Gravitational waves from phase transitions

Mark Hindmarsh^{1,2}, Stephan Huber¹, Kari Rummukainen², David Weir²

¹Department of Physics & Astronomy University of Sussex

²Department of Physics and Helsinki Institute of Physics Helsinki University

Based on arXiv:1704.05871

17. lokakuuta 2017

イロト イポト イヨト イヨト

Outline

Recap

Results from mumerical simulations

Model GW power spectra

<ロ> <問> <問> < 回> < 回> 、

Ξ.

Recap: transition via growth and merger of bubbles

 Below critical temperature T_c, thermal fluctuations in symmetric phase produce bubbles at rate/volume

 $\Gamma(T) = \Gamma_0(T) \exp(-S(T))$

with $\Gamma_0(\mathit{T})\simeq \mathit{T}^4,\, \mathit{S}(\mathit{T})=\mathit{A}/(\mathit{T}/\mathit{T_c}-1)^2$

- Bubble wall speed Vw
- Fraction in symmetric (+) phase

 $h(t) = \exp\left(-l(t)\right)$

with
$$I(t) = \frac{4\pi}{3} \int_{t_c}^t dt' \Gamma(t') v_w^3 (t-t')^3$$

Recap: transition via growth and merger of bubbles

 Below critical temperature T_c, thermal fluctuations in symmetric phase produce bubbles at rate/volume

 $\Gamma(T) = \Gamma_0(T) \exp(-S(T))$

with $\Gamma_0(T) \simeq T^4$, $S(T) = A/(T/T_c - 1)^2$

- Bubble wall speed Vw
- Fraction in symmetric (+) phase

 $h(t) = \exp\left(-I(t)\right)$

with
$$I(t) = \frac{4\pi}{3} \int_{t_c}^t dt' \Gamma(t') v_w^3 (t-t')^3$$

Recap: transition via growth and merger of bubbles

 Below critical temperature T_c, thermal fluctuations in symmetric phase produce bubbles at rate/volume

 $\Gamma(T) = \Gamma_0(T) \exp(-S(T))$

with $\Gamma_0(T) \simeq T^4$, $S(T) = A/(T/T_c - 1)^2$

- Bubble wall speed Vw
- Fraction in symmetric (+) phase

 $h(t) = \exp\left(-l(t)\right)$

with
$$I(t) = \frac{4\pi}{3} \int_{t_c}^t dt' \Gamma(t') v_w^3 (t-t')^3$$

-

• • • • • • • • • • • •

Recap of basics

Saddle-point solution:

 $h(t) = \exp\left(-e^{\beta(t-t_f)}\right)$

with $\beta = -S'(t_f)$ and $8\pi (v_w/\beta)^3 \Gamma_f/\beta = 1$

- Time of peak nucleation rate t_f
- 'Nucleation temperature' $T_n = T_f$
- Trace anomaly θ(T) = e(T) − 3p(T), difference Δθ = θ₊(T_n) − θ_−(T_n)
- Transition strength $\alpha_{\theta} = \frac{\Delta \theta}{3w(T_{\rm p})}$
- Wall speed vw

< ロ > < 同 > < 回 > < 回 >

Method

Scalar field

$$-\ddot{\phi} + \nabla^2 \phi - \frac{\partial V}{\partial \phi} = \eta W (\dot{\phi} + V^i \partial_i \phi),$$

W Lorentz factor, V^i is fluid 3-velocity, $U^i = WV^i$.

Fluid energy variable E = We,

$$\dot{\boldsymbol{E}} + \partial_i (\boldsymbol{E} \boldsymbol{V}^i) + \boldsymbol{p} [\dot{\boldsymbol{W}} + \partial_i (\boldsymbol{W} \boldsymbol{V}^i)] - \frac{\partial \boldsymbol{V}}{\partial \phi} \boldsymbol{W} (\dot{\phi} + \boldsymbol{V}^i \partial_i \phi) = \eta_T (\phi) \boldsymbol{W}^2 (\dot{\phi} + \boldsymbol{V}^i \partial_i \phi)^2.$$

• Momentum density $Z_i = W(e + p)U_i$:

$$\dot{Z}_i + \partial_j (Z_i V^j) + \partial_i p + rac{\partial V}{\partial \phi} \partial_i \phi = -\eta W (\dot{\phi} + V^j \partial_j \phi) \partial_i \phi.$$

▶ Numerical solution with GWEPT (D. Weir), see arXiv:1504.03291.

(日)

Gravitational wave power spectrum: detonations

• • • • • • • • • • • • •

-

Gravitational wave power spectrum: deflagrations

• • • • • • • • • • • •

-

Phenomenological fit ($|v_w - v_{CJ}| \gtrsim 0.1$)

Wall speeds away from Chapman-Jouguet speed⁽¹⁾

$$\frac{d\Omega_{gw,0}}{d\ln(f)} = 0.68F_{gw,0}(\Gamma \overline{U}_{f}^{2})^{2}(H_{n}R_{*})\tilde{\Omega}_{gw}C\left(\frac{f}{f_{p,0}}\right).$$
(1)

$$C(s) = s^{3} \left(\frac{7}{4+3s^{2}}\right)^{\frac{7}{2}}, \ \Gamma \overline{U}_{f}^{2} = \frac{\langle w \gamma^{2} v^{2} \rangle}{\overline{e}}, \ R_{*} = (8\pi)^{\frac{1}{3}} \left(\frac{v_{w}}{\beta}\right)$$
(2)

$$f_{\rm p,0} \simeq 26 \left(\frac{1}{H_{\rm n}R_*}\right) \left(\frac{z_{\rm p}}{10}\right) \left(\frac{T_{\rm n}}{10^2 \, {\rm GeV}}\right) \left(\frac{h_*}{100}\right)^{\frac{1}{6}} \ \mu {\rm Hz}, \tag{3}$$

with numerically obtained values: $\tilde{\Omega}_{gw} \simeq 0.12$, $z_p \simeq 10$ (peak value of kR_*). Standard GW matter era dilution factor (with Planck value for Hubble rate)

$$F_{gw,0} = (3.57 \pm 0.05) \times 10^{-5} \left(\frac{100}{h_*}\right)^{\frac{1}{3}}.$$
 (4)

⁽¹⁾Deflagration: $v_{CJ} = c_s$, detonation $v_{CJ} \simeq c_s(1 + \sqrt{2\alpha_{\theta}})$.

Relative sizes of acoustic and turbulent sources

• General: RMS velocity \overline{U}_{f} , length scale L_{f} , Hubble parameter H_{n} :

 $\Omega_{gw}^{ac} \sim (\Gamma \overline{\textit{U}}_{f}^{2})^{2}(\textit{H}_{n}\textit{L}_{f}), \label{eq:gw}$

• Turbulent phase starts when $H = \tau_{sh}^{-1}$, similar RMS velocity, length scale:

 $\Omega_{gw}^{tu} \sim (\Gamma \overline{U}_{f}^{2})^{2} (L_{f}/ au_{sh}),$

• Ratio:
$$\frac{\Omega_{gw}^{tu}}{\Omega_{gw}^{ac}} \sim \frac{1}{\tau_{sh}H_{n}}$$

Strong phase transition: both phases last for time O(τ_{sh})

$$\Omega_{gw}^{tu} \sim \Omega_{gw}^{ac} \sim \Gamma^2 \overline{\textit{U}}_f^3 (\textit{L}_f\textit{H}_n)^2$$

▶ Very strong transition: $\overline{U}_{\rm f} \sim$ 1, back to envelope model ($L_{\rm f} \sim \nu_{\rm w}/\beta$)

Shapes of acoustic and turbulent sources (from CWG paper)

Acoustic production (based on numerical simulations):

$$C^{\operatorname{ac}}(s) = s^3 \left(rac{7}{4+3s^2}
ight)^{rac{7}{2}}$$

 $s = f/f_{ac}$, $f_{ac} \simeq 3(v_w/R_*)$ (New, factor 2 larger than CWG paper)

Turbulent production (model of Caprini, Durrer, Servant 2009)

$$C^{\rm tu}(s) = s^3 \frac{1}{(1+s)^{\frac{11}{3}}(1+8\pi f/H_*)}$$

 $\textit{s}=\textit{f}/\textit{f}_{tu}, \textit{f}_{tu}\simeq 2\textit{f}_{ac}$

イロト イヨト イヨト ・ ヨトー

Sensitivity in kinetic energy - bubble separation space

Kinetic energy fraction

$$\Gamma \overline{U}_{\rm f}^2 = \frac{\langle w \gamma^2 v^2 \rangle}{\bar{e}}$$

Adiabatic index $\Gamma = \bar{w}/\bar{e}$ Mean square fluid velocity $\overline{U}_{f}^{2} = \langle w \gamma^{2} v^{2} \rangle / \bar{w}$.

• "Efficiency parameter" κ

 $\frac{\kappa \alpha_{\theta}}{1 + \alpha_{\theta}} = \Gamma \overline{U}_{\rm f}^2$

Shock appearance (eddy turn-over) time:

$$au_{
m sh} = rac{R_*}{\overline{U}_{
m f}}$$

< ロ > < 同 > < 回 > < 回 >