Scalar-Tensor theories of gravity after GW170817

Gianmassimo Tasinato

Modified gravity

Why modify gravity?

attempt to shed light on DE and DM by changing the gravitational sector

$$G_{\mu\nu} = T_{\mu\nu}$$

Simplest possibility

add single scalar field that participates to gravitational interactions and also affects cosmological dynamics

Modified gravity

Simplest possibility

add single scalar field that participates to gravitational interactions and also affects cosmological dynamics

- Brans-Dicke, quintessence
- K(X) theories
- Galileons/Horndeski
- Beyond Horndeski, $\mathrm{EST}/\mathrm{DHOST}$
- ????

Derivative self-interactions and couplings with scalar-gravity no Ostrogradsky instabilities

(Beyond) Horndeski

$$\begin{split} L_2 &\equiv G_2(\phi, X) , \qquad L_3 \equiv G_3(\phi, X) \Box \phi , \\ L_4 &\equiv G_4(\phi, X)^{(4)} R - 2G_{4,X}(\phi, X) (\Box \phi^2 - \phi^{\mu\nu} \phi_{\mu\nu}) \\ &+ F_4(\phi, X) \varepsilon^{\mu\nu\rho} \varepsilon^{\mu'\nu'\rho'\sigma} \phi_\mu \phi_{\mu'} \phi_{\nu\nu'} \phi_{\rho\rho'} , \\ L_5 &\equiv G_5(\phi, X)^{(4)} G_{\mu\nu} \phi^{\mu\nu} \\ &+ \frac{1}{3} G_{5,X}(\phi, X) (\Box \phi^3 - 3 \Box \phi \phi_{\mu\nu} \phi^{\mu\nu} + 2 \phi_{\mu\nu} \phi^{\mu\sigma} \phi^{\nu}_{\sigma}) \\ &+ F_5(\phi, X) \varepsilon^{\mu\nu\rho\sigma} \varepsilon^{\mu'\nu'\rho'\sigma'} \phi_\mu \phi_{\mu'} \phi_{\nu\nu'} \phi_{\rho\rho'} \phi_{\sigma\sigma'} , \end{split}$$

$$X \equiv g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi$$

Most general scalar-tensor theory?

Why should we care ?

- ► Cosmological solutions that **self-accelerate** with no need of a cosmological constant
 - $\rightarrow\,$ Distinctive dynamics of cosmological fluctuations (growth of structure), testable with future surveys
- Automatic implementation of Vainshtein screening mechanism, to evade solar system constraints on deviations from GR

$$V \sim \left(\frac{r}{r_V}\right)^{3/2} V_N \qquad V_N \sim \frac{r_s}{r}$$

Why should we care ?

- ► Cosmological solutions that **self-accelerate** with no need of a cosmological constant
 - $\rightarrow\,$ Distinctive dynamics of cosmological fluctuations (growth of structure), testable with future surveys
- Automatic implementation of Vainshtein screening mechanism, to evade solar system constraints on deviations from GR
- ► Rich phenomenology for compact objects
 - Black holes with scalar hairs, and distinctive features
 - Neutron stars more compact and/or more massive than in GR

Why should we care ?

- ► Cosmological solutions that **self-accelerate** with no need of a cosmological constant
 - $\rightarrow\,$ Distinctive dynamics of cosmological fluctuations (growth of structure), testable with future surveys
- Automatic implementation of Vainshtein screening mechanism, to evade solar system constraints on deviations from GR
- ► Rich phenomenology for compact objects
 - Black holes with scalar hairs, and distinctive features
 - Neutron stars more compact and/or more massive than in GR

Implications of the Neutron Star Merger GW170817 for Cosmological Scalar-Tensor Theories

Jeremy Sakstein^{1, *} and Bhuvnesh Jain^{1, †}

Dark Energy after GW170817

Paolo Creminelli¹ and Filippo Vernizzi²

Dark Energy after GW170817

Jose María Ezquiaga
1, 2, $\ast\,$ and Miguel Zumalacár
regui
2, 3, $\dagger\,$

Strong constraints on cosmological gravity from GW170817 and GRB 170817A.

T. Baker,¹ E. Bellini,¹ P. G. Ferreira,¹ M. Lagos,² J. Noller,³ and I. Sawicki⁴

Kinetic mixing scalar-gravity

$$L_{2} \equiv G_{2}(\phi, X), \qquad L_{3} \equiv G_{3}(\phi, X) \Box \phi,$$

$$L_{4} \equiv G_{4}(\phi, X)^{(4)}R - 2G_{4,X}(\phi, X)(\Box \phi^{2} - \phi^{\mu\nu}\phi_{\mu\nu})$$

$$+ F_{4}(\phi, X)\varepsilon^{\mu\nu\rho}\sigma \varepsilon^{\mu'\nu'\rho'\sigma}\phi_{\mu}\phi_{\mu'}\phi_{\nu\nu'}\phi_{\rho\rho'},$$

$$L_{5} \equiv G_{5}(\phi, X)^{(4)}G_{\mu\nu}\phi^{\mu\nu}$$

$$+ \frac{1}{3}G_{5,X}(\phi, X)(\Box \phi^{3} - 3\Box\phi\phi_{\mu\nu}\phi^{\mu\nu} + 2\phi_{\mu\nu}\phi^{\mu\sigma}\phi_{\sigma}^{\nu})$$

$$+ F_{5}(\phi, X)\varepsilon^{\mu\nu\rho\sigma}\varepsilon^{\mu'\nu'\rho'\sigma'}\phi_{\mu}\phi_{\mu'}\phi_{\nu\nu'}\phi_{\rho\rho'}\phi_{\sigma\sigma'},$$

Derivative couplings graviton to scalar change c_T

t

Who survives to
$$(c^2 - c_T^2)/c^2 < 10^{-15}$$
 ??

$$\begin{array}{l} L_{2} \equiv G_{2}(\phi, X) , \qquad L_{3} \equiv G_{3}(\phi, X) \Box \phi , \\ \hline L_{4} \equiv G_{4}(\phi, X)^{(4)}R - 2G_{4,X}(\phi, X)(\Box \phi^{2} - \phi^{\mu\nu}\phi_{\mu\nu}) \\ + F_{4}(\phi, X)\varepsilon^{\mu\nu\rho}\sigma \varepsilon^{\mu'\nu'\rho'\sigma}\phi_{\mu}\phi_{\mu'}\phi_{\nu\nu'}\phi_{\rho\rho'} , \\ \hline L_{5} \equiv G_{5}(\phi, X)^{(4)}G_{\mu\nu}\phi^{\mu\nu} \\ + \frac{1}{3}G_{5,X}(\phi, X)(\Box \phi^{3} - 3\Box\phi\phi_{\mu\nu}\phi^{\mu\nu} + 2\phi_{\mu\nu}\phi^{\mu\sigma}\phi^{\nu}_{\sigma}) \\ + F_{5}(\phi, X)\varepsilon^{\mu\nu\rho\sigma}\varepsilon^{\mu'\nu'\rho'\sigma'}\phi_{\mu}\phi_{\mu'}\phi_{\nu\nu'}\phi_{\rho\rho'}\phi_{\sigma\sigma'} , \end{array} \right)$$

Very good! Finally a criterium to greatly reduce the size of parameter space

Who survives to $(c^2 - c_T^2)/c^2 < 10^{-15}$??

$$L_{2} \equiv G_{2}(\phi, X) , \qquad L_{3} \equiv G_{3}(\phi, X) \Box \phi ,$$

$$L_{4} \equiv G_{4}(\phi, X)^{(4)}R - 2G_{4,X}(\phi, X)(\Box \phi^{2} - \phi^{\mu\nu}\phi_{\mu\nu}) + F_{4}(\phi, X)\varepsilon^{\mu\nu\sigma}\sigma\varepsilon^{\mu'\nu'\rho'\sigma}\phi_{\mu}\phi_{\mu'}\phi_{\nu\nu'}\phi_{\rho\rho'} ,$$

$$L_{5} \equiv G_{5}(\phi, X)^{(4)}G_{\mu\nu}\phi^{\mu\nu} + \frac{1}{3}G_{5,X}(\phi, X)(\Box \phi^{3} - 3\Box\phi\phi_{\mu\nu}\phi^{\mu\nu} + 2\phi_{\mu\nu}\phi^{\mu\sigma}\phi^{\nu}_{\sigma}) + F_{5}(\phi, X)\varepsilon^{\mu\nu\rho\sigma}\varepsilon^{\mu'\nu'\rho'\sigma'}\phi_{\mu}\phi_{\mu'}\phi_{\nu\nu'}\phi_{\rho\rho'}\phi_{\sigma\sigma'} ,$$

$$C_{g} = c \qquad C_{g} \neq c$$

$$C_{g} = c \qquad C_{g} = c \qquad C_{g} \neq c$$

$$C_{g} = c \qquad C_{g} = c \qquad$$

Kinetic Gravity Braiding [46]

Derivative Conformal (20) [18] Disformal Tuning (22)

beyond H.

DHOST with $A_1 = 0$

Viable after GW170817

Non-viable after GW170817

 $G_{\mu\nu}\phi^{\mu}\phi^{\nu}$ [47], Gauss-Bonnet

quartic/quintic GLPV [19]

DHOST [20, 48] with $A_1 \neq 0$

Bad for

compact objects

Who survives to $(c^2 - c_T^2)/c^2 < 10^{-15}$??

$$G_{5,X} = 0, F_5 = 0,$$

 $2G_{4,X} - XF_4 + G_{5,\phi} = 0$

no (symmetry) reason to select this combination

$$L_{c_T=1} = G_2(\phi, X) + G_3(\phi, X) \Box \phi + B_4(\phi, X)^{(4)} R$$

$$-\frac{4}{X} B_{4,X}(\phi, X) (\phi^{\mu} \phi^{\nu} \phi_{\mu\nu} \Box \phi - \phi^{\mu} \phi_{\mu\nu} \phi_{\lambda} \phi^{\lambda\nu}) ,$$

What to do?

Full study of consequences of this reduced action, not excluded by GW081708 $\,$

- Screening mechanisms still apply (cubic Galileon)
- Consequences for BHs and neutron stars (still not clear if any difference from BransDicke in this respect)

2... or find good reasons to continue to work on more complicated theories

What about massive gravity?

dRGT is consistent covariant theory of massive gravity; Hassan-Rosen extended to bigravity

$$S = \int d^4x \left[M_P^2 \sqrt{-g} R[g] + \sqrt{-g} P_g(X,\varphi) + 2\sqrt{-g} m^2 M^2 V + M_f^2 \sqrt{-f} R[f] \right]$$

$$V = \sum_{n=0}^{4} \beta_n \, \mathcal{E}_n(\sqrt{g^{-1}f})$$

$$\begin{split} \mathcal{E}_{0}(\mathbb{X}) &= 1, \quad \mathcal{E}_{1}(\mathbb{X}) = \mathrm{Tr}(\mathbb{X}) \equiv [\mathbb{X}], \quad \mathcal{E}_{2}(\mathbb{X}) = \frac{1}{2} \left([\mathbb{X}]^{2} - [\mathbb{X}^{2}] \right), \\ \mathcal{E}_{3}(\mathbb{X}) &= \frac{1}{3!} \left([\mathbb{X}]^{3} - 3[\mathbb{X}^{2}][\mathbb{X}] + 2[\mathbb{X}^{3}] \right), \\ \mathcal{E}_{4}(\mathbb{X}) &= \frac{1}{4!} \left([\mathbb{X}]^{4} - 6[\mathbb{X}^{2}][\mathbb{X}]^{2} + 8[\mathbb{X}^{3}][\mathbb{X}] + 3[\mathbb{X}^{2}]^{2} - 6[\mathbb{X}^{4}] \right). \end{split}$$

What about massive gravity?

dRGT is consistent covariant theory of massive gravity; Hassan-Rosen extended to bigravity

$$E^2 = k^2 + m^2$$

or $v^2 = 1 - \frac{m^2}{E^2}$

modified dispersion relation

Bounds:

 $m < 10^{-22} eV$ from GW150914 Phase difference in waveforms. $m < 10^{-22} eV$ from time-delay of GW081708

(not competitive with solar system constrains $m < 10^{-33} eV$)

Survived to GW081708! (But many other problems to address)