Cosmic String SGWB

MANCHESTER

Loop population GW emission Modelling Tension limits

The SGWB from cosmic string loops based on the one-scale model

Sotiris Sanidas

JBCA, University of Manchester

Work with: Richard Battye (JBCA, University of Manchester)

16th October 2017

Loop number density

Cosmic String SGWB

MANCHESTER

Loop population GW emission Modelling Tension limits Loops are born at a characteristic length scale

 $\ell_{\rm b} = \alpha d_{\rm H}(t_{\rm b})$

 \rightarrow Fundamental prerequisite: The network follows a scaling evolution.

Energy lost to attain scaling \rightarrow Loop creation rate:

 $\frac{dN_{\rm loop,css}}{dt}$

ightarrow For cosmic superstrings $rac{dN_{
m loop,css}}{dt} = rac{1}{p^k} rac{dN_{
m loop,css}}{dt}$

Loops decay through GW emission only

$$\ell(t, t_{\rm b}) = f_{\rm r} \alpha d_{\rm H}(t_{\rm b}) - \frac{\Gamma G \mu}{c} (t - t_{\rm b})$$

From these we can compute the loop number density $n(\ell,t)$

GW emission from cosmic string loops

Cosmic String SGWB

Loop population GW emission Modelling

Emission in a series of harmonics (modes) *n*:

$$f_{\rm n} = 2nc/\ell, \qquad n = 1 \to \infty$$

Emitted GW power per mode:

$$\frac{dE_{\rm gw,loop}}{dt} = P_n G \mu^2 c , \quad P_n = \Gamma n^{-q} / \sum_{m=1}^{n_*} m^{-q} \int_{m_*}^{n_*} m^{-q} dt = 4/3 \text{ (cusps)}, q = 5/3 \text{ (kinks)} \\ n_*: \text{ gravitational backreaction effects}$$

Given a loop number density $n(\ell, t)$

$$\Omega_{\rm gw}(f) = \frac{2G\mu^2 c^3}{\rho_{\rm crit} a^5(t_0) f} \sum_{j=1}^{\infty} j P_j \int_{t_{\rm f}}^{t_0} a^5(t') n_j(f,t') dt'$$

Correction due to change in relativistic degrees of freedom: $\left(\frac{g_{*,t_0}}{g_{*,t_{cor}}}\right)^{1/3}$ applied at $t_{cor.} = \left(\frac{32\pi G\rho}{3}\right)^{-1/2}$, $\rho = \frac{\pi^2}{30}g_*T$

SGWB modelling

Cosmic String

MANCHESTER

Loop population

GW emission

Modelling

Generic SGWB formulation: Five free parameters

- **Tension**: $G\mu/c^2$
- Loop birth scale: $\alpha \in [0.1 \alpha_{\min}]$ $\alpha_{\min} \approx 10^{-9}$ (PTAs), 10^{-16} (LISA), 10^{-20} (LIGO)

Intercommutation probability: p (and its scaling law dependence, k) $p = [10^{-3}, 1], k = -0.1 \text{ or } -0.6$

Loop emission spectrum:

- i. spectral index q (emission mechanism) cusps: -4/3, kinks:-5/3
- ii. emission mode cut-off n_* (gravitational backreaction) cusps: $n_*\in[1,10^4],$ kinks: $n_*\in[1,10^3]$

Conservative - No assumptions made on the model parameters.

PTA Upper Limits

Loop population

GW emission

Modelling

Tension limits

For upper limits: Only p = 1, $n_* = 1$, and $n_* = 10^4/q = -4/3$ needed

 $\begin{array}{l} \mbox{Match amplitude+spectral index} \\ \mbox{Planck:} & G\mu/c^2 < 1.3 \times 10^{-7} \\ \mbox{EPTA:} & G\mu/c^2 < 1.3 \times 10^{-7} \\ \mbox{for } \alpha = 0.05 & \\ & G\mu/c^2 < 2.9 \times 10^{-11} \end{array}$

 $\begin{array}{l} \textit{NANOGrav:} \\ G\mu/c^2 < 3.3 \times 10^{-8} \\ \textit{for } \alpha = 0.05 \\ G\mu/c^2 < 8.1 \times 10^{-12} \end{array}$

LISA

Loop population GW emission Modelling

Arms: 10^6 m Duration: 2 years

Arms: 5×10^6 m Duration: 5 years

Based on Thrane & Romano 2013 From the eLISA Cosmology Working Group report

LISA

Cosmic String

Loop population GW emission Modelling

Results for 6 links, SNR=20

A1M2

Conservative limit: $G\mu/c^2 < 4.4 \times 10^{-10}$ Large loops: $G\mu/c^2 < 1.5 \times 10^{-16}$

A2M2

Conservative limit: $G\mu/c^2 < 1.1 \times 10^{-10}$ Large loops: $G\mu/c^2 < 2.1 \times 10^{-17}$

A2M5

Conservative limit: $G\mu/c^2 < 7.0 \times 10^{-11}$ Large loops: $G\mu/c^2 < 1.3 \times 10^{-17}$

A5M5

Conservative limit: $G\mu/c^2 < 1.4 \times 10^{-11}$ Large loops: $G\mu/c^2 < 4.4 \times 10^{-18}$

Improvement (on conservative upper limits):

A1→A2:
$$\times 3.8 - 4.8$$

A2→A5: $\times 4.6 - 5$
M2→M5: $\times 1.6$