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MOTIVATION

Understand scalar only first order phase transitions.

Hidden sector. [Garcia, Krippendorf and March-Russell, 2016]
Highly supercooled thermal transition.

Test envelope approximation. [Kosowsky et al, 1992] [Huber
and Konstandin, 2008] [Weir, 2016]

Previous work used few bubbles and low wall speeds.
[Child and Giblin, 2012]




OVERVIEW

Toy Model
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Gravitational wave power spectra




TOY MODEL

Single real scalar field ¢(z, t) with potential 30 w w x
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INITIAL CONDITIONS

Mean bubble separation:

1/3
R. — (K)
Ny

Can nucleate critical bubbles simultaneously.

Alternatively nucleate critical bubbles with
exponentially increasing nucleation rate:

p(t) = po exp(Bt),

87r)1/3
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Lorentz factor of bubble wall at collision given by:

for R > R,

o 2R,




EVOLUTION

Neglect expansion of the universe:
b(x, ) + V' ($(x, 1)) = 0.
Track auxiliary tensor u;; (x, t) for convenience:
Ougi(x,t) = 167GO;00;¢.
Obtain the metric perturbations h;;(k, t) by projecting in k-space:
hij(k, ) = Aijim (K)uim (k, 1),

Aijim () = Pin(1) P (k) — 5 Pig () Pi (),

O Pij(k) = 0;5 — kik;.




POWER SPECTRUM

Define spectral density of the time derivative of the metric
perturbation Py (k, t) as

(g (k, )hig (K, 8) ) = P (i, £) (27)*5 (k + K').
Then the gravitational wave density parameter power spectrum is

dQaw 1 kS
= P; (k,t
din(k)  327Gp. 272 (1),
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ENVELOPE APPROXIMATION

Assumptions:

Stress-energy concentrated in infinitesimal
thin shell.

Neglect any region where bubbles overlap.

Numeric fit:
[Huber and Konstandin, 2008] [Weir, 2016]

Power spectrum fit given by
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LOW GAMMA
SPECTRA

Lorentz factor y,.~2.

Number of bubbles
N, = 444

B = 0.075

Peak amplitude
matches envelope.

Power law matches
envelope.

Extra bump in the UV.
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MEDIUM GAMMA

SPECTRA

Lorentz factor y,.~4.

Number of bubbles
_pVi, — !5j111

B = 0.0625

Peak amplitude matches
envelope.

Power law slightly
steeper than envelope.

Extra bump in the UV.
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CONCLUSIONS

We recover the envelope power law for small y,,
though shifted to the IR.

At higher y, the peak amplitude seems similar but the
power law towards the UV is steeper.

Haven’t succeeded in finding asymptotic behavior for
y* — OO0,

We see a second peak at a scale associated with the
initial wall width.

We predict the effect of this peak to be negligible for most
models.



BUMP FEATURE

Turn on metric
evolution after bubble
collisions.

IR uptick seems to be
left over from bubble
collisions.

Plateau leading into
bump.

Still growing at very
late times.
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SIMULATION DETAILS

3+1 dimensional classical lattice simulation.

Built using LATfield2, an open source massively parallel lattice
code. [Daverio, Hindmarsh and Bevis, 2015]

Periodic boundary conditions.

The leapfrog algorithm evolves ¢ and u;;.
Calculate Laplacian with 7 point stencil.

Take FFT and project u;; to find power spectrum.
[Figueroa, Garcia-Bellido and Rajantie, 2011]

Resolve the bubble wall:
dx <L L, = ly/y.




