Reactor Neutrinos I: Physics

Patrick Huber

Center for Neutrino Physics – Virginia Tech

11th International Neutrino Summer School May 21 – June 1, 2018 Schloss Waldhausen, Mainz, Germany

P. Huber – VT CNP – p. 1

Enter – the neutrino

The neutrino was first proposed by Wolfgang Pauli

Physikalisches Institut der Eidg. Technischen Hochschule Zurich

Zirich, 4. Des. 1930 Oloriastrasse

Liebe Radioaktive Damen und Herren,

Wie der Ueberbringer dieser Zeilen, den ich huldvollst ansuhören bitte, Ihnen des näheren auseinandersetsen wird, bin ich angesichts der "falschen" Statistik der N- und Li-6 Kerne, sowie des kontinuierlichen beta-Spektrums auf einen versweifelten Ausweg verfallen um den "Wechselsats" (1) der Statistik und den Energiesats zu retten. Mämlich die Möglichkeit, es könnten elektrisch neutrale Teilchen, die ich Neutronen nennen will, in den Kernen existieren, welche den Spin 1/2 haben und das Ausschliessungsprinzip befolgen und sich von Lichtquanten zusserden noch dadurch unterscheiden, dass sie dent mit Lichtgeschwindigkeit laufen. Die Masse der Neutronen meste von derselben Grossenordnung wie die Elektronenmasse sein und edenfalls nicht grösser als 0,01 Protonermasse.- Das kontimuierliche Spektrum wäre dann verständlich unter der Annahme, dass beim bete Zerfall mit dem blektron jeweils noch ein Neutron emittiert Mirde derart, dass die Summe der Energien von Neutron und Elektron konstant ist.

He postulates a neutral, very light, spin 1/2 particle inside the nucleus.

What was the problem?

Beta decay 101

Fermi would take this idea and develop a first theory of beta decay (1934):

$$n \rightarrow p + e^- + \nu$$

or in a nuclear bound state

$$(Z,A) \to (Z+1,A) + e^- + \nu$$

Fermi's Golden Rule (invented for this problem) reads as, with O being the operator for weak interactions

$$\frac{dP}{dt} \propto \underbrace{\left|\left\langle\psi_{f}|\mathbf{O}|\psi_{i}\right\rangle\right|^{2}}_{\text{matrix element }\mathcal{H}_{fi} \text{ phase space density}} dE$$

Beta decay 101 – cont'd

$$d\Gamma = \int \frac{\mathbf{p}_e}{(2\pi)^3} \frac{\mathbf{p}_\nu}{(2\pi)^3} |\mathcal{H}_{fi}|^2 2\pi \delta(E_0 - E_e - E_\nu)$$

assuming $|\mathcal{H}_{fi}|^2$ is independent of momentum transfer this becomes for $m_{\nu} = 0$ and $M_N \to \infty$

$$d\Gamma = |\mathcal{H}_{fi}|^2 p_e E_e (E_0 - E_e)^2 dE_e$$

The electron wave function is not a plane wave, but an unbound solution of the hydrogen atom, yielding a correction term

$$|\psi_e(r=0)|^2 =: F(Z, E_e)$$

so called Fermi function.

Beta decay 101 – cont'd

Cleaning up our notation (and make it compatible with modern literature)

$$|\mathcal{H}_{fi}|^2 = F(Z, E_e) \frac{G_F^2 |V_{ud}|^2}{2\pi^3} |\mathcal{M}_{fi}|^2$$

Fermi used the solution to the relativistic, point-like, infinitely heavy hydrogen atom to compute $F(Z, E_e)$. $|\mathcal{M}_{fi}|^2$ incorporates all the nuclear bound state physics and the assumption that it is independent of momentum transfer implies that we approximate the nucleus as a point. Transitions for which this approximation is valid are called "allowed".

Beta decay 101 – cont'd

Now the lifetime is given by

$$\frac{1}{\tau} = \Gamma = \frac{G_F^2 |V_{ud}|^2}{2\pi^3} |\mathcal{M}_{fi}|^2$$
$$\int_{m_e}^{E_0} dE_e F(Z, E_e) p_e E_e (E_0 - E_e)^2$$
$$=: f(Z, E_0)$$

or

$$ft := \log 2f\tau = \frac{2\pi^3 \log 2}{G_F^2 |V_{ud}|^2} |\mathcal{M}_{fi}|^{-2}$$

The ft-value of more often $\log ft$ -value is a measure of the nuclear matrix element.

Inverse beta decay

Now that we can describe

 $n \rightarrow p + e^- + \nu$

what about the inverse beta decay

$$\nu + p \rightarrow n + e^+$$
?

Bethe and Peirls in 1934 estimate the cross section to be (neutron decay was not yet discovered!)

$$\sigma \simeq \frac{\hbar^3}{m^3 c^4 \tau} (E_{\nu}/mc^2)^2 \simeq E_{\nu}^2 \, 10^{-43} \, \mathrm{cm}^2$$

and conclude: "there is no practically possible way of observing the neutrino."

Avogadro's number

Using a cross section of around 10^{-42} cm²... We can get a factor 10^{24} from Avogadro's number but that still leaves us with 10^{18} neutrinos to see anything. Where do we get 10^{18} neutrinos?

 \rightarrow digression on nuclear fission

Physics of Fission

The amongenesis of our trip and and the sense originally used in their What is here executed in in one table two originally used in their separate recent, or insulation wors, a measurement recent, and a observatly laboratory.

Academicant accepts & Finishpannery & Markowski, Strangels, Barther & Strangels, Barther & Strangels, Strangel

<text>

N

Lab table of Otto Hahn and Fritz Strassmann Deutsches Museum, München, Germany

Discovery of Fission

In 1938 Hahn and Strassmann used slow neutrons to irradiate Natural uranium and found that this resulted in the production barium.

```
uranium (92 protons, 143 neutrons) + neutron
```

Hahn was a chemist and the chemistry of uranium and barium is sufficiently different that a mistake was basically excluded. Also there was no barium prior to irradation.

What had happened?

Liquid drop

The explanation was provided in 1939 by Lise Meitner and Otto Frisch

The uranium nucleus can be described as a charged, liquid drop of fixed volume and under certain conditions such a drop can lower its energy by splitting into two smaller drops.

Balance of energy

The energy of a liquid drop has various contributions, some are proportional to the volume, others to the surface etc.

All terms except for the asymmetry energy have an analog in classical mechanics.

energy release = number of nucleons x $\Delta E = 200 \times 1 \text{ MeV} =$ 200 MeV

For comparison chemical reactions release 10eV

Fission yields

Fission does not always produce the same two pieces, barium and krypton, instead it yields a range of fission fragments.

Many of these fission fragments are highly radioactive, like cesium-137 or strontium-90.

Most of them will have decayed away after 1,000-10,000 years.

Chain reaction

Later in 1939 Leo Szillard realized that if neutrons should be among the fission products a chain reaction might be possible – resulting in an exponetial increase in the number of fission with time.

Assuming that there are 2 neutrons per fission, each generation would have twice as many fissions as the previous one.

After 81 generations all uranium in 1kg would be fissioned!

Energy release

The energy released in the complete fission of 1kg of uranium

E=energy per fission x number or uranium atom in 1kg = 200 MeV x 2.5E23 = 8.2E13 J

For these very large quantities of energy another unit is

1 kiloton TNT equivalent (kt) = 4E12 J

The energy from fissioning 1kg uranium corresponds to 20kt this is as little as 1g converted to energy.

Fissile isotopes

We call an isotope fissile if it can sustain a nuclear chain reaction.

The most important fissile isotopes are

Isotope	235U	233U	239Pu	241Pu
Half-life	700 Million	160,000	24,000	14
	years	years	years	years
Natural abundance	0.72%	0%	0%	0%

Only 235U occurs naturally, all other fissile isotopes are man-made.

An isotope is called fissionable if it can be fissioned by a neutron of any energy. Many heavy isotopes are fissile, in particular, the naturally occuring 238U with an abundance of 99.28%.

Degrees of fissionable

To be fissile, the neutrons released in fission have to be able to cause another fission – which is true for 235U and 239Pu but not for 238U.

Two types of fission

A chain reaction can be sustained by either

- fast neutrons, which are directly released in fission
- thermal neutrons, which are fission neutrons which have been slowed down by interactions in the medium or moderated

Since the fission cross section is 100-1000 times larger for thermal neutrons, it should be easier to maintain a chain reaction that way.

Thermal fission x-sections

	227 <i>C</i> f	220 <i>01</i>	220.0f	240.Cf	241.05	242 <i>C</i> f	242 <i>C</i> f	24466	DAECE	DARCE	247.Cf	240 <i>C</i> f			243N)			
7	257 01	23001	25901	24001	24101	24201	24501	24401	24501	24601	247 01	24001	E(level)	Jπ 1	1/2 De	ecay Mode	es σ(n,F) (b) 🗾 🥄	Tooltips
2													0.0	(5/2-) 1.8	5 m 15 o-	100.000	4	1	On
	DDGD1.	00701	00001	DDOD1.	D 40 D1	D 44 D1-	D (D D).	D (D D).	D 4 4 D 1	D (CD)	D (CD)	D (70)	D 40 Die	D (OD)	P	. 100.00 9	00000	┛┖_┛	Off
	236BK	237BK	238BK	239BK	240BK	241BK	242BK	243BK	244BK	245BK	246BK	247BK	248BK	249BK	250BK	251BK	252BK		
																		Zoom	Uncertainty
																		1	NDS
	235Cm	236Cm	237Cm	238Cm	239Cm	240Cm	241Cm	242Cm	243Cm	244Cm	245Cm	246Cm	247Cm	248Cm	249Cm	250Cm	251Cm	2	Standard
96																		3	Screen
																		4	Size
	234Am	235Am	236Am	237Am	238Am	239Am	240Am	241Am	242Am	243Am	244Am	245Am	246Am	247Am	248Am	249Am		6	Narrow
																		7	Wide
									-					-				N	
	233Pu	234Pu	235Pu	236Pu	237Pu	238Pu	239Pu	240Pu	241Pu	242Pu	243Pu	244Pu	245Pu	246Pu	247Pu				
94																			go
						00711		00017	D 4037	D 4433	0.4037	D 4 D 1		D.4.537				t	barns
	232Np	233Np	234Np	235Np	236Np	237Np	238Np	239Np	240Np	241Np	242Np	243Np	244Np	245Np				1.49E	+4 5.00E-1
																		5.32E	+3 6.37E-2
	00477			0.0411	DOCT	DOGU	00711		DECIT	D.40TT	D. 4 A T	DADIT	D 4 011					6.78E	+2 2.27E-2
0.2	2310	2320	2330	2340	2350	2360	2370	2380	2390	2400	2410	2420	2430					2.42E	+2 8.12E-3
92																		8.64E	+1 2.89E-3
		0040-		0000-	0040-	005D-	0000	0070-	0000-	0000-	D 40 D-	D.44 D-						3.08E	+1 1.03E-3
	230Pa	231Pa	232Pa	233Pa	234Pa	235Pa	236Pa	237Pa	238Pa	239Pa	240Pa	241Pa						1.10E	+1 3.69E-4
																		1.40	4.70E-5
			0045	0000						0000	0000							5.00E	-1 1.67E-5
00	2291h	230Th	2317h	2321h	233Th	234Th	235Th	236Th	237Th	238Th	239Th								unknown
90																			
													454						
	139		141		143		145		147		149		151		153		N	4	81

Odd-mass nuclei have larger thermal fission cross-sections

Fast & furious

Fast fission is indeed fast and one generation in a fast chain reactions takes about 10ns or 100 generations take 1µs – this is the key to nuclear explosions.

Not every arbitrary small quantity of fissile material will explode, there is minium amount called a critical mass. If you have one critical mass each fission will cause exactly one new fission and the second neutron is lost through the surface of your material before it can cause a fission.

Critical mass

The critical mass is determined by a balance of neutron production through fission and neutron losses and thus sensitively depends on

- surface to volume ratio
- density
- the purity of the material
- presence of a neutron reflector
- fission cross section

The following table lists critical mass at the natural density of the pure isotope, for a bare sphere, i.e. without a neutron reflector

Isotope	235U	233U	239Pu	241Pu
Critical mass [kg]	52	15	10	12
Diameter [cm]	17	11	10	10.5

Nuclear explosives can be made with less than 1/2 of that quantity!

Moderation

For a thermal chain reaction the trick is to slow down fission neutrons by roughly a factor 1000 without losing them – this is achieved using a moderator.

The key to moderate neutrons is elastic scattering of neutrons, the closer the mass of the atoms in the moderator is to a neutron the more effective the moderator and the smaller is the risk to loose the neutron by absorption.

Good moderators are for example

- water
- heavy water
- graphite

They all can be made very pure so that they do not absorb neutrons and they are available in large quantities.

Moderating ratio

The logarithmic energy loss

$$\xi = \ln \frac{E_0}{E} = 1 + \frac{(A-1)^2}{2A} \ln \left(\frac{A-1}{A+1}\right)$$

The moderating ratio measures the ratio of energy loss length to neutron absorption length

Material	H2O	D2O	Helium	Beryllium	Boron	Carbon
ξ	0.927	0.510	0.427	0.207	0.171	0.158
Collisions to thermal	19	35	42	86	105	114
Moderating ratio	62	4830	51	126	1e-3	216

D2O and carbon (graphite) allow chain reactions using natural uranium

Controlled chain reaction

In a chain reaction sustained by thermal neutrons there are two features which allow to maintain a steady state reaction and which prevent explosions

```
no moderator = no fission since moderatored neutrons
                           are so much more efficient
                           in causing fissions, a loss
                           of moderator will end the chain
                           reaction.
                           A small number \sim 1\% of fission
delayed fission neutrons
                           neutrons are released with a delay
                           of ~1s. The trick is to keep the
                           number of fissions cause by prompt
                           neutrons just below critical and to
                           use the delayed ones to reach steady
                           state
```

More control

Beyond the inherent safety offered by moderation and delayed neutrons, in practice, one also adds movable neutron absorbers –

control rods

Control rods are made of materials with a very high absorption for thermal neutrons – cadmium and boron are common.

SCRAM - safety control rod axe man

Chicago Pile 1

Went critical at 3:25pm on Dec 2, 1942 on the campus of the University of Chicago and was shut down 28 min later.

The Italian Navigator was Enrico Fermi

Compton: The Italian navigator has landed in the New World Conant: How were the natives? Compton: Very friendly.

Was Fermi the first one?

About 2 billion years ago there was a natural nuclear reactor at Oklo (Gabon).

This was discovered in 1970s since uranium ore from there showed a reduced abundance of 235U – it was fissioned away.

Further reading

http://oklo.curtin.edu.au/

Highly recommended lasts about 15 minutes! http://www.youtube.com/watch?v=1E2GftlaSas

Neutrinos from fission

How many?

 $^{235}U + n \to X_1 + X_2 + 2n$

with average masses of X_1 of about A=94 and X_2 of about A=140. X_1 and X_2 have together 142 neutrons.

The stable nuclei with A=94 and A=140 are ${}^{94}_{40}Zr$ and ${}^{140}_{58}Ce$, which together have only 136 neutrons.

Thus 6 β -decays will occur, yielding 6 $\bar{\nu}_e$.

Fissioning 1kg of 235U gives 10^{24} neutrinos, or at distance of 50 m about 10^{16} cm⁻².

Ca. 1951

Fred Reines and Glen Cowan

Reines & Cowan's day job was to instrument nuclear weapons tests.

Bethe and Fermi thought this was a good idea and thus, not surprisingly their A-bomb proposal was approved.

What really happened

In the fall of 1952 Reines & Cowan revisited the idea of using a reactor:

number of fissions per second = thermal reactor power / energy per fission

 $\frac{300\,\mathrm{MW}}{200\,\mathrm{MeV}} \simeq 10^{19}\,\mathrm{s}^{-1}$

so 10^5 seconds yields the same fluence, 10^{24} as a 20 kt explosion.

Delayed coincidence

This is the basis for all reactor neutrino experiments since then.

Savannah River

P-reactor became operational in Feb 1954, initially rated for less than 500MW, heavy water cooled, plutonium production reactor.

Note, positron energy is NOT observed.

1956

They report a cross section (!) of $6 \times 10^{-44} \,\mathrm{cm}^{-2}$.

Reines' D2O experiment

Reines, Sobel, Pasierb in 1970 study the ratio of the rate for

$$\bar{\nu}_e + d \to n + n + e^+$$

 $\bar{\nu}_e + d \to n + p + \bar{\nu}_e$

and found indication for oscillation.

Long list of SBL experiments

a	Experiment	f^{a}_{235}	f^{a}_{238}	f^{a}_{239}	f^{a}_{241}	$R_{a,\mathrm{SH}}^{\mathrm{exp}}$	$\sigma_a^{ m exp}$ [%]	$\sigma_a^{ m cor}$ [%]	L_a [m]
1	Bugey-4	0.538	0.078	0.328	0.056	0.932	1.4	114	15
2	Rovno91	0.606	0.074	0.277	0.043	0.930	2.8	$\int^{1.4}$	18
3	Rovno88-1I	0.607	0.074	0.277	0.042	0.907	6.4		18
4	Rovno88-2I	0.603	0.076	0.276	0.045	0.938	6.4	30.0	18
5	Rovno88-1S	0.606	0.074	0.277	0.043	0.962	7.3	2.2	18
6	Rovno88-2S	0.557	0.076	0.313	0.054	0.949	7.3	3.8	25
7	Rovno88-2S	0.606	0.074	0.274	0.046	0.928	6.8		18
8	Bugey-3-15	0.538	0.078	0.328	0.056	0.936	4.2		15
9	Bugey-3-40	0.538	0.078	0.328	0.056	0.942	4.3	4.0	40
10	Bugey-3-95	0.538	0.078	0.328	0.056	0.867	15.2	J	95
11	Gosgen-38	0.619	0.067	0.272	0.042	0.955	5.4		37.9
12	Gosgen-46	0.584	0.068	0.298	0.050	0.981	5.4	2.0 2.0	45.9
13	Gosgen-65	0.543	0.070	0.329	0.058	0.915	6.7) (3.0	64.7
14	ILL	1	0	0	0	0.792	9.1		8.76
15	Krasnoyarsk87-33	1	0	0	0	0.925	5.0	41	32.8
16	Krasnoyarsk87-92	1	0	0	0	0.942	20.4	$\int^{4.1}$	92.3
17	Krasnoyarsk94-57	1	0	0	0	0.936	4.2	0	57
18	Krasnoyarsk99-34	1	0	0	0	0.946	3.0	0	34
19	SRP-18	1	0	0	0	0.941	2.8	0	18.2
20	SRP-24	1	0	0	0	1.006	2.9	0	23.8
21	Nucifer	0.926	0.061	0.008	0.005	1.014	10.7	0	7.2
22	Chooz	0.496	0.087	0.351	0.066	0.996	3.2	0	pprox 1000
23	Palo Verde	0.600	0.070	0.270	0.060	0.997	5.4	0	≈ 800
24	Daya Bay	0.561	0.076	0.307	0.056	0.946	2.0	0	≈ 550
25	RENO	0.569	0.073	0.301	0.056	0.946	2.1	0	≈ 410
26	Double Chooz	0.511	0.087	0.340	0.062	0.935	1.4	0	≈ 415

Giunti 2016

ILL experiment – 1981

Institut Laue Langevin

57 MW reactor8.6 m from reactor core

ILL experiment – 1981

Measurement of the positron spectrum

Comparison to theoretical calculations

Comparison to so-called ILL spectrum (more about this later)

Oscillation in the ratio of measured to predicted

SBL reactors summary

Technological achievements:

large liquid scintillator detectors target and detector are one, *cf.* original Reines/Cowan detector

single volume and segmented detectors many different neutron tagging concepts Gd-doped scintillators

Science results as of 2011: In the baseline range from 7-93 m all results are consistent with NO oscillation.

Palo Verde & CHOOZ Late 1990's inspired by KamiokaNDE

800 m from a commercial 1100 m from a commercial reactor reactor Null result in both.

KamLAND – 2002

1000 t of liquid organic scintillator, undoped, deep underground.

KamLAND – results

KamLAND confirmed the oscillation interpretation of the solar neutrino results and "picked" the so-called LMA solution.

Later it was the first experiment to see an oscillatory pattern.

Daya Bay – 2011

In a 1 reactor, 2 detector setup all flux related errors cancel completely in the near-to-far ratio.

A careful choice of detector locations mitigates the complexity of the Daya Bay layout.

AD3 sees the same ratio of Ling Ao I to Ling Ao II events as do the far detectors.

Daya Bay – results

2.9 2.8 2.7 $\Delta m^2_{
m ee}$ (eV $^2 imes 10^{-3})$ 2.6 2.52.2 2.1 0.07 0.06 0.08 0.09 0.100.110.12 $\sin^2 2\theta_{13}$

More than 2.5 million IBD events.

Most precise measurement of θ_{13}

Precise measurement of Δm_{32}^2

RENO and Double Chooz are very similar in concept and results between agree very well. P. Huber - VT CNP - p. 27

JUNO – under construction JUNO – Jiangmen Underground Neutrino Observatory

20,000 ton undoped liquid scintillator
53 km from two powerful reactor complexes, 18 GW each
Start of data taking ~

2020.

JUNO – physics goals

Measurement of mass hierarchy w/o matter effects 1% level measurement of solar mixing parameters

Summary

Reactors as neutrino source have been a driving force since the 1950's.

Early oscillation searches, KamLAND and Daya Bay have shapped our understanding of neutrino properties Detectors have evolved significantly, allowing for very precise measurements.

JUNO will pin down solar oscillation parameters.

NuFact 2018

We invite you to NuFact 2018, August 13–18, at Virginia Tech, Blacksburg, VA. nufact2018.phys.vt.edu and nufact2018@phys.vt.edu

P. Huber – VT CNP – p. 31