1956)

- Artificially produced neutrinos from nuclear reactors
 - Emits around 10 trillion anti-neutrinos per cm²/s
- Inverse Beta decay

$$\bar{\nu}_e + p \rightarrow e^+ + n$$

1995 Nobel Prize

The Solar Neutrino Problem (1968)

- Nuclear reactions in the core of the sun produce Ve
- In 1968, Ray Davis's HomeStake experiment measured the Ve that arrives at earth using a huge tank of cleaning fluid solar neutrino+chlorine atom->electron+argon atom

Cleaning fluid

2002 Nobel Prize

• Davis published the first results indicating that only 1/3 of the neutrinos were observed, i.e. the solar neutrino problem

Another Interaction Neutral Current

- In 1973 first example of NC observed at Gargamelle bubble chamber filled with freon
 - 700,000 pictures!

Other Neutrino Flavors

- In 1988 the muon neutrino was discovered at Nacional de Brookhaven lab
 - The first accelerator neutrino beam (5GeV protons on Be target)

• In 2000, the third neutrino (tau neutrino) was discovered at DONUT (Fermilab).

The Atmospheric Neutrino Anomaly

- Cosmic rays hit the earth isotropically
- People expected:

 $\frac{\Phi_{\nu_{\mu}}(Up)}{\Phi_{\nu_{\mu}}(Down)} = 1$

 However, Super-Kamiokande found

 $\frac{\Phi_{\nu_{\mu}}(Up)}{\Phi_{\nu_{\mu}}(Down)} = 0.54 \pm 0.04$

neutrino oscillation

cost

ATMOSPHERIC NEUTRINOS

cost

Standard Model Neutrino Interactions

• Lagrangian for electroweak interactions:

$$L_{\text{int}} = i \frac{g}{\sqrt{2}} \Big[j_{\mu}^{(+)} W^{\mu} + j_{\mu}^{(-)} W^{\mu+} \Big] + i \Big[g \cos \theta_W j_{\mu}^{(3)} - g' \sin \theta_W j_{\mu}^{(Y/2)} \Big] Z^{\mu} + i \Big[g \sin \theta_W j_{\mu}^{(3)} + g' \cos \theta_W j_{\mu}^{(Y/2)} \Big] A^{\mu}$$

- First term: charged current interactions (W⁺,W⁻ exchange)
- Second term: neutral current interactions (Z⁰ exchange)
- Third term: electromagnetic interactions (photon exchange)
- Electron charge: $e = g \sin \theta_W = g' \cos \theta_W$

Neutrinos only couple to W and Z^0

Charged Current (CC) interactions

via a W-boson

Neutral Current (NC) interactions via a Z-boson

Different Neutrino Sources

• Different neutrino sources determine the range of energies

- Few GeV energy range neutrinos are very important for accelerator neutrino oscillations
- Reviewing a few neutrino interactions relevant to neutrino oscillation at the few GeV region

🚰 Fermilab

07/07/16

How to make a neutrino beam

Neutrinos From Accelerators

• A beam of protons interact with a target and produce pions and kaons

- Focusing system (2 horns, with current, emitting B field)
- Decay region (large pipe, filled with helium)
- Monitors and absorbers
- Neutrino beam produces mainly ν_{μ} and a small component of ν_{e}

Addressing the Remaining Questions

- Is there CP violation in the lepton sector
- What is the mass hierarchy? (sign of Δm_{32}^2)

 $P[\nu_{\mu} \rightarrow \nu_{e}] \neq P[\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}]$?

- Use simulations to extrapolate from near detector to far detector $\sigma_{\nu\mu} {\longrightarrow} > \sigma_{\nu e}$
- We definitely need a nuclear model to convert from produced to detected energy spectra and topologies in the near and the far detectors
- This illustrates the significance of precise knowledge of neutrino interactions physics needed for oscillation studies

Long-baseline Experiments: What can we learn?

- Use a high intensity beam of neutrinos from Fermilab
- Construct detectors at far locations: MINOS+ at 735 Km (ended data-taking), NOvA at 810 km (taking data) and DUNE at 1300 km (in design)

$$P[\nu_{\mu} \rightarrow \nu_{e}] \neq P[\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}] ?$$

The NOMAD detector [29] consisted of an active target of 44 drift chambers with a total fiducial mass of 2.7 tons, located in a 0.4 Tesla dipole magnetic field as shown in Fig. 1. The $X \times Y \times Z$ total volume of the drift chambers is about $300 \times 300 \times 400$ cm³. Drift chambers [37], made of low Z material served

The MINERVA Experimonato Menerove

exper vears

of ne

Cross Section Experiments

- Modern neutrino experiments us
 - Different detector technologie:
 - Oxygen, carbon, iron, liquid ar
 - Different neutrino beams
- Common goal for all the experin
 - Study neutrino interactions

UAI Magnet

P0DECal

Barrel ECal

Downstream

ECal

Design, calibration, and performance of the MINERvA detector Nuclear Inst. and Methods in Physics Research, A, Volume 743

T2K

Mir

Detector Technologies

07/07/16

Neutrino Energies for Different Experiments

Plot courtesy of Phil Rodrigues

Quasi-elastic scattering (QE)

Resonance production (RES)

Deep Inelastic scattering (DIS)

The neutrino scatters elastically off the nucleon ejecting a nucleon from the target

12/09/13 L ·· C ·

Т

Neutrino Cross Section

- What is the cross section?
 - A measure of the probability of an interaction occurring

Charged Current Interactions

Quasi-elastic scattering (QE)

20 Minerba Betancourt

07/07/16

🛟 Fermilab

In More Deta Model Comparisons Quas Ratio to GENIE Antineutrino Shape Only Jasi-MINER $vA \bullet \overline{v}$ Tracker \rightarrow CCQE 1.8 1 NuWro RFG M₄=1.35 data 1.6 GENIE RFG M_A=0.99 ----- NuWro RFG M_A=0.99 + TEM Ratio to GENIE Ratio to GENIE NuWro RFG M_A=0.99 — NuWro SF M_A=0.99 Muon ring at Super-K pproxima 1 1.4 in Super1.2 Image : T2K MINER 0 3.0 Events / .05 GeV² 0 0.6 0.4 2 R Patterson wine and cheese, NOvA v charged-current candidate Recor Events / .05 GeV² NuWro RFG RFG RFG \mathbf{SF} 0.8 +TEMModel 0.6

0.99

0.99

1.35

0.99

 M_A (GeV)

0.4

0.2

n<mark>alized</mark> POT

 M_A

Cross Section is one of the largest systematics

PRL 116, 181801 (2016)

PHYSICAL REVIEW LETTERS

week ending 6 MAY 2016

Measurement of Muon Antineutrino Oscillations with an Accelerator-Produced Off-Axis Beam

Cross section is one of the largest systematic uncertainties for oscillation experiments like T2K as an example

TABLE IV. Percentage change in the number of one-ring μ -like events before the oscillation fit from 1σ systematic parameter variations, assuming the oscillation parameters listed in Table III and that the antineutrino and neutrino oscillation parameters are identical.

Source of uncertainty (number of parameters)	$\delta n_{\rm SK}^{\rm exp}/n_{\rm SK}^{\rm exp}(\%)$
ND280-unconstrained cross section (6)	10.0
Flux and ND280-constrained cross section (31)	3.4
Super-Kamiokande detector systematics (6)	3.8
Pion FSI and reinteractions (6)	2.1
Total (49)	11.6

T2K's uncertainties, from PRL 116, 181801 (2016)

Another reason Why We Need to Understand Nuclear Effects

- Plus if the near and far detector are made of different materials, we need to worry about A dependence of nuclear effects
- For example, T2K uses near detector carbon measurements even though the far detector is made of water

T2K Near Detector

T2K Far Detector

Nuclear Effects

- Fermi motion: In a nucleus, the target nucleon has a momentum.
 Modeled as Fermi gas that fills up all available state until some Fermi momentum
- Pauli blocking: Pauli exclusion principle ensures that states cannot occupy states that are already filled
- Multi nucleon interactions
- Final state interactions

Example of Nuclear Effects (Final State Interaction)

• Final state interaction (FSI):

25

- Due to final state interactions, particles can interact with nucleons and pions can be absorbed before exiting the nucleus and other nucleons get knocked out

Example of Nuclear Effects (Final State Interactions)

clear effects modify the true/reco neutrino energy relationship and final-state ticle kinematics

Example of Nuclear Effects (multi-nucleon interaction)[2p2h]

 Nuclear effects modify the neutrino energy, for example multi-nucleon interactions (Meson exchange current or short range correlations)

nucleons

Fermilab

- The resulting di-nucleon pair undergoes final state interaction and produce low energy protons and neutrons which we do not detect well
- Multi-nucleon processes smear the reconstructed neutrino energy

Vμ

- Solid lines: multi nucleon contributions
- Dashed lines: genuine CCQE events

Neutrino Interactions

- We do not know:
 - Initial state bound nucleon momenta
 - Bound nucleon cross section
 - Multi-nucleon correlated states
 - Final state interactions
- Several challenges from the theoretical model side and experimental side to understand neutrino interactions

The University of Chicago¹, Fermilab², University of Minne

 $(\frac{u}{4})^{2}$

Elastic Scattering

ormalism:

$$\frac{Q^{2}}{4M^{2}}F_{A}^{2} - (1 - \frac{Q^{2}}{4M^{2}}) \frac{Q^{2}}{4M^{2}} + \frac{Q^{2}}{4M^{2}}(1 - \frac{Q^{2}}{4M^{2}})(\xi F_{2})^{2} + \frac{Q^{2}}{M^{2}}(1 + \frac{Q^{2}}{4M^{2}})(F_{A}^{3})^{2} + \frac{Q^{2}}{M^{2}} + \frac{Q^{2}}{4M^{2}})(F_{A}^{3})^{2} + F_{P}^{2}) + F_{A}^{2} + F_{A}^{2} + 2F_{P}|^{2} - 4(1 + \frac{Q^{2}}{4M^{2}})((F_{V}^{3})^{2} + F_{P}^{2})] + F_{2}^{2} + \frac{M^{2}}{M^{2}}Re\left[(F_{1} - \tau\xi F_{2})F_{V}^{3*} - (F_{A}^{*} - \frac{Q^{2}}{2M^{2}}F_{P})F_{A}^{3})\right] + \frac{1}{4}\left\{F_{A}^{2} + F_{1}^{2} + \tau(\xi F_{2})^{2} + \frac{Q^{2}}{M^{2}}(F_{A}^{3})^{2}\right\}$$

ely, there are just 6 Fam
$$F_A(0)$$

 $(1 - \frac{q^2}{M_A^2})^2$

1 Smith, C.H., 1972, Phys. Rep. C3, 261.

Ge VAR hyexpans periments suchnase K2K, SviBar and MINOS find similar

12

Fittin

malism • We perform a j FNAL 1983 deu **Expansion** axial f C depend on the • Each data set is As discussed in the Introduction, Deuterium¹ ngs. The dipole

30 nstrained from neutron m_A 7 • • • 'en the introduction, ax e Introduction, an expansio¹⁰ r_{A} , V1a 5 28, R1 (2002)

¹ the NOMAD active target is nearly isoscalar $(n_n : n_p = 47.56\% : 52.43\%)$ and consists mainly of Carbon; a detailed de-

Axial Form Factor

- A model independent description of the axial form factor called z-expansion is derived in Phys. Rev. D84 (2011)
- The form factor can be expressed as a power series of a new variable z

$$F_A(q^2) = \sum_{k=0}^{k_{\max}} a_k z(q^2)^k$$

- where the expansion coefficients a_k are dimensionless numbers representing nucleon structure information $\frac{\times 10^{-39}}{\times 10^{-39}}$
- Derived from first principles of QCD
- Extensively used in meson decay

🚰 Fermilab

Including multi nucleon Interactions (2p2h)

 Inclusion of the multi nucleon emission channel (np-nn) gives better agreement with data
 An explanation of this puzzle

An explanation of this puzzle

Minerba Betancourt

06/17/15

🚰 Fermilab

Including Random Phase Approximation (RPA)

- Analogous to screening of electric charge in a dielectric
- For neutrino scattering in a nucleus, imagine the W as having a weak charge and polarizing the nuclear medium
- Calculated using Random phase approximation (RPA), PRC 70, 055503 (2004)
- Suppress cross sections at low four momentum transfer Q²

Double Differential Cross Section (Neutrinos)

• Muon longitudinal $P_{Z_{\mu}}$ and transverse momentum $P_{T_{\mu}}$ are measurable quantities $\frac{d^{2}\sigma}{dP_{T_{\mu}}dP_{Z_{\mu}}} \qquad \widehat{\mathbf{g}}$

Resonance Production

- Next important channel for neutrino oscillation and increasing the W toward the QCD list
- Most experiments use the Rein-Sehgal model for resonance production
 - More recent models by M. Athat, Salamanca-Valencia, M. Pascos

Old bubble chamber deuterium data

Recent reanalysis of deuterium data finds consistency between ANL and BNL

Callum Wilkinson, et al., Phys. Rev. C70(2004) 055503

🚰 Fermilab

Pion Production and Final State Interactions

- MINERvA has measured pion π^+ and π^0 production
- Both prefer slightly softer pions than GENIE's final state cascade model predicts

Comparing MINERvA and MiniBooNE measurements

- No models describe all data sets well
 - MiniBooNE <E>~1 GeV: best theory models (GIBUU) strongly disagree in shape
 - MINERvA <E>=4 GeV: Event generator has shape but not magnitude

Neutrino Deep-Inelastic Scattering

- Deep inelastic neutrino-nucleon scattering reactions have large q2 (q²>>m²_N, $E_{v}>>m_{N}$) $v_{l}(p)+N \rightarrow l^{-}(p')+X$
- Quark-Pardon model valid due to asymptotic freedom of QCD, which makes quarks behave as free point-like particles
- Using Mandelstam variables in DIS

$$s = (p + p_N)^2 \approx 2ME_v = 2ME$$

$$Q^2 = -q^2 = -(p + p')^2 = 4EE' \sin^2 \frac{\theta}{2}$$

$$W^2 = E_X^2 - p_X^2 = -Q^2 + 2Mv + M^2$$

$$v = \frac{q \cdot p_N}{M} = E - E'$$

$$x = \frac{-q^2}{2q \cdot p_N} = \frac{Q^2}{2M\nu}$$
$$y = \frac{q \cdot p_N}{p \cdot p_N} = \frac{\nu}{E} = \frac{Q^2}{2MEx}$$

Neutrino Deep Inelastic Scattering

• Scattering off protons

$$\frac{d\sigma_{cc}(v_{\mu}p)}{dxdy} = \frac{G_{F}^{2}ME}{\pi} 2x \left\{ \left[d(x) + s(x) \right] + \left[\overline{u}(x) + \overline{c}(x) \right] (1-y)^{2} \right\} \\ \frac{d\sigma_{cc}(v_{\mu}p)}{dxdy} = \frac{G_{F}^{2}ME}{\pi} 2x \left\{ \left[u(x) + c(x) \right] (1-y)^{2} + \left[\overline{d}(x) + \overline{s}(x) \right] \right\}$$

• Structure functions

$$F_{2}^{\nu p}(x) = 2x[d(x) + \bar{u}(x) + s(x) + \bar{c}(x)]$$

$$xF_{3}^{\nu p}(x) = 2x[d(x) - \bar{u}(x) + s(x) - \bar{c}(x)]$$

$$F_{2}^{\bar{\nu}p}(x) = 2x[u(x) + c(x) + \bar{d}(x) + \bar{s}(x)]$$

$$xF_{3}^{\bar{\nu}p}(x) = 2x[u(x) + c(x) - \bar{d}(x) - \bar{s}(x)]$$

• Neutron (isospin symmetry)

$$F_{2}^{\nu n}(x) = 2x [u(x) + \overline{d}(x) + s(x) + \overline{c}(x)]$$

$$xF_{3}^{\nu n}(x) = 2x [u(x) - \overline{d}(x) + s(x) - \overline{c}(x)]$$

DIS Scattering Data

- NuTeV experiment at Fermilab studied DIS scattering
- NuTeV collected over 3 million event 20 GeV<E<400 GeV

F2 measurement on Iron

- Data agrees with charge lepton data for x<0.5
- NuTeV F2 and xF3 agrees with theory for medium x
 - At low x different Q2 dependence
 - At high x (x>0.6) NuTeV is systematically higher

Deep Inelastic From MINERvA

- MINERvA produced deep inelastic ratios from nuclear targets to study x dependent nuclear effects
- We have a x range from the low x shadowing region through the EMC region
- The simulation used in the analysis assumes the same x-dependent nuclear effects for C, Fe and Pb based on charged lepton scattering

The data suggest additional nuclear shadowing in the lowest x bin (0 < x < 0.1) than predicted in lead, it is at a value of x and Q2 where shadowing is not normally found in charged lepton nucleus scattering

🏞 Fermilab

002005/65

In the MEC region (0.3<x<0.75), we see good agreement between data and simulation

•

Neutrino Cross Section

 Let's concentrate on each of the ingredients to compute the cross section

- Neutrino Flux
 - Considering the procedure from MINERvA experiment as an example

Fermilab

07/07/16

Hadronic Cascade in the Target

- The primary beam interactions in the target: proton on carbon
- Secondary and tertiary interactions in the target: proton, pion, kaon, etc
- Interaction outside of the target: proton, pion, kaon on aluminum, iron, helium, etc

Parents for electron neutrino

Hadronic Cascade in the Target

- These interactions are non-perturbative QCD
- The simulation uses a model
 - MINERvA uses geant4.2.p03 and FTFP_BERT as hadronic model

Big discrepancies between predictions from hadronic models

What are the sources for the Systematic Uncertainties?

• Focusing Uncertainties

A current is pulsed through two aluminum horns to create a toroidal magnetic field

• Hadronic interactions:

	Particle production	X _F	Reference
NA49 pC @158 GeV	π^{\pm}	<0.5	Eur.Phys.J. C49 (2007) 897
	K±	<0.2	G. Tinti Ph.D. thesis
	р	<0.9	Eur.Phys.J. C73 (2013) 2364

Neutrino Energy (GeV)

How do we use Data to Correct the simulations?

• A weight is applied to the v based on its hadronic interaction history

 $correction(x_F, p_T, E) = \frac{f_{Data}(x_F, p_T, E = 158GeV) \times scale(x_F, p_T, E)}{f_{MC}(x_F, p_T, E)}$

 $f(x_F, p_T) = E d^3\sigma/dp^3 =$ invariant production cross-section

Flux Prediction and Uncertainty

Low-v Technique

- Using charged-current scattering with lower hadronic recoil energy
- The v is the energy transferred to the recoil system: $v=E(neutrino)-E_{\mu}$
- In the limit of small V, the charged current cross section for neutrinos and antineutrinos is approximately constant

$$\frac{d\sigma}{dv} = A\left(1 + \frac{B}{A}\frac{v}{E} - \frac{C}{A}\frac{v^2}{E^2}\right)$$

- As $v/E \to 0$ $\frac{d\sigma}{dv} \to A$
- A measurement of the low-V interaction rate as a function of neutrino energy is equivalent to a measurement of the shape of the neutrino flux
- Technique used in different experiments
 - In 2006 NuTeV experiment used 5- 20GeV low-V cut (M.Tzanov at al. Phys. Rev. D74 012008)
 - in 2010 MINOS experiment used 3- 50GeV low-V cut (P.Adamson et al.) Phys. Rev. D 81,072002

Low-Nu Technique

• Neutrino flux from the low-v method

Constrained flux vs Low-nu

• Comparing with the flux constrained with hadron production data

Flux Constraint using Neutrino-Electron Scattering

• Well understood electroweak process

$$\frac{d\sigma(v_{\mu}e^{-} \rightarrow v_{\mu}e^{-})}{dy} = \frac{G_{F}^{2}m_{e}E_{v}}{2\pi} \left[\left(\frac{1}{2} - \sin^{2}\theta_{W}\right)^{2} + \sin^{4}\theta_{W}(1-y)^{2} \right]$$

 G_F and θ_W : well-known electroweak parameters

- Very small cross section (~1/2000 of nu-nucleon scattering)
- Very forward electron final state
 - Good angular forward electron final state
- Signal in MINERvA is a single electron moving in the beam direction

Signal and Backgrounds (Neutrino-Electron Scattering) at MINERvA

• Signal is a mixture of $v_{\mu}e^{-}, \overline{v_{\mu}}e^{-}, v_{e}e^{-}$ and $\overline{v_{e}}e^{-}$

• We cannot distinguish neutrino type

 $v_{\mu}e^{-}$ and $\overline{v}_{\mu}e^{-}:91\%$ $v_{e}e^{-}$ and $\overline{v}_{e}e^{-}:9\%$

Event Selection

• Using Mandelstam variables

 $t = \frac{s}{2} (1 - \cos \theta^*) \qquad y = -\frac{1}{2} (1 - \cos \theta^*) \quad \text{in CM frame} \implies t = -sy$ $u = -2E_v E_e (1 - \cos \theta) \quad \text{in lab frame}$

$$s + t = -u$$

$$s(1 - y) = 2E_v E_e (1 - \cos \theta)$$

$$2m_e (1 - y) = E_e \theta^2$$

Since $0 < y < 1$, $E_e \theta^2 < 2m_e$

- Neutrino interaction does not always produce only single electron or single photon from π^0
- Non-single particle activity affects dE/ dx

Results

• Electron neutrino events after background subtraction and efficiency correction:

$$123.8 \pm 17.0 \text{ (stat)} \pm 9.1 \text{ (sys)}$$

• Using data the flux is constrained

• The total uncertainty on the NuMi neutrino flux reduces from 9% to 6%

Neutrino Cross Section

• We reviewed some neutrino interactions and techniques to constraint the flux, tomorrow we will study in detail each step to compute the cross section

$$\sigma = \frac{N}{\phi T \epsilon}$$

