Enrico Barausse (IAP/CNRS, Paris, France)

Supermassive black-hole binaries as gravitational-wave sources (and standard sirens?)

MITP, October 18th 2017

- The status of LISA in the era of the first detections
- The astrophysics of massive BH (binaries)
- Massive BH mergers as GW sources for LISA:
 event rates and parameter estimation
 standard candles as a tool for cosmology

The status of LISA

- ESA selected the "Cosmic Vision" L3 launch slot (2034) for theme "The Gravitational Universe"
- LISA Pathfinder mission a success (surprisingly stable)

 LISA design/mission not selected yet, options have been analyzed by Gravitational Wave Advisory Team (GOAT) collaboration with LISA consortium

Klein, EB, Sesana, Petiteau, et al PRD 93, 024003 (2016): massive BHs
 Tamanini, Caprini, EB, Sesana, Klein, Petiteau, JCAP 04 (2016) 002: standard sirens
 Caprini, Hindmarsh, Huber, Konstandin, et al JCAP 04 (2016) 001: stochastic backgrounds
 Sesana PRL 116, 231102 (2016); Nishizawa, Berti, Klein, Sesana, PRD 94, 064020 (2016): multiband
 EB, Yunes and Chamberlain, PRL 116, 241104 (2016) : multiband, tests of GR
 Berti, Sesana, EB, Cardoso, Belczynski, PRL 117, 101102 (2016): no-hair theorem
 Gair, Sesana, Babak, EB, et al arXiv:1703.09722 : EMRIs

ESA call for mission adoption in Jan 2017, then industrial production (~ 10 yrs) which will make mission possible in ~2030 (?)

Options for the LISA design considered in GOAT studies (2015-16)

- Armlength L= 1, 2, 5 Gm (A1, A2, A5)
- Low-frequency noise at the LISA requirement level of LISA Pathfinder (N2) or 10 times worse (N1): we know it's N2!
- 4 or 6 links (L4, L6), 2 or 5 year mission (M2, M5)
- Laser power of 0.7 W for A1 and 2 W for A2 and A5; telescope mirror size of 25 cm for A1, 28 cm for A2, 40 cm for A5.
 2W laser and 40 cm telescope improve high-frequency performance

From Klein EB et al 2015

LISA configuration proposed to ESA, Jan 2017

6 links, 2.5 Gm arms, nominal 4 yr duration, up to 10 yr

Why massive BH merge

Ferrarese & Merritt 2000 Gebhardt et al. 2000, Gültekin et al (2009)

What links large and small scale?

Disk of dust and gas

in NGC 7052

Small to large: BH jets or disk winds transfer kinetic energy to the galaxy and keep it "hot", quenching star formation ("AGN feedback"). Needed to reconcile Λ CDM bottom-up structure formation with observed "downsizing" of cosmic galaxies

simulation by Palenzuela, Lehner and Liebling 2010; cf also Blandford & Znajek (1977)

Large to small: galaxies provide fuel to BHs to grow ("accretion")

Evidence for BH mergers from nuclear star cluster observations

• NSC: masses up to $\sim 10^7$ M_{sun}, r \sim pc

BH binaries eject stars by slingshot effect and through remnant's recoil ("erosion")

 Erosion by BH binaries crucial to reproduce NSC scaling relations

$$M_{
m ej} \approx 0.7 q^{0.2} M_{
m bin} + 0.5 M_{
m bin} \ln \left(\frac{a_{
m h}}{a_{
m gr}}
ight) +5 M_{
m bin} \left(V_{
m kick} / V_{
m esc}
ight)^{1.75} ,$$

Antonini, EB & Silk (2015)

Science with massive BH binaries

EB 2012

- Evolution of massive BHs difficult to predict because co-evolution with galaxies (c.f. M-σ relation, accretion, jets, feedback, etc)
- Purely numerical simulations impossible due to sheer separation of scales (10⁻⁶ pc to Mpc) and dissipative/nonlinear processes at sub-grid scales
- Semi-analytical model (EB 2012) with 7 free parameters, calibrated vs data at z = 0 and z > 0 (e.g. BH luminosity & mass function, stellar/baryonic mass function, SF history, M -σ relation, etc)

Massive BH model's uncertainties

- Seed model: light seeds from PopIII stars (~100 M_{sun}) vs heavy seeds from instabilities of protogalactic disks (~10⁵ M_{sun})
- No delays between galaxy and BH mergers, or delays depending on environment/presence of gas:
 - 3-body interactions with stars on timescales of 1-10 Gyr
 - Gas-driven planetary-like migration on timescales ≥ 10 Myr
 - Triple massive BH systems on timescales of 0.1-1 Gyr

PopIII=light seeds, delays (but similar results with no delays)

Q3-d= heavy seeds, delays Q3-nod= heavy seeds, no delays

From Klein EB et al 2015

Model predictions

PopIII = light seeds, delays

Q3-d = heavy seeds, delays

Detection rates

From Klein EB et al 2015

brown = popIII, orange = Q3-d, green = Q3-nod thick = six links (L6), thin = four links (L4)

Relative loss relative to NGO (N2A1MkL4)

LISA configuration proposed to ESA, Jan 2017

The effect of BH spins: frame-dragging in isolated BHs

- Mass behaves qualitatively like in Newtonian gravity
- Spin affects motion around BHs ("frame dragging"):

Efficiency of EM emission from thin disks

The effect of BH spins: frame-dragging in binaries

Spin-orbit coupling or "hang-up" effect: for large spins aligned with L, effective ISCO moves inward ...

Figures from Lousto, Campanelli & Zlochower (2006)

The effect of BH spins: frame-dragging in binaries

... and GW "efficiency" gets larger

Spins strongly affect GW signals!

Figure from EB, Morozova & Rezzolla (2012)

The effect of BH spins on the waveforms

- GW amplitude at merger increases with spins (because ISCO moves inward for larger spins)
- Spin precesses around total angular momentum J=L+S1 +S2
- Precession-induced modulations observable with GW detectors:
 - increase SNR and improve measurements of binary parameters (e.g. luminosity distance and sky localization)
 - Allow measurements of angle between spins

EOB waveforms for BH binary with mass ratio 1:6 and spins 0.6 and 0.8, from Pan et al (2013)

Errors on individual masses/spins

brown = popIII, orange = Q3-d, green = Q3-nod thick = six links (L6), thin = four links (L4)

Relative loss relative to NGO (N2A1MkL4)

Provides information about properties of BH accretion and BH mass history

From Klein EB et al 2015

Errors on spin inclinations and final spin

From Klein EB et al 2015

brown = popIII, orange = Q3-d, green = Q3-nod thick = six links (L6), thin = four links (L4)

Relative loss relative to NGO (N2A1MkL4)

Provides information about interactions with gas (Bardeen-Petterson effect) and ringdown tests of GR

The Bardeen Petterson effect (see also King, Pringle, Dotti, Volonteri, Perego, Colpi, ...)

- Coupling between BH spin S and angular momentum L of misaligned accretion disk + dissipation
- Either aligns or anti-aligns S and L in ~10⁵ yrs (for MBHs) << accretion timescale</p>

L>2S

 Anti-alignment only if disk carries little angular momentum (L < 2S) and is initially counterrotating

L<<2S

Cosmography ("standard sirens") and probes of massive BH formation

From Klein EB et al 2015

brown = popIII, orange = Q3-d, green = Q3-nod thick = six links (L6), thin = four links (L4)

Relative loss relative to NGO (N2A1MkL4)

Electromagnetic counterparts

- GWs provide measurement of luminosity distance (though degraded by weak lensing) but not redshift
- In order to do cosmography in a non-statistical way, we need redshift
- Electromagnetic (spectroscopic or photometric) redshift measurement needs presence of gas, e.g. radio jet+ followup optical emission (SKA+ELT) or optical transient (LSST)

From Tamanini et al 2016

Electromagnetic counterparts and cosmography

Model	N2A5M5L6						N2A2M5L4						
	P(%)	$\Delta \Omega_M$	$\Delta \Omega_{\Lambda}$	Δh	Δw_0	Δw_a	P(%)	$\Delta \Omega_M$	$\Delta \Omega_{\Lambda}$	Δh	Δw_0	Δw_a	
5 param.	100	4.31	7.16	1.58	13.2	92.3	67.8	320	799	47.7	344	5530	
	100	18.0	24.9	9.95	88.6	392	2.54	$\gg 10^4$	$\gg 10^4$	$\gg 10^{4}$	$\gg 10^4$	$\gg 10^4$	
	100	2.80	5.15	0.681	4.66	55.7	68.6	138	306	13.3	127	2400	
ACDM	100	0.0819	0.281	0.0521			91.5	0.471	2.66	0.429			
	100	0.220	0.541	0.136			12.7	$\gg 10^4$	$\gg 10^4$	$\gg 10^{4}$			
+ curv.	100	0.0473	0.207	0.0316			90.7	0.174	1.26	0.145			
ΛCDM	100	0.0473	0.0473	0.0210			97.5	0.275	0.275	0.0910			
	100	0.0917	0.0917	0.0480			32.2	0.543	0.543	0.220			
	100	0.0371	0.0371	0.0146			99.2	0.126	0.126	0.0400			
DDE	100				0.253	1.32	97.5				1.03	6.36	
	100				0.584	2.78	37.3				4.96	26.1	
	100				0.176	1.00	95.8				0.427	2.87	
Accel.	100	0.0190	0.0735				99.2	0.211	0.396				
& curv.	100	0.0280	0.105				37.3	0.977	1.30				
test	100	0.0213	0.0631				94.1	0.116	0.202				
$\mathop{\rm Error}\limits_{{\rm on}\ \Omega_M}$	100	0.0173					100	0.0670					
	100	0.0238					53.4	0.0755					
	100	0.0172					100	0.0437					
Error on h	100			0.00712			100			0.0146			
	100			0.00996			53.4			0.0175			
	100			0.00531			100			0.00853			
Error on w ₀	100				0.0590		100				0.121		
	100				0.0786		53.4				0.146		
	100				0.0467		100				0.0734		

Model	N2A5M5L6						N2A2M5L4						
	P(%)	$\Delta \Omega_M$	$\Delta \Omega_{\Lambda}$	Δh	Δw_0	Δw_a	P(%)	$\Delta \Omega_M$	$\Delta \Omega_{\Lambda}$	Δh	Δw_0	Δw_a	
	100	2.51	4.40	0.951	8.01	55.2	80.5	120	253	24.8	177	2230	
0	100	4.64	6.90	2.58	22.4	103	44.1	1480	3250	371	2350	$\gg 10^4$	
param.	100	1.05	1.97	0.265	2.07	21.2	93.2	12.6	27.8	2.08	15.9	227	
ACDM	100	0.0467	0.155	0.0299			96.6	0.315	1.51	0.228			
+ oppu	100	0.0875	0.209	0.0527			77.1	0.396	1.61	0.306			
+ curv.	100	0.0265	0.0914	0.0161			99.2	0.0610	0.342	0.0520			
	100	0.0267	0.0267	0.0121			99.2	0.121	0.121	0.0445			
ACDM	100	0.0368	0.0368	0.0199			90.7	0.151	0.151	0.0681			
	100	0.0186	0.0186	0.00803			100	0.0464	0.0464	0.0159			
	100				0.149	0.798	98.3				0.507	3.09	
DDE	100				0.241	1.14	89.0				0.777	4.06	
	100				0.101	0.544	99.2				0.201	1.20	
Accel.	100	0.0105	0.0412				99.2	0.0660	0.174				
& curv.	100	0.00972	0.0429				84.7	0.0544	0.161				
test	100	0.00887	0.0310				99.2	0.0381	0.0804				
Emor	100	0.00966					100	0.0319					
Error	100	0.00935					94.1	0.0283					
on st _M	100	0.00788					100	0.0199					
Freeze	100			0.00412			100			0.00850			
on h	100			0.00446			94.1			0.00937			
	100			0.00307			100			0.00485			
Emor	100				0.0342		100				0.0678		
Error	100				0.0368		94.1				0.0729		
on w_0	100				0.0254		100				0.0416		

From Tamanini et al 2016

sky-location by inspiral only

sky-location by IMR

- Better LISA configurations provide measurements of h under different systematics than present probes
- Measurement of Ω_m slightly better than SNIa with best designs
- Measurement of combination of Ω_m and Ω_Λ different from SNIa/CMB (i.e. potential to break degeneracy)
- Discovery space: LISA sensitive to cosmological evolution at $z \sim 1 8$

Cosmography with different designs

N2A5M5L6

N2ASM5L6

N2A5M5L6						
N2A2M5L6						
N2A1M5L6	Constraints comparable to or slightly worse					
N1A5M5L6	than N2A5M5L6					
N2A5M5L4						
N1A2M5L6	Constraints worse than N2A5M5L6, but better than N2A2M5L4.					
N1A1M5L6	Constraints comparable to or slightly better					
N2A2M5L4	than N2A2M5L4					
N2A1M5L4						
N1A5M5L4	Constraints worse than N2A2M5L4 or no					
N1A2M5L4	constraints at all.					
N1A1M5L4						

FoM ~ 1/error

From Tamanini et al 2016

LISA main science goal is to reconstruct cosmological merger history of massive BHs

- Uncertainties about seed model and delays (finalparsec problem) but we expect tens to hundreds of detections
- LISA science goal best achievable with not-toodescoped configurations (6 links, 2.5 Gm arms, >4 yrs mission)
- SESA decision on final design by 2017 so as to allow launch in ~2034 or even before

Thank you!