Stochastic and resolvable gravitational waves from ultralight bosons

> Enrico Barausse, Institut d'astrophysique de Paris/CNRS Paris, France

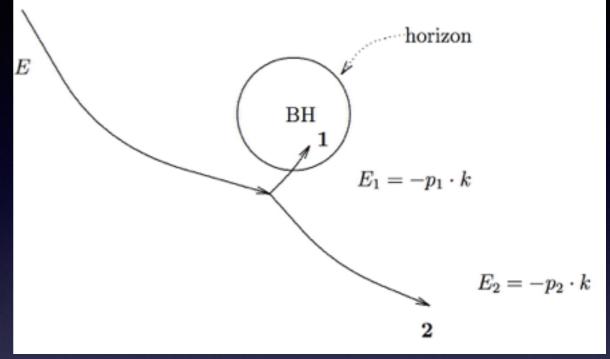
> > based on

R Brito, S Ghosh, EB, E Berti, V Cardoso, I Dvorkin, A Klein, P Pani arXiv:1706.05097 (PRL in press); arXiv:1706.06311 (PRD in press)

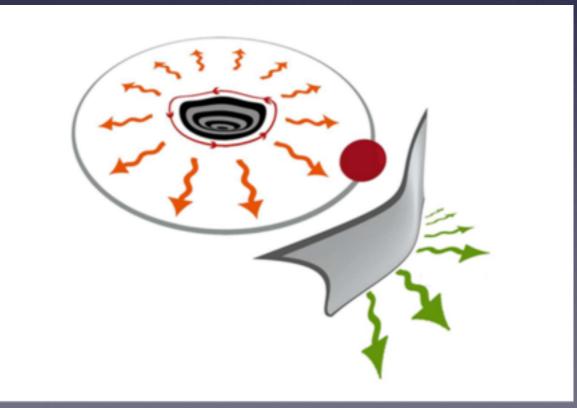
- A review of boson condensate formation around spinning BHs and their GW emission
- Astrophysical models for spinning BHs
- Constraints on boson masses in the LISA and LIGO bands by
 - Direct detections
 - Stochastic backgrounds
 - "Holes" in Regge plane

- A review of boson condensate formation around spinning BHs and their GW emission
- Astrophysical models for spinning BHs
- Constraints on boson masses in the LISA and LIGO bands by
 - Direct detections
 - Stochastic backgrounds
 - "Heles" in Regge plane

Why light bosons?

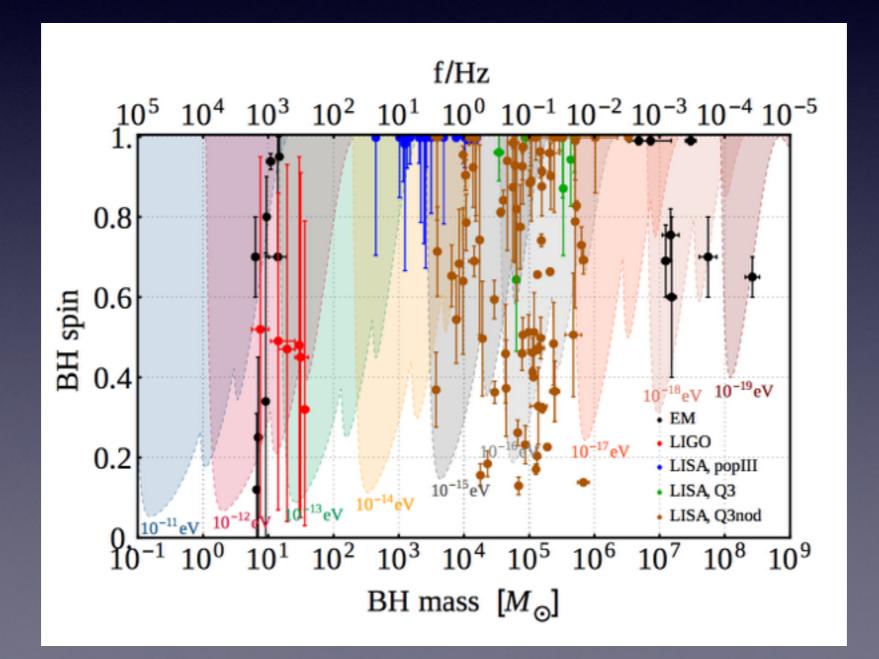

- Scalars ubiquitous in string theory, inflation, dark matter models
- Useful as toy models for unknown phenomena/ interactions (e.g. modifications of GR)
- Effect of mass term expected to be qualitatively the same as for vector/tensor degrees of freedom

Self-gravitating scalar configurations


- Scalars can form self-gravitating configurations, especially if complex, massive (to avoid dispersion to infinity) and time dependent (to provide pressure): boson stars, oscillatons
- Around BHs, massive real (complex) scalars can form quasi-stationary (stationary) configurations: boson clouds or condensates, hairy BHs

BH-boson condensates

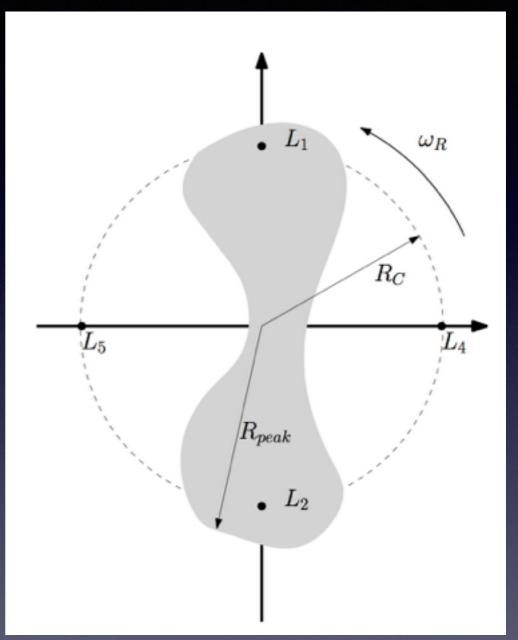
• Formation linked to superradiant instabilities/Penrose process (amplifications of scattered waves with $\omega < m\Omega_H$



 BH with high enough spin in a mirror box are superradiance unstable (BH bomb; Zeldovich 71, Press & Teukolsky 72, Cardoso et al 04)

BH-boson condensates

 Same instability of spinning BH + massive boson (mass acts as "mirror" and allows for bound states), but NOT for fermions. Cf Damour, Deruelle & Ruffini 76



Instability end point

 BH sheds excess spin (and to a lesser degree mass) into a mostly dipolar rotating boson cloud ...

$$m_s \equiv \mu \hbar, \qquad \omega_R \sim \mu - rac{M^2 \mu^3}{8}$$

$$\Phi = A_0 g(r) \cos(m_\phi \phi - \omega_R t) \sin \theta \,,$$

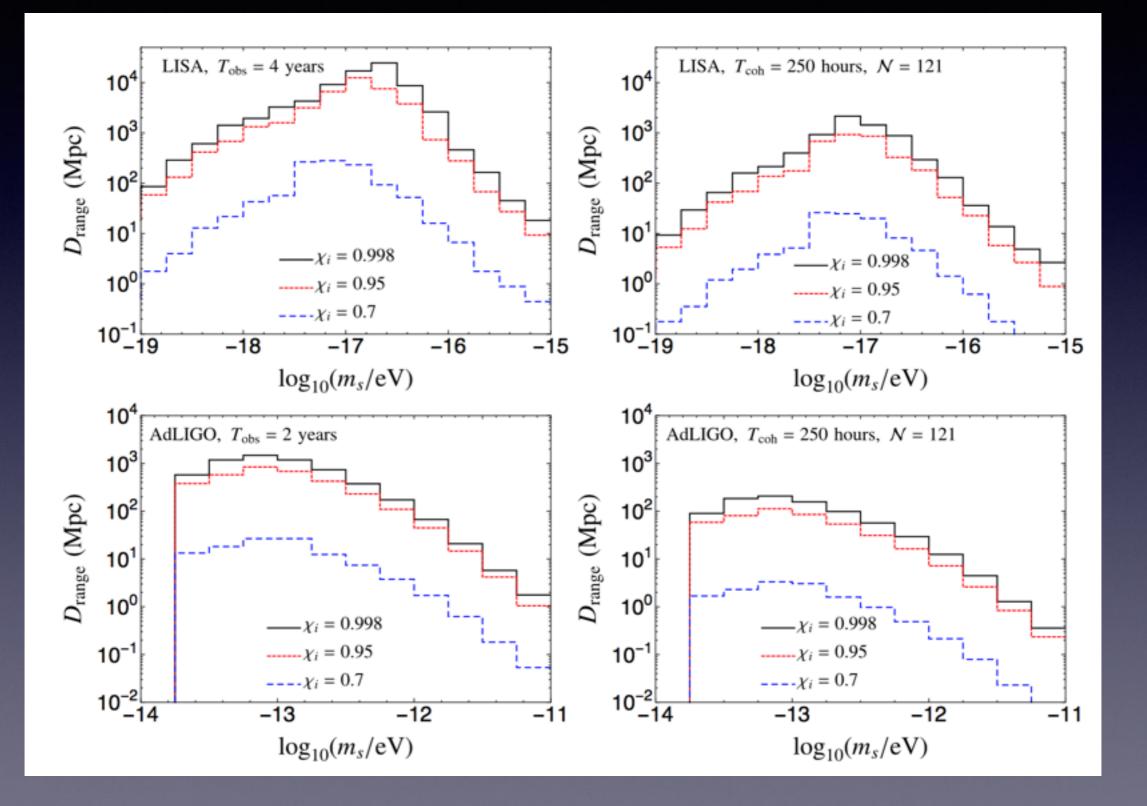
• ... till instability saturates

 $\mu \sim m \Omega_{
m H}$

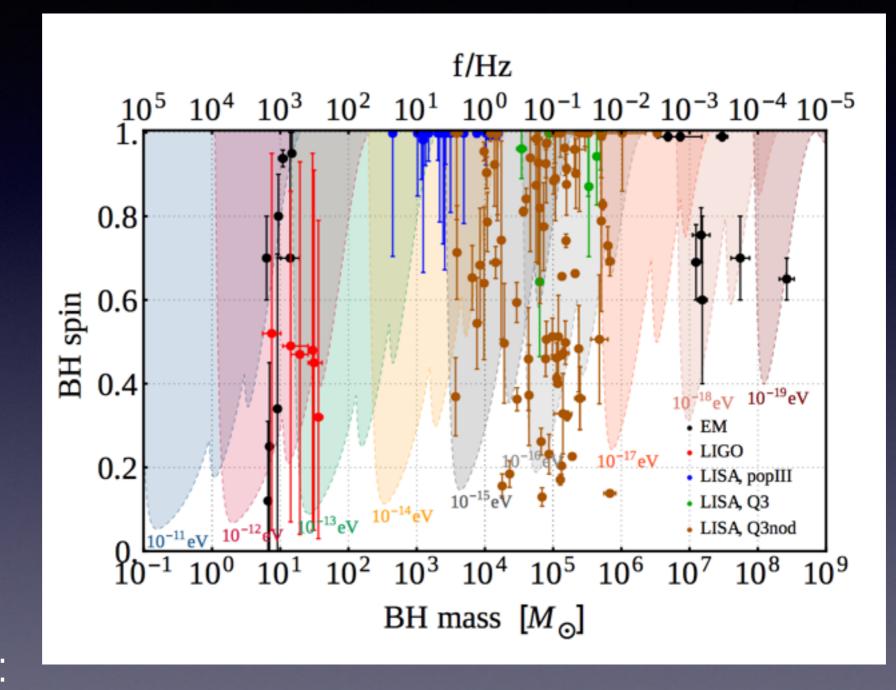
$$\left| \tau_{\rm inst} \sim 0.07 \, \chi^{-1} \left(\frac{M}{10 \, M_\odot} \right) \left(\frac{0.1}{M \mu} \right)^9 \, {\rm yr} \, , \right.$$

(for Mµ<<1 and χ <<1; max instability for Mµ=0.42)

GW emission


 Long-lived rotating scalar dipole produces almost monochromatic GWs via quadrupole formula on timescale

$$au_{\rm GW} \sim 6 \times 10^4 \, \chi^{-1} \left(\frac{M}{10 \, M_{\odot}} \right) \left(\frac{0.1}{M \mu} \right)^{15} \, {\rm yr}$$


$$h = \sqrt{\frac{2}{5\pi}} \frac{GM}{c^2 r} \left(\frac{M_S}{M}\right) A(\chi, f_s M),$$
 rms strain amplitude

GW ranges

Indirect probe: BH spins

Problems:

- Systematic errors on measurements,
- Astrophysical intrinsic spin distribution unknown

Background from isolated spinning BHs

energy emission efficiency

 $f_{\rm ax} \sim \mathcal{O}(1\%)$

monochromatic GW in source frame

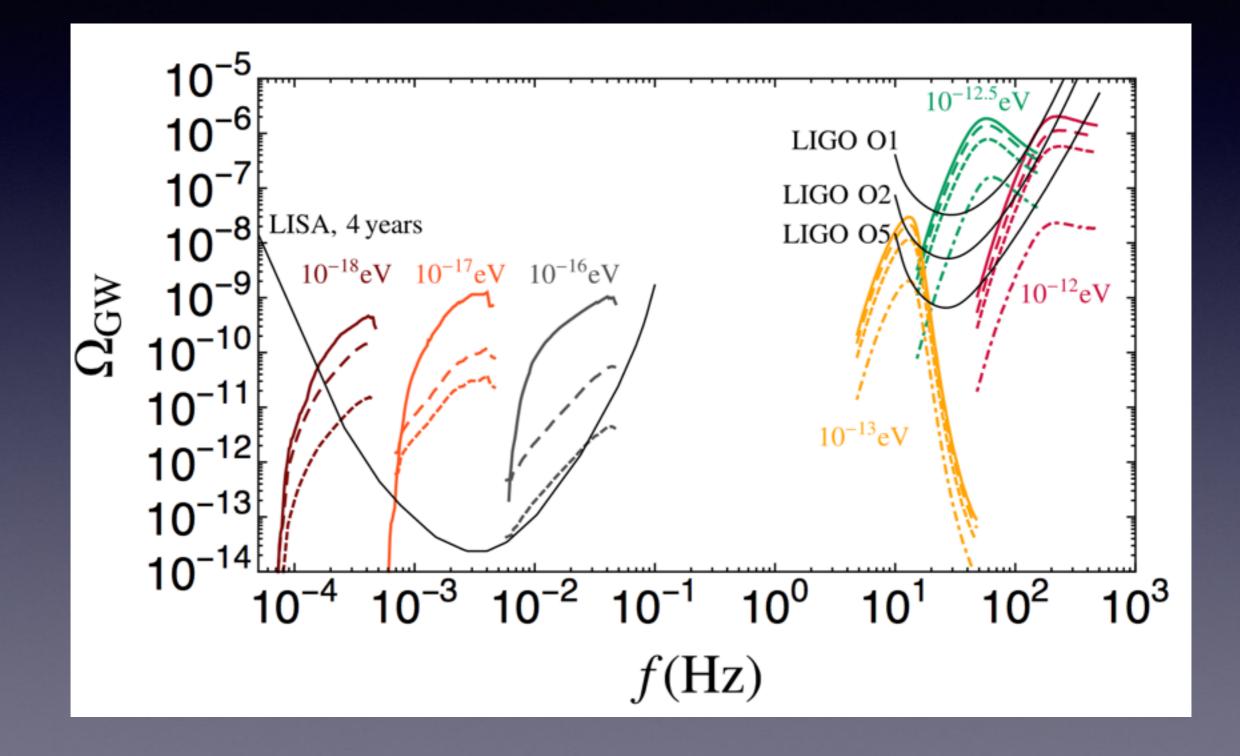
$$\Delta \ln f \sim 1$$

LISA band massive BHs ~ $10^4\text{--}10^7\ M_{sun},\ m_s\text{--}10^{-16}\text{--}10^{-18}\ eV$

$$\begin{split} \rho_{\rm BH} &\sim \mathcal{O}(10^4) M_{\odot}/{\rm Mpc}^3 \\ \Omega_{\rm GW,\,ax} &= (1/\rho_{\rm c}) (d\rho_{\rm GW}/d\ln f) \sim f_{\rm ax} \rho_{\rm BH}/\rho_{\rm c} \\ \Omega_{\rm GW,\,ax}^{\rm LISA} &\sim 10^{-9} \end{split}$$

Background from isolated spinning BHs

energy emission efficiency


 $f_{\rm ax} \sim \mathcal{O}(1\%)$

monochromatic GW in source frame

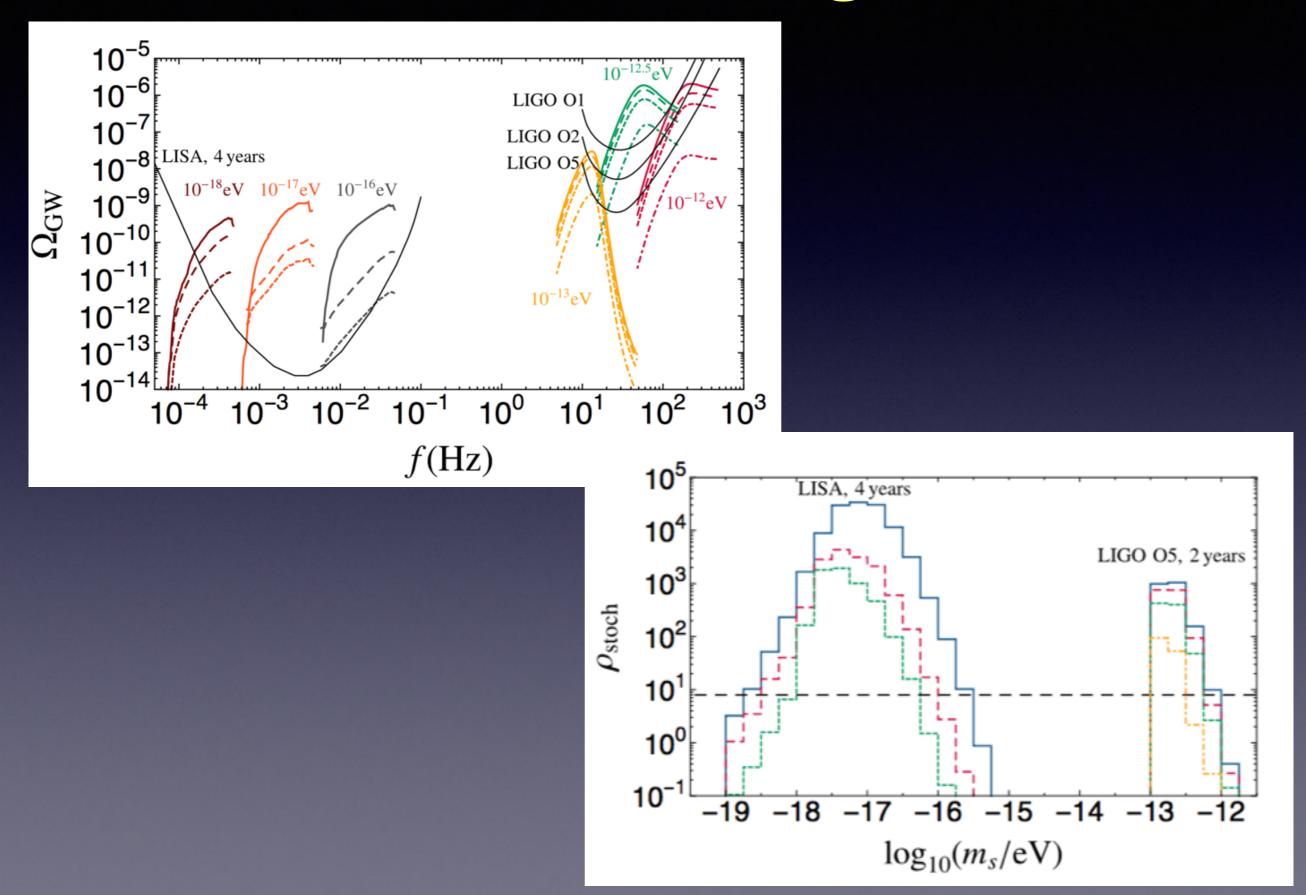
$$\Delta \ln f \sim 1$$

LIGO/Virgo band stellar-mass BHs ~ 10-50 M_{sun}, m_s~10⁻¹³ - 10⁻¹² eV $\Omega_{\rm GW, \, bin} \sim f_{\rm GW} f_{\rm m} \rho_{\rm BH} / \rho_c$ $f_{\rm GW} \sim \mathcal{O}(1\%) \quad f_{\rm m} \sim \mathcal{O}(1\%)$ $\Omega_{\rm GW, \, ax} / \Omega_{\rm GW, \, bin} \sim f_{\rm ax} / (f_{\rm GW} f_{\rm m}) \sim 10^2$ $\Omega_{\rm GW, \, bin} \sim 10^{-9} - 10^{-8} \quad \Omega_{\rm GW, \, ax}^{\rm LIGO} \sim 10^{-7} - 10^{-6}$

Background from isolated spinning BHs

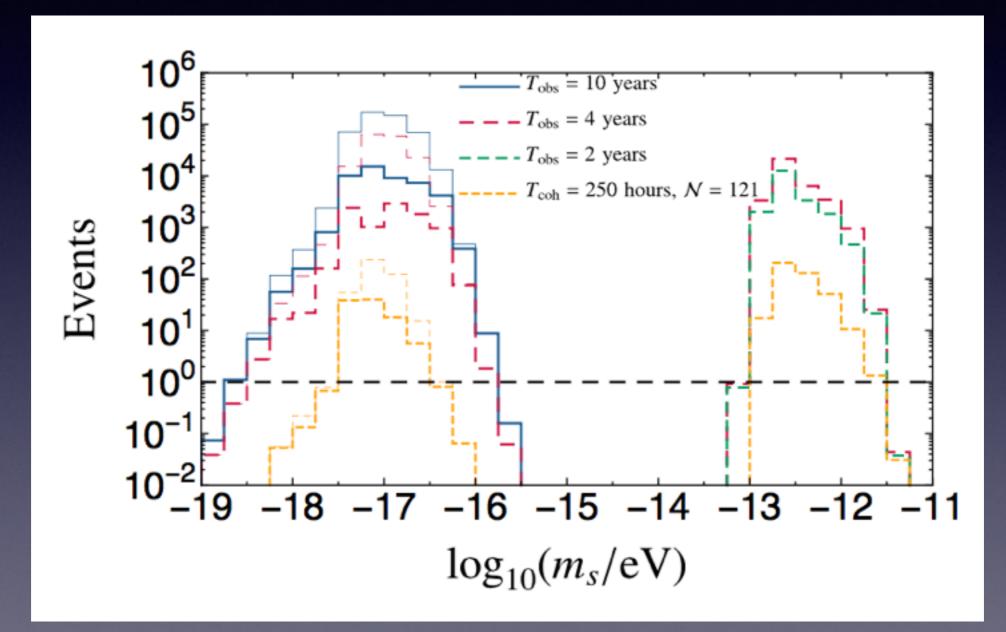
BH spin & mass modeling is crucial

Use state-of-the-art astrophysical models with input from continuum fitting/iron-K α spin measurements


Object name	Galaxy type	z	$L_X[\text{erg s}^{-1}]$	$f_{\rm Edd}$	$\log(M_{\rm bh}[M_{\odot}])$	spin
1H0707-495	-	0.0411	3.7×10^{43}	1.0	6.70 ± 0.4	> 0.97
Mrk1018	S0	0.043	9.0×10^{43}	0.01	8.15	$0.58^{+0.36}_{-0.74}$
NGC4051	SAB(rs)bc	0.0023	3.0×10^{42}	0.03	6.28	> 0.99
NGC3783	SB(r)ab	0.0097	1.8×10^{44}	0.06	7.47 ± 0.08	> 0.88
1H0419-577	-	0.104	1.8×10^{44}	0.04	8.18 ± 0.05	> 0.89
3C120	S0	0.033	2.0×10^{44}	0.31	$7.74^{+0.20}_{-0.22}$	> 0.95
MCG-6-30-15	E/S0	0.008	1.0×10^{43}	0.4	6.65 ± 0.17	> 0.98
Ark564	SB	0.0247	1.4×10^{44}	0.11	< 6.90	$0.96^{+0.01}_{-0.06}$
TonS180	-	0.062	3.0×10^{44}	2.15	$7.30^{+0.60}_{-0.40}$	$0.91^{+0.02}_{-0.09}$
RBS1124	-	0.208	1.0×10^{45}	0.15	8.26	> 0.97
Mrk110	-	0.0355	1.8×10^{44}	0.16	7.40 ± 0.09	> 0.89
Mrk841	E	0.0365	8.0×10^{43}	0.44	7.90	> 0.52
Fairall9	Sc	0.047	3.0×10^{44}	0.05	8.41 ± 0.11	$0.52^{+0.19}_{-0.15}$
SWIFTJ2127.4+5654	SB0/a(s)	0.0147	1.2×10^{43}	0.18	7.18 ± 0.07	0.6 ± 0.2
Mrk79	SBb	0.0022	4.7×10^{43}	0.05	7.72 ± 0.14	0.7 ± 0.1
Mrk335	S0a	0.026	5.0×10^{43}	0.25	7.15 ± 0.13	$0.83^{+0.09}_{-0.13}$
Ark120	Sb/pec	0.0327	3.0×10^{45}	1.27	8.18 ± 0.12	01.041
Mrk359	pec	0.0174	6.0×10^{42}	0.25	6.04	$0.64^{+0.11}_{-0.11}$ $0.66^{+0.30}_{-0.54}$
IRAS13224-3809	-	0.0667	7.0×10^{43}	0.71	7.00	> 0.987
NGC1365	SB(s)b	0.0054	2.7×10^{42}	0.06	$6.60^{+1.40}_{-0.30}$	$0.97^{+0.01}_{-0.04}$

Binary System	M/M_{\odot}	a	Reference
4U 1543-47	9.4 ± 1.0	0.75 - 0.85	Shafee et al. (2006)
GRO J1655-40	6.30 ± 0.27	0.65 - 0.75	Shafee et al. (2006)
GRS 1915+105	14.0 ± 4.4	> 0.98	McClintock et al. (2006
LMC X-3	5 - 11	< 0.26	Davis et al. (2006)
M33 X-7	15.65 ± 1.45	0.84 ± 0.05	Liu et al. (2008, 2010)
LMC X-1	10.91 ± 1.41	$0.92^{+0.05}_{-0.07}$	Gou et al. (2009)
XTE J1550-564	9.10 ± 0.61	$0.34_{-0.28}^{+0.20}$	Steiner et al. (2010b)

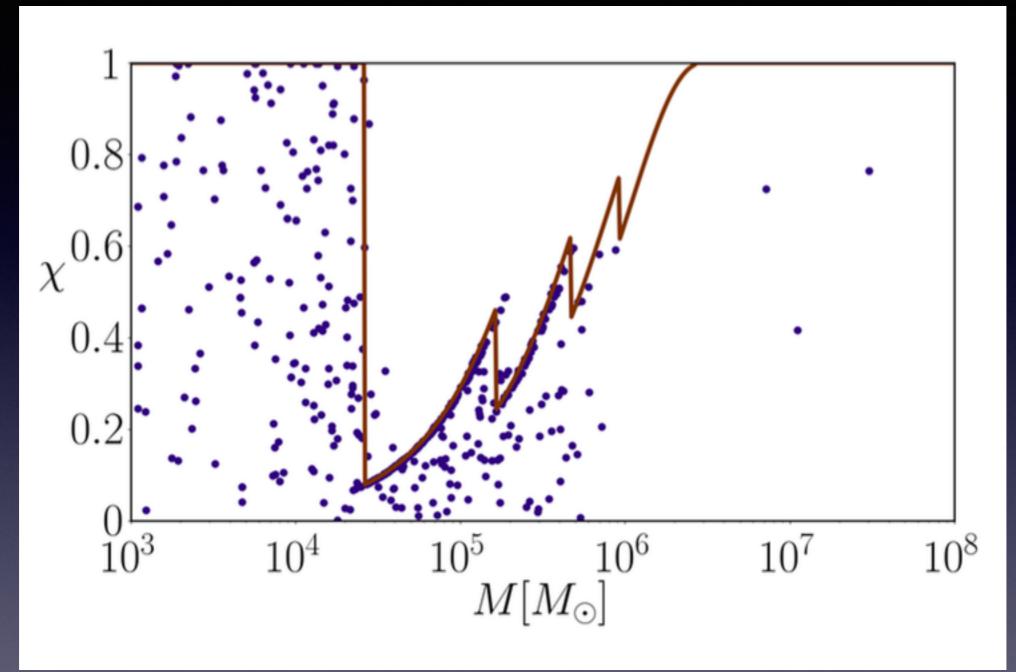
Stellar-mass BH spins


Compilations (Reynolds, Brenneman,...) of massive BH spins

Stochastic background

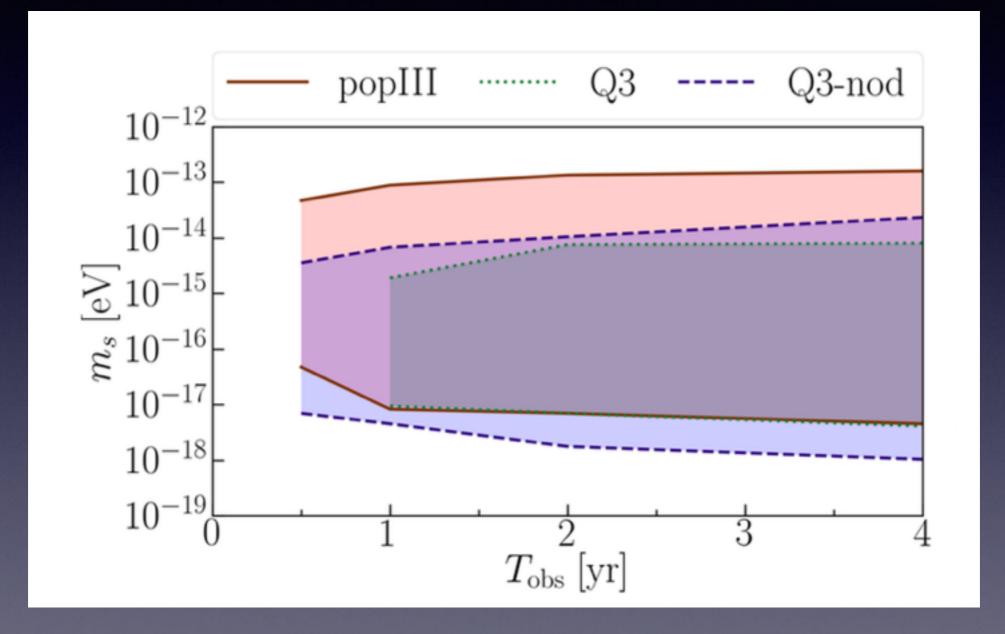
Resolved events

Need to account for effect of stochastic background on sensitivity (cf e.g. WD binaries)


most optimistic models

Resolved events

10^{-16} Coherent (C.1) $75-0$ Semicoherent 0	
C_{absent} (C.2) 75 0	
Coherent (C.2) $75 - 0$	
Semicoherent 0	
Coherent (C.3) 75 – 0	
Semicoherent 0	
10^{-17} Coherent (C.1) $1329 - 10$	22
Semicoherent 39-5	
Coherent (C.2) 3865 – 12	277
Semicoherent 36-4	
Coherent (C.3) 5629 – 14	-29
Semicoherent 39-5	
10^{-18} Coherent (C.1) $17 - 1$	
Semicoherent 0	
Coherent (C.2) 18 – 1	
Semicoherent 0	
Coherent (C.3) 20 – 0	
Semicoherent 0	


$m_s[\mathrm{eV}]$	Search method	Events
$10^{-11.5}$	Coherent	21 - 2
	Semicoherent	1 - 0
10^{-12}	Coherent	1837 – 193
	Semicoherent	50 - 2
$10^{-12.5}$	Coherent	12556 - 1429
	Semicoherent	205 - 15

Regge plane "holes"

Look for "accumulation" near instability threshold to avoid having to make assumptions on astrophysical model

Regge plane "holes"

Conclusions

- Ultralight bosons can induce superradiant instabilities in spinning black holes, tapping their rotational energy to trigger the growth of a bosonic condensate
- Boson condensates emit almost monochromatic GWs
- GWs are LISA/LIGO band if boson's Compton wavelength is Gm/km scale
- Main observable is stochastic background, but resolved sources and Regge plane "holes" also possible
- LIGO rules out already masses ~ a few x 10⁻¹² eV