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Basic knowledge

2

Let us introduce some notations:

We assume that the noise and the signal are independent.
In order to detect the signal we have to know the noise properties. The usual 
assumptions are that the noise is stationary and Gaussian:

- a large number of small disturbances combined with counting noise in the large-
number limit, the central limit theorem suggests that the noise distribution can be 
approximated by a multi-variate normal (Gaussian) distribution 
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What do we measure
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The signal could be deterministic or stochastic. 
The GW strain is described by a tensor h_{ij}, which is convolved with the instrument 
response function (different for each project: LIGO/VIRGO, LISA, PTA 
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Analysis method
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Likelihood: 

n(t) = d(t)� s(t,~�)

The likelihood of observing data (d) should be consistent with a draw from the noise 
distribution p_n

p(d(t)|s̄(t,�) = p(d(t)� s(t,~�)) = pn

 Frequentist analysis: 
 The detection is based on the maximising of the detection statistic. The detection 
threshold is set by a desired false alarm probability. 
 The signal’s parameters are deterministic but corrupted by noise we need to estimate 
the parameters (estimator) based on the maximisation of a detection statistic (e.g. 
maximum likelihood). Estimator could take un-physical values and its distribution 
obtained from the multiple outcome of the experiment (different noise realisations). 
 We construct confidence interval from the pdf of an estimator and compute p-value for 
hypothesis testing. 

If the signal is present in the data



Analysis method
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 Bayesian approach
 The signal’s parameters are random variables. We assign probabilities for the 
parameters and to a given hypothesis 
 We need to specify a prior degree of belief in a particular hypothesis and parameters.
 We use measurements and Bayes theorem to update the prior probability -> likelihood 
& prior -> posterior probability
 Parameters are described by posterior distribution functions 
 The hypothesis testing is done through posterior odd ratio
 Detection is somewhat subjective (based on the value for the odd ratio)

p(d|Ma) =
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Likelihood Prior
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Model selection
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Odd ratio  - used to check which model is supported by the data

Oa,b =
p(Ma|d)
p(Mb|d)

=
p(Ma)

p(Mb)

p(d|Ma)

p(d|Mb)
Ba,b =

p(d|Ma)
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Choosing prior:  Non trivial, wrong prior could give the erroneous outcome. The prior 
includes the range of parameters and their distribution (if known, if not - use non -
informative prior).

p(d|Ma) =
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Computation of evidence: Laplace approximation for evidence
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Basics behind detecting stochastic GWs
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The key property that allows one to distinguish a a stochastic gravitational-wave 
background from instrumental noise is that the gravitational-wave signal is correlated across 
multiple detectors while instrumental noise typically is not.

Assume two co-located detectors

Assuming noise has zero-mean

d1 = s+ n1, d2 = s+ n2 Output from two detectors

Compute correlation between output of two detectors

Power of the stochastic GW signal
< C12 >=< d1d2 >=< s2 > + < n1n2 >

< n1n2 >= 0, ! < C12 >=< s2 >= Sh



Likelihood
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For the stochastic signal we are not interested in the amplitude of the SGW at each sample 
but in the power of the signal. We assume that amplitude is distributed as a Gaussian 
random deviate:
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We can marginalise the likelihood over amplitude h:
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Moving to frequency domain (non-white noise)
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In case of the coloured noise we can work in the frequency domain
Use power spectral density
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Loosing simplifications
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Next we need to discuss prior and response function

Prior for the noise p(Sn) / 1/Sn

p(Sh) / ShPrior for the signal

For not-colocated detectors: hI 6= hJ
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Overlap reduction function
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For LIGO/VIRGO fL/c ⌧ 1 Rab =
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For PTA:
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In LISA it is also time dependent due 
motion of the LISA
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Anisotropy

12

Consider  Gaussian stationary unpolarized, anisotropic stochastic GW signal. In freq 
domain the correlation 
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Assume:

We can decompose P(n) in spherical harmonics
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Anisotropy
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Let us look again at the cross-correlation of two data sets
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Angular dependence also enters  through response (overlap) function  

Overlap reduction function

Isotropic part



Anisotropy assumptions
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Radiometer:  set of the point-like objects 

P (n̂) = Pn̂0�
2(n̂, n̂0)

Spherical harmonics decomposition: continuous distribution
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Non-Gaussian background
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Non-Gaussian SGW signal:  similar to what we did for the Gaussian SGW -> specify a model 
and incorporate it into the likelihood

Gaussian:
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Mixed Gaussian

Superposition  of large number of deterministic signals 
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Summary

 Need to have model for the noise (Gaussian?)

 Need to decide on the model of SGW signal (isotropy/
anisotropy, Gaussianity)

 Based on the above:  write likelihood 

 Define priors (in case of the Bayesian analysis)

 Perform sampling of the posterior (Markov chain mote 
carlo, nested sampling, combined methods).  
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(Power) SNR

⇢2 =
2

T

Z
df

X

I�1

X

J>I

�2
IJ(f)S

2
h(f)

SnISnj

Assumes weak signal limit,  isotropic, sky and polarisation average


