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Tests of General Relativity with the Stochastic Gravitational-Wave Background

Thomas Callister,'* Sylvia Biscoveanu,” Nelson Christensen,™* Maximiliano Isi,' Andrew Matas,’
Olivier Minazzoli,** Tania Regimbau,* Mairi Sakellariadou,” Jay Tasson,” and Eric Thrane®°

e-Print: arXiv:1704.08373 [gr-qc] PRX (in press)

We present a Bayesian method to detect and characterize the polarization of the
stochastic background.
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LIGO detectors alone can rule out GR
(i.e. detect non-GR polarization modes)

LIGO detector + Virgo detector can distinguish between scalar

and vector modes
(i.e. can distinguish different alternative theories of gravitation)

How about LIGO + Virgo + LIGO India + KAGRA?
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Hanford Livingston Virgo

Simple (first) test: compare the
tensor-only mode with scalar-only
and vector-only modes.
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Purely tensor polarization is strongly
favoured over purely scalar or vector
polarizations, showing consistency
with GR
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GW170814: A Three-Detector Observation of Gravitational Waves
from a Binary Black Hole Coalescence

LIGO/Virgo PRL (2017)
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GW 170817 and GRB 170817A : Implications for fundamental physics
Ap] Lett (2017)

Temporal offset of | (+1.74 4= 0.05) s| across a distance greater than 100 million L.y.

Constraints on:

= deviation of speed of gravity from the speed of light
® violation of Lorentz invariance
= violation of equivalence principle
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= deviation of speed of gravity from the speed of light
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If simultaneous emission: the (+1.74 = 0.05)s due to faster travel by GW signal

|:> Upper bound on Av
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If simultaneous emission: the (+1.74 = 0.05) s due to faster travel by GW signal

|:> Upper bound on Av

If two signals emitted at times differing more than (+1.74 = 0.05) s \ith the faster
EM signal making up some of the difference |:> Lower bound on Av

Av = vgw — VEM




GW 170817 and GRB 170817A : Implications for fundamental physics
Ap] Lett (2017)

Temporal offset of | (4-1.74 4 0.05) s| across a distance greater than 100 million Ly.

= deviation of speed of gravity from the speed of light

ﬁf small |:> &1,}/1*]51“ i~ PENI &T/D
D = 26 Mpc

If simultaneous emission: the (+1.74 = 0.05) s due to faster travel by GW signal

|:> Upper bound on Av

If two signals emitted at times differing more than (+1.74 = 0.05) s \ith the faster
EM signal making up some of the difference |:> Lower bound on Av

Av = vgw — VEM

. Av |
If SGRB emitted 10 s after GW | _3 »« ()~ 1° < < 47 X 1016

VEM




GW 170817 and GRB 170817A : Implications for fundamental physics
Ap] Lett (2017)

Temporal offset of | (4-1.74 4 0.05) s| across a distance greater than 100 million Ly.

= deviation of speed of gravity from the speed of light

At small :> AV/vem 2 vemAL/D. AV = vgw — VEM
D = 26 Mpc

If simultaneous emission: the (+1.74 = 0.05) s due to faster travel by GW signal

|:> Upper bound on Av

If two signals emitted at times differing more than (+1.74 = 0.05) s \ith the faster
EM signal making up some of the difference |:> Lower bound on Av
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If SGRB emitted (-10, 1000) after GW, you gain 2 orders of magnitude in either side
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Standard Model Extension (SME) (an EFT description of Lorentz violation)

Av = vegw — VEM

controlled by differences in coefficients for Lorentz violation in the

gravitational sector and the photon sector at each mass dimension
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= yviolation of Lorentz invariance

Standard Model Extension (SME) (an EFT description of Lorentz violation)

Av = Vew — VEM  controlled by differences in coefficients for Lorentz violation in the

gravitational sector and the photon sector at each mass dimension
Concentrate on mass

dimension d=4
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spherical coefficients for Lorentz

spherical harmgnic basis
violation in GW/EM sector

sky position of event
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Temporal offset of | (4-1.74 4 0.05) s| across a distance greater than 100 million Ly.

= yviolation of Lorentz invariance

Standard Model Extension (SME) (an EFT description of Lorentz violation)

Constrain gravity sector coefficients one at a time, by setting all other coefficients
including those from EM sector, to zero.

I:> The isotropic upper bound gets improved by 10 orders of magnitude

Coetficient This Work Upper Previous Upper

5o 5% 10" 8 x 1077
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Temporal offset of | (+1.74 4= 0.05) s| across a distance greater than 100 million L.y.

= violation of equivalence principle
Probe whether EM radiation and GWs are affected in the same way by background potentials
Shapiro effect: the propagation time of massless particles in curved spacetime (i.e.

through gravitational fields) is slightly increased with respect to flat spacetime

L +@) fr
Ste = C;@ f Ur()dl

parametrizes deviation from
Einstein-Maxwell theory, which
minimally couples classical EM to GR

gravitational potential
~ A _
'EM — IGW —

in Einstein-Maxwell theory
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= violation of equivalence principle
Probe whether EM radiation and GWs are affected in the same way by background potentials

Shapiro effect: the propagation time of massless particles in curved spacetime (i.e.
through gravitational fields) is slightly increased with respect to flat spacetime

o = — ) i f Ur()dl
C I

Consider only effect of Milky Way outside sphere of 100 kpc and use Keplerian
potential with mass 2.5 % 10! M

—> | —26x 107 <vew — Yem < 1.2 x 1076

Best absolute bound from Shapiro delay with Cassini spacecraft: "&m — I=@1x23)x 107



Neutron star mergers within f(R) gravity

arXiv:17 09.066 34 (gr-gc)

Sagunski, Zhang, Johnson, Lehner, Sakellariadou, Liebling, Palenzuela, Neilsen

9 In theories where NS obtain a significant scalar charge, the resulting
f(B) = R + ag R attractive finite-range attractive scalar force has implications for both
the inspiral and merger phases of binary systems.
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As the stars merge, they form a massive NS which 011 strain / d k 1
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of the short-range scalar force as compared to GR, Pl A .
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