Primordial GWs and PBHs from axion inflation

Mauro Pieroni

Instituto de Fisica Teorica (IFT), Madrid.

LISA cosmology WG Workshop, MITP Mainz

October 19, 2017

Outline

Inflation and inflationary models

Axion inflation

- The basic picture
- Modified tensor spectrum and GWs
- Modified scalar spectrum and PBHs
- 3 Conclusions and future perspectives

Introduction ●○○ Axion inflation

Inflation and inflationary models

Inflation: the basic picture

Inflation is an early phase of nearly exponential expansion.

The metric of $g_{\mu\nu}$ of an homogeneous and isotropic Universe (k = 0) is:

$$\mathrm{d}\boldsymbol{s}^2 = \boldsymbol{g}_{\mu\nu}\mathrm{d}\boldsymbol{x}^{\mu}\mathrm{d}\boldsymbol{x}^{\nu} = -\mathrm{d}t^2 + \boldsymbol{a}^2(t)\mathrm{d}\vec{\boldsymbol{x}}^2$$

Einstein Equations ($\Lambda = 0$, $\kappa^2 \equiv 8\pi G_N$) read:

$$3\left(\frac{\dot{a}}{a}\right)^2 \equiv 3H^2 = \rho\kappa^2, \qquad -2\dot{H} = (\rho + \rho)\kappa^2$$

So that $a \propto \exp(Ht)$ corresponds to $p \simeq -\rho \simeq const$

Introduction ●○○ Axion inflation

Inflation and inflationary models

Inflation: the basic picture

Inflation is an early phase of nearly exponential expansion.

The metric of $g_{\mu\nu}$ of an homogeneous and isotropic Universe (k = 0) is:

$$\mathrm{d}\boldsymbol{s}^2 = \boldsymbol{g}_{\mu\nu}\mathrm{d}\boldsymbol{x}^{\mu}\mathrm{d}\boldsymbol{x}^{\nu} = -\mathrm{d}t^2 + \boldsymbol{a}^2(t)\mathrm{d}\vec{\boldsymbol{x}}^2$$

Einstein Equations ($\Lambda = 0$, $\kappa^2 \equiv 8\pi G_N$) read:

$$3\left(\frac{\dot{a}}{a}\right)^2 \equiv 3H^2 = \rho\kappa^2, \qquad -2\dot{H} = (\rho + \rho)\kappa^2$$

So that $a \propto \exp(Ht)$ corresponds to $p \simeq -\rho \simeq const$

Homogeneous scalar field ϕ in a homogeneous and isotropic universe:

$$S = \int \mathrm{d}^4 x \sqrt{-g} \left(\frac{R}{2\kappa^2} + \frac{\dot{\phi}^2}{2} - V(\phi) \right)$$

In this case the pressure and energy density are:

$$p = \frac{\dot{\phi}^2}{2} - V$$
 $\rho = \frac{\dot{\phi}^2}{2} + V$

Axion inflation

Inflation and inflationary models

Slow-roll inflation

Slow-roll inflation: $\dot{\phi}^2/2 \ll |V(\phi)|.$ The evolution is fixed by: $3H^2 = \rho\kappa^2 \simeq V\kappa^2$ $-2\dot{H} = (\rho + \rho)\kappa^2 = \dot{\phi}^2\kappa^2$ $3H\dot{\phi} \simeq -V_{,\phi}$

Axion inflation

Inflation and inflationary models

Slow-roll inflation

Slow-roll inflation: $\left|\dot{\phi}^{2}/2\right| \ll |V(\phi)|.$ The evolution is fixed by: $3H^{2} = \rho\kappa^{2} \simeq V\kappa^{2}$ $-2\dot{H} = (p+\rho)\kappa^{2} = \dot{\phi}^{2}\kappa^{2}$ $3H\dot{\phi} \simeq -V_{,\phi}$

To discuss this problem it is useful to introduce the slow-roll parameters:

$$\begin{aligned} \epsilon_1 &\equiv -\frac{\dot{H}}{H^2} \simeq \frac{1}{2\kappa^2} \left(\frac{V_{,\phi}}{V}\right)^2 \equiv \epsilon_V \\ \epsilon_2 &\equiv \frac{d\ln(\epsilon_1)}{d\ln a} \simeq -\frac{2}{\kappa^2} \frac{V_{,\phi\phi}}{V} + \frac{2}{\kappa^2} \left(\frac{V_{,\phi}}{V}\right)^2 \equiv -2\eta_V + 4\epsilon_V \end{aligned}$$

and the number of e-foldings (from the end of inflation):

$$N(t) \equiv -\int_{a_f}^{a} \mathrm{d}\ln\hat{a} = -\int_{t_f}^{t} H(\hat{t}) \mathrm{d}\hat{t} \simeq \int_{\phi_f}^{\phi} \kappa^2 \frac{V(\hat{\phi})}{V_{,\phi}(\hat{\phi})} \mathrm{d}\hat{\phi}$$

Axion inflation

Inflation and inflationary models

Model classification

Inflationary models can be classified using:

Mukhanov 2013, Roest 2014, Garcia-Bellido and Roest 2014, Binetruy, Kiritsis, Mabillard, Pieroni and Rosset 2015

$$\epsilon_1 \simeq rac{eta}{(1+N)^p}$$

Inflation and inflationary models

Model classification

Inflationary models can be classified using: $\epsilon_1 \simeq \frac{\beta}{(1+N)^{\rho}}$

Mukhanov 2013, Roest 2014, Garcia-Bellido and Roest 2014, Binetruy, Kiritsis, Mabillard, Pieroni and Rosset 2015

• $(p=1) \longrightarrow Chaotic models:$

 $V(\phi) = V_0 \phi^q$

• (p=2) \longrightarrow Starobinsky-like models:

 $V(\phi) \simeq V_0 \left(1 - \exp\left\{-\gamma\phi\right\}\right)^2$

• (p=3) and (p=4) \longrightarrow Hilltop models:

$$\mathcal{V}(\phi) \simeq V_0 \left[1 - \left(rac{\phi}{v}
ight)^4
ight]^2, \qquad \qquad V(\phi) \simeq V_0 \left[1 - \left(rac{\phi}{v}
ight)^3
ight]^2$$

• (1 Inverse power law models:

$$V(\phi) \simeq V_0 \left(1 - \frac{lpha}{\phi^{\gamma}}\right)^2$$

The basic picture

Axion inflation

Inflaton coupled to some Abelian gauge fields:

$$\mathcal{L} = \frac{R}{2\kappa^2} - \frac{1}{2}\partial_\mu\phi\partial^\mu\phi - V(\phi) - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} - \frac{\alpha}{4\Lambda}\phi F_{\mu\nu}\tilde{F}^{\mu\nu}$$

Turner, Widrow '88, Garretson, Field, Caroll '92, Anber, Sorbo '06./'10/'12, Barnaby, Namba, Peloso '11, Barnaby, Pajer, Peloso '12,

The equations of motion for the fields are:

$$\ddot{\phi} + 3H\dot{\phi} + \frac{\partial V}{\partial \phi} = \frac{\alpha}{\Lambda} \langle \vec{E} \cdot \vec{B} \rangle \qquad dt \equiv a \, d\tau$$
$$\frac{d^2 \vec{A}^a(\tau, \vec{k})}{d\tau^2} - \vec{\nabla}^2 \vec{A}^a = \frac{\alpha}{\Lambda} \frac{d\phi}{d\tau} \vec{\nabla} \times \vec{A}^a \qquad N \equiv -\int H \, dt$$

Friedmann equation reads:

$$3H^2\kappa^{-2} = \frac{1}{2}\dot{\phi}^2 + V(\phi) + \frac{1}{2}\langle \vec{E}^2 + \vec{B}^2 \rangle$$

Introd	uction

The basic picture

Gauge field amplification

Assuming \vec{k} parallel to \hat{x}

The equations of motion for the gauge fields (in Fourier transform) read:

$$\frac{\mathrm{d}^2 A^a_{\pm}(\tau,\vec{k})}{\mathrm{d}\tau^2} + \left[k^2 \pm 2k\frac{\xi}{\tau}\right] A^a_{\pm}(\tau,\vec{k}) = 0$$

$$\xi \equiv \frac{\alpha}{2\Lambda} \left| \frac{\dot{\phi}}{H} \right| \propto \sqrt{\epsilon_1}$$

If ξ is nearly constant one mode (A_+^a) is exponentially growing with ξ .

The basic picture

Gauge field amplification

Assuming \vec{k} parallel to \hat{x}

The equations of motion for the gauge fields (in Fourier transform) read:

$$\frac{\mathrm{d}^2 A^a_{\pm}(\tau,\vec{k})}{\mathrm{d}\tau^2} + \left[k^2 \pm 2k\frac{\xi}{\tau}\right] A^a_{\pm}(\tau,\vec{k}) = 0 \qquad \qquad \xi \equiv 0$$

$$\xi \equiv \frac{\alpha}{2\Lambda} \left| \frac{\dot{\phi}}{H} \right| \propto \sqrt{\epsilon_1}$$

If ξ is nearly constant one mode (A^a_+) is exponentially growing with ξ . Substituting $\langle \vec{E} \cdot \vec{B} \rangle$ into the equation of motion for ϕ we get: $\ddot{\phi} + 3H\dot{\phi} + \frac{\partial V}{\partial \phi} = \frac{\alpha}{\Lambda} \langle \vec{E} \cdot \vec{B} \rangle \simeq \frac{\alpha}{\Lambda} 2.4 \cdot 10^{-4} \mathcal{N} \left(\frac{H}{\xi}\right)^4 e^{2\pi\xi}$

Friction term that dominates the last part of the evolution.

 $\frac{\phi}{H} \propto \sqrt{\epsilon_1}$

The basic picture

Gauge field amplification

Assuming \vec{k} parallel to \hat{x}

The equations of motion for the gauge fields (in Fourier transform) read:

$$\frac{\mathrm{d}^2 A^a_{\pm}(\tau,\vec{k})}{\mathrm{d}\tau^2} + \left[k^2 \pm 2k\frac{\xi}{\tau}\right] A^a_{\pm}(\tau,\vec{k}) = 0 \qquad \qquad \left|\xi \equiv \frac{\alpha}{2\Lambda}\right|$$

If ξ is nearly constant one mode (A^a_+) is exponentially growing with ξ . Substituting $\langle \vec{E} \cdot \vec{B} \rangle$ into the equation of motion for ϕ we get: $\ddot{\phi} + 3H\dot{\phi} + \frac{\partial V}{\partial \phi} = \frac{\alpha}{\Lambda} \langle \vec{E} \cdot \vec{B} \rangle \simeq \frac{\alpha}{\Lambda} 2.4 \cdot 10^{-4} \mathcal{N} \left(\frac{H}{\xi}\right)^4 e^{2\pi\xi}$ Friction term that dominates the last part of the evolution.

Modified dynamics also affects the scalar and tensor power spectra!

Modified tensor spectrum and GWs

Modified tensor spectrum

- GW spectrum –
- N-frequency relation
 - Spectra asymptote to an universal value at small scales
 - Low scale models (*p* = 3, 4) have a stronger increase
 - Some models produce GW in the observable range of direct GW detectors

Modified tensor spectrum and GWs

General features of the GW spectrum

Notice that:

- Gauge fields take over at f1
- Gauge fields' friction dominates after *f*₂
- Ω^{CMB}_{GW} is fixed by COBE and r.
- Ω_{GW}^{Max} is fixed by $\epsilon_1 \leq 1$.

The shape of the spectrum is affected by:

- p: the slope and the vacuum amplitude
- β : vacuum amplitude
- α/Λ : shifts the spectrum horizontally

Modified scalar spectrum and PBHs

Modified scalar spectrum

Axion inflation

Modified scalar spectrum and PBHs

Comparison with PBH bounds

The PBHs can account for part (or all) of the DM in our Universe! Predictions must be consistent with all the bounds:

Axion inflation

Modified scalar spectrum and PBHs

A generalized case

Assuming the inflaton to be non-minimally coupled with gravity:

$$\mathcal{L} = \Omega(\phi) \frac{R}{2\kappa^2} - \frac{1}{2} \partial_\mu \phi \partial^\mu \phi - V(\phi) - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{\alpha}{4\Lambda} \phi F_{\mu\nu} \tilde{F}^{\mu\nu}$$

The equations of motion in Einstein frame read:

$$\ddot{\phi} + \dot{\phi} \frac{\dot{K}(\phi)}{K(\phi)} + 3H\dot{\phi} + \frac{1}{K(\phi)} \frac{\partial V}{\partial \phi} = \frac{\alpha}{\Lambda} \frac{\langle \vec{E} \cdot \vec{B} \rangle}{K(\phi)} \qquad dt \equiv a \, d\tau$$

$$N \equiv -\int H \, dt$$

$$\frac{d^2 \, \vec{A}^a(\tau, \vec{k})}{d\tau^2} - \vec{\nabla}^2 \vec{A}^a = \frac{2\xi}{aH} \vec{\nabla} \times \vec{A}^a \qquad \xi \equiv \frac{\dot{\phi}}{H} = \sqrt{2\epsilon/K(\phi)}$$

Friedmann equation reads:

$$3H^{2}\kappa^{-2} = \frac{K(\phi)}{2}\dot{\phi}^{2} + V(\phi) + \frac{1}{2}\langle\vec{E}^{2} + \vec{B}^{2}\rangle$$

where the kinetic function is defined as:
$$K(\phi) = \frac{1}{\Omega(\phi)} + \frac{3}{2}\left(\frac{d\ln\Omega}{d\phi}\right)^{2}$$

12/16

(1)

Introdu	uction

Modified scalar spectrum and PBHs

Modified spectra

As $\xi \propto \sqrt{2\epsilon/K} \to K(\phi)$ growing at small scales shuts off the instability!

Introdu	uction

Modified scalar spectrum and PBHs

Modified spectra

As $\xi \propto \sqrt{2\epsilon/K} \to K(\phi)$ growing at small scales shuts off the instability!

For example: $\Omega(\phi) = 1 + \varsigma g(\phi)$ and $V(\phi) = V_0 g^2(\phi)$.

Kallosh and Linde 2010, Kallosh, Linde and Roest 2014, . . .

with $g(\phi) = 1 - 1/\phi$ (which for $\varsigma = \alpha = 0$ corresponds to $\epsilon_V \simeq 1/N^{4/3}$): Domcke, Muia, Pieroni and Witkowski 2017

 $K(N) \simeq ext{const} (ext{large scales}), \qquad K(N) \simeq e^{-N} (ext{small scales}).$

Introd	uction

Modified scalar spectrum and PBHs

Modified spectra

As $\xi \propto \sqrt{2\epsilon/K} \to K(\phi)$ growing at small scales shuts off the instability!

For example: $\Omega(\phi) = 1 + \varsigma g(\phi)$ and $V(\phi) = V_0 g^2(\phi)$.

Kallosh and Linde 2010, Kallosh, Linde and Roest 2014, . . .

with $g(\phi) = 1 - 1/\phi$ (which for $\varsigma = \alpha = 0$ corresponds to $\epsilon_V \simeq 1/N^{4/3}$): Domcke, Muia, Pieroni and Witkowski 2017

 $K(N) \simeq ext{const} (ext{large scales}) , \qquad \qquad K(N) \simeq e^{-N} (ext{small scales}) .$

Which leads to the modified spectra ($\alpha/\Lambda = \{97, 63, 71, 74\}$):

Axion inflation

Modified scalar spectrum and PBHs

Comparison with PBH bounds

The corresponding PBH distributions are:

Domcke, Muia, Pieroni and Witkowski 2017

Conclusions and future perspectives

Conclusions:

- Possibility of generating of an observable GW background.
- If observed informations on the microphysics of inflation.
- Possibility of generating a distribution of PBHs.

Future perspectives:

- Non-abelian gauge fields
- Reheating
- Embedding in high energy theories
- Model building (using $\epsilon(N)$ and K(N)?)

Axion inflation

Conclusions and future perspectives

The End

Thank you

16/16

Model classification

The system is specified by four parameters: $\alpha/\Lambda, \beta, p, V_0$.

No gauge fields
$$\longrightarrow$$
 $n_s \simeq 1 - \frac{\mathcal{O}(1)}{N}$ $r \propto \epsilon_V \simeq \frac{\mathcal{O}(1)}{(1+N)^p}$

The gauge fields introduce an additional friction term.

The CMB observables are effectively 'shifted' at a 'later' point N_{*}:

$$N_* < N_{CMB} \simeq 60 \qquad \longrightarrow \qquad n_s \simeq 1 - rac{\mathcal{O}(1)}{N_*} \qquad r \propto \epsilon_V \simeq rac{\mathcal{O}(1)}{(1+N_*)^p}$$

We get reduced n_s and increased r with respect to the standard case.
 As ξ ∝ √ε₁ ≃ √ε_V, the effects on models with big p will be stronger.

Domcke, Pieroni and Binétruy 2016

CMB constraints

The presence of the gauge fields modifies the scalar and tensor power spectra but CMB constraints should not be violated.

• **COBE Normalization**: Sets the value of the scalar power spectrum at the CMB scales:

$$\Delta_s^2 \Big|_{N_{CMB}} = (2.21 \pm 0.07) \cdot 10^{-9}$$

Planck constraints on n_s and r:

$$n_s = 0.9645 \pm 0.0049$$
 $r < 0.10$

• Non gaussianities: The gauge fields induce a non-gaussian component in the power spectrum. To be consistent we need:

$$\xi_{\textit{CMB}} = \frac{\alpha}{2\Lambda} \left| \frac{\dot{\phi}}{H} \right|_{\textit{N}=\textit{N}_{\textit{CMB}}} \lesssim 2.5$$

Modified scalar evolution

3/5

Several gauge fields

Starobinsky-like model parameter space

Choosing:

p = 2 *β* = 1/(2γ)²

leads to:

$$V(\phi) \simeq V_0 \left(1 - \exp\{-\gamma \phi\}\right)^2$$

The complementarity between different measures can be used to restrict the parameter space!