# Electroweak baryogenesis after LHC8

 $\bigcirc$ 

### Stephan Huber, University of Sussex

Mainz, Germany August 2014 Moduli-induced baryogenesis [arXiv:1407.1827] WIMPy baryogenesis [arXiv:1406.6105] Baryogenesis by black holes [arXiv:1406.6215] Inflatonic baryogenesis [arXiv:1405.1959] Affleck-Dine baryogenesis [1404.3108]

Electroweak baryogenesis

Leptogenesis

# The baryon asymmetry

$$\eta_B = \frac{n_B}{n_\gamma} = (6.047 \pm 0.074) \times 10^{-10}$$

#### [Planck 2013]

Good agreement between CMB and primordial nucleosynthesis

→ we understand the universe up to T~MeV

Can we repeat this success for the baryon asymmetry?

Problem: only 1 observable

 $\rightarrow$  Need to be convinced by a specific model:

Theory?, Experiment? (belief??) ...

 $T < TeV scale? \rightarrow EWBG$ 



[Particle Data Group]

| Collider<br>Higgs properties<br>New particles | Model building                                    | Gravitational<br>waves       |
|-----------------------------------------------|---------------------------------------------------|------------------------------|
| Dark matter                                   | First-order<br>electroweak<br>Phase transition    | Cosmic<br>Magnetic<br>fields |
| CP violation<br>Electric dipole<br>moments    | Computational tools<br>Transport<br>hydrodynamics | Baryon<br>asymmetry          |



- 2HDM (phase transition, baryogenesis)
- gravitational waves, fluid dynamics: Gravitational wave production is dominated by sound waves
- extended SUSY
- Summary & outlook

# The 2HDM

# The 2HDM

$$V(H_1, H_2) = \mu_1^2 |H_1|^2 + \mu_2^2 |H_2|^2 + \mu_3^2 e^{i\phi} H_1^{\dagger} H_2 + \lambda_1 |H_1|^4 + \dots$$

 $\rightarrow$  4 extra physical Higgs degrees of freedom: 2 neutral, 2 charged

- $\rightarrow$  CP violation, phase  $\Phi$  ( $\mu_3$  breaks Z<sub>2</sub> symmetry softly)
- $\rightarrow$  there is a phase induced between the 2 Higgs vevs

$$v_1 = \langle H_1 \rangle, \quad v_2 e^{i\theta} = \langle H_2 \rangle$$

Davies, Froggatt, Jenkins, Moorhouse ' 94 Cline, Kainulainen, Vischer ' 95 Cline, Lemieux '96

Turok, Zadrozny '91

early work:

simplified parameter choice:

- 1 light Higgs  $m_h \rightarrow SM$ -like
- 3 degenerate heavy Higgses  $m_H \rightarrow keeps EW$  corrections small

# The phase transition

Evaluate 1-loop thermal potential:

loops of heavy Higgses generate a cubic term

 $\rightarrow$  strong PT for

m<sub>H</sub>>300 GeV

m<sub>h</sub> up to 200 GeV

- $\rightarrow$  PT ~ independent of  $\Phi$
- → thin walls only for very strong PT (agrees with Cline, Lemieux '96)



#### [Fromme, S.H., Senuich '06]

missing: 2-loop analysis of the thermal potential; lattice; wall velocity

# The bubble wall

Solve the field equations with the thermal potential  $\rightarrow$  wall profile  $\Phi_{l}(z)$ 

kink-shaped with wall thickness L<sub>w</sub>







(numerical algorithm for multi-field profiles, T. Konstandin, S.H. '06)

# Transport

The interaction with the **bubble wall** induces a **force** on the particles, which is different for particles and antiparticles if CP is broken

$$(\partial_t + \dot{z}\partial_z + \dot{p}_z\partial_{p_z})f = \mathcal{C}[f]$$

Force: 
$$\dot{p}_z = -\partial_z E(z, p_z)$$

$$E_{\pm} = E_0 \pm \Delta E_0$$
  
=  $\sqrt{p^2 + m^2} \pm \theta' \frac{m^2}{2(p^2 + m^2)}$ 

collision terms

Joyce, Prokopec, Turok ' 95 Cline, Joyce, Kainulainen ' 00 Kainulainen, Prokopec, Schmidt, Weinstock '02

Top mass phase varies along the wall (wall width  $L_w$ ) because the phase between the Higgs vevs changes:

$$M(z) = m(z)e^{i\theta(z)}$$



### Charge transport equations:

 $3v_{\mathbf{w}}K_{1,t}\mu_{t,2}' + 3v_{\mathbf{w}}K_{2,t}(m_t^2)'\mu_{t,2} + 3u_{t,2}'$  $-3\Gamma_y(\mu_{t,2} + \mu_{t^c,2} + \mu_{h,2}) - 6\Gamma_m(\mu_{t,2} + \mu_{t^c,2}) - 3\Gamma_W(\mu_{t,2} - \mu_{b,2})$  $-3\Gamma_{ss}[(1+9K_{1,t})\mu_{t,2} + (1+9K_{1,b})\mu_{b,2} + (1-9K_{1,t})\mu_{t^c,2}] = 0$ 

 $-3K_{4,t}\mu'_{t,2} + 3v_{\mathbf{w}}\tilde{K}_{5,t}u'_{t,2} + 3v_{\mathbf{w}}\tilde{K}_{6,t}(m_t^2)'u_{t,2} + 3\Gamma_t^{\text{tot}}u_{t,2} = S_t$ 

(8 TE's for velocities and chemical potentials)

$$S_{t} = -v_{w}K_{8}(m_{t}^{2}\theta_{t}')' + v_{w}K_{9}\theta_{t}'m_{t}^{2}(m_{t}^{2})$$

(CP violating source term)

$$\mu_{B_L} = \mu_{q_1,2} + \mu_{q_2,2} + \frac{1}{2}(\mu_{t,2} + \mu_{b,2})$$

(left-handed quark chem. potential)

$$\eta_B = \frac{n_B}{s} = \frac{405\Gamma_{ws}}{4\pi^2 v_{w} g_* T} \int_0^\infty dz \ \mu_{B_L}(z) e^{-\nu z} dz$$

(final baryon asymmetry)

Some rates badly known; additional sources from collisions?

### Resulting baryon asymmetry: known to a factor few?



$$m_h = 125$$
  $m_H = 350$  GeV,  $\mu_3^2 = 10000$  GeV<sup>2</sup> and  $\phi = 0.2$ 

# The baryon asymmetry

The relative phase between the Higgs vevs,  $\theta$ , changes along the bubble wall  $\rightarrow$  phase of the top mass varies  $\theta_t = \theta / (1 + \tan^2 \beta)$ top transport generates a baryon asymmetry, but  $\rightarrow$  only one phase, so EDMs can be predicted: here

exp. bound:  $d_n < 3.0 \ 10^{-26} e cm$ 





 $\eta_B$  in units of 10^{-11},  $\phi\text{=}0.2$ 

# The baryon asymmetry

 $\gamma, Z, q$ 

The relative phase between the Higgs vevs,  $\theta$ , changes along the bubble wall  $\rightarrow$  phase of the top mass varies  $\theta_t = \theta / (1 + \tan^2 \beta)$ top transport generates a baryon asymmetry, but  $\rightarrow$  only one phase, so EDMs can be predicted: here d\_=0.1 10<sup>-26</sup> – 7 10<sup>-26</sup> e cm



 $\eta_B$  in units of 10<sup>-11</sup>,  $\phi$ =0.2

New bound on electron EDM!

## More general parameter scan

#### [Dorsch, S.H., No, 2013]

$$\begin{split} V_{tree}(\Phi_{1},\Phi_{2}) &= -\mu_{1}^{2}\Phi_{1}^{\dagger}\Phi_{1} - \mu_{2}^{2}\Phi_{2}^{\dagger}\Phi_{2} - \frac{\mu^{2}}{2}\left(e^{i\phi}\Phi_{1}^{\dagger}\Phi_{2} + H.c.\right) + \\ &+ \frac{\lambda_{1}}{2}\left(\Phi_{1}^{\dagger}\Phi_{1}\right)^{2} + \frac{\lambda_{2}}{2}\left(\Phi_{2}^{\dagger}\Phi_{2}\right)^{2} + \lambda_{3}\left(\Phi_{1}^{\dagger}\Phi_{1}\right)\left(\Phi_{2}^{\dagger}\Phi_{2}\right) + \\ &+ \lambda_{4}\left(\Phi_{1}^{\dagger}\Phi_{2}\right)\left(\Phi_{2}^{\dagger}\Phi_{1}\right) + \frac{\lambda_{5}}{2}\left[\left(\Phi_{1}^{\dagger}\Phi_{2}\right)^{2} + H.c.\right] \end{split}$$

Type I or II, softly broken

No CP violation, i.e.  $\phi=0$ 

We analyze the thermal 1-loop potential

 $\begin{array}{rl} 0.4 \leq \ \tan\beta \leq 10, \\ -\frac{\pi}{2} < \ \alpha & \leq \frac{\pi}{2}, \\ 0 \ \mathrm{GeV} \leq & \mu \leq 1 \ \mathrm{TeV}, \\ 100 \ \mathrm{GeV} \leq & m_{A^0}, \ m_{H^{\pm}} \leq 1 \ \mathrm{TeV}, \\ 150 \ \mathrm{GeV} \leq & m_{H^0} \leq 1 \ \mathrm{TeV}. \end{array}$ 

(parameter ranges, m<sub>h</sub>=125 GeV)

Constraints: rho-parameter

 $B \rightarrow s \gamma$ , B-Bbar mixing



# Preference for small tanβ

#### [Dorsch, S.H., No, 2013]







### **Di-photon channel**



# Preference for a heavy pseudoscalar



#### [Dorsch, S.H., Mimasu, No '14]

Preference for a large

negative  $\lambda_5$ 

$$\frac{\lambda_5}{2} \left[ \left( \Phi_1^{\dagger} \Phi_2 \right)^2 + H.c. \right]$$



# The strong phase transition at LHC

#### Search for $A_0 \rightarrow H_0Z \rightarrow II bb$ [Dorsch, S.H., Mimasu, No '14]





|                                                                                                        | Signal | $t\overline{t}$ | $Z  b \overline{b}$ | ZZ     | Zh     |
|--------------------------------------------------------------------------------------------------------|--------|-----------------|---------------------|--------|--------|
| Event selection                                                                                        | 14.6   | 1578            | 424                 | 7.3    | 2.7    |
| $80 < m_{\ell\ell} < 100~{\rm GeV}$                                                                    | 13.1   | 240             | 388                 | 6.6    | 2.5    |
| $\begin{array}{l} H_T^{\rm bb} > 150  {\rm GeV} \\ H_T^{\ell\ell \rm bb} > 280  {\rm GeV} \end{array}$ | 8.2    | 57              | 83                  | 0.8    | 0.74   |
| $\Delta R_{bb} < 2.5, \ \Delta R_{\ell\ell} < 1.6$                                                     | 5.3    | 5.4             | 28.3                | 0.75   | 0.68   |
| $m_{bb}, m_{\ell\ell bb}$ signal region                                                                | 3.2    | 1.37            | 3.2                 | < 0.01 | < 0.02 |

Discovery needs ~ 40 fb<sup>-1</sup> (at 14 TeV) (m<sup>±</sup>=400 GeV, m<sub>Ho</sub>=180 GeV)

a strong phase transition in the 2HDM is very much consistent with a SM-like light Higgs

# specific predictions for the mass spectrum and certain coupling constants

testable at LHC

### Inert 2HDM:

$$V(\Phi_1, \Phi_2) = m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 + \frac{\lambda_1}{2} (\Phi_1^{\dagger} \Phi_1)^2 + \frac{\lambda_2}{2} (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \frac{\lambda_5}{2} \left[ (\Phi_1^{\dagger} \Phi_2)^2 + (\Phi_2^{\dagger} \Phi_1)^2 \right]$$

doublet 2 does not get a vev

→ Dark matter

CP violation from higher-dim. Operators

similar: Higgs + scalar singlet + fermion singlet dark matter [Fairbaim, Hogan 2013]

NMSSM-like SUSY, e.g.

[Menon, Morrissey, Wagner '04]

$$\begin{aligned} \mathbb{Z}_2 : & \Phi_1 \to \Phi_1 \,, & \Phi_2 \to -\Phi_2 \,, \\ \mathbb{Z}'_2 : & \Phi_1 \to -\Phi_1 \,, & \Phi_2 \to \Phi_2 \,, & f_R \to -f_R \,, \end{aligned}$$



[Gil, Chankowski, Krawczyk 2012]

# **Numerical Simulations**

of a first-order phase transition and gravitational waves (with Hindmarsh, Rummukainen, Weir 2013)

## **Gravitational waves**

#### LISA / eLISA





Grojean, Servant '06

sources of GW's: direct bubble collisions turbulence (magnetic fields) sound waves

key parameters: available energy

 $\alpha = \frac{\text{latent heat}}{\text{radiation energy}}$ 

#### typical bubble radius

$$\langle R \rangle \propto v_b \tau \approx \frac{v_b}{\beta}.$$

 $v_{b}$  wall velocity

#### The envelope approximation: Kosowsky, Turner 1993



Energy momentum tensor of expanding bubbles modelled by expanding infinitely thin shells, cutting out the overlap → very non-linear!

Tested by colliding two pure scalar bubbles

Recent scalar field theory simulation: Child, Giblin 2012

What happens if the fluid is relevant?

Turbulence??

We performed the first 3d simulation of a scalar + relativistic fluid system:

$$V(\phi,T) = \frac{1}{2}\gamma(T^2 - T_0^2)\phi^2 - \frac{1}{3}\alpha T\phi^3 + \frac{1}{4}\lambda\phi^4.$$

(Thermal scalar potential)

 $-\ddot{\phi} + \nabla^2 \phi - \frac{\partial V}{\partial \phi} = \mathcal{N} V (\dot{\phi} + V^i \partial_i \phi)$ 

(Scalar eqn. of motion)

 $\dot{E} + \partial_i (EV^i) + P[\dot{W} + \partial_i (WV^i)] - \frac{\partial V}{\partial \phi} W(\dot{\phi} + V^i \partial_i \phi)$  $= \eta V^2 (\dot{\phi} + V^i \partial_i \phi)^2. \quad (7)$ 

(eqn. for the energy density)

$$\dot{Z}_i + \partial_j (Z_i V^j) + \partial_i P + \frac{\partial V}{\partial \phi} \partial_i \phi = \Theta W (\dot{\phi} + V^j \partial_j \phi) \partial_i \phi.$$

(eqn. for the momentum density)

$$\ddot{u}_{ij} - \nabla^2 u_{ij} = 16\pi G(\tau_{ij}^{\phi} + \tau_{ij}^{\mathrm{f}}),$$

(eqn. for the metric perturbations)

### Types of single bubble solutions:





Espinosa, Konstandin, No, Servant '10





### **GW Spectrum**



Transverse and longitudinal part of the fluid stress

→ Basically sound waves

### Strength of the GW signal:

$$\Omega_{\rm GW} \simeq \frac{3\bar{\Pi}^2}{4\pi^2} (H_*\tau_{\rm s})(H_*R_*)(1+w)^2 \overline{U}_{\rm f}^4,$$

### simulation

$$\Omega_{\rm GW} \simeq \frac{0.11 v_{\rm w}^3}{0.42 + v_{\rm w}^2} \left(\frac{H_*}{\beta}\right)^2 \frac{\kappa^2 \alpha_T^2}{(\alpha_T + 1)^2}$$

### env. appr.

Enhancement by  $\tau_{\rm s}/R_{*}v_{\rm w}$ 

What sets  $\tau_s$ ? Hubble time?

# GW'Scale invariant Higgs

Higgs mass stabilized by conformal symmetry, Broken in a hidden sector,

Transmitted to the SM by gauge mediation:

$$\delta V_{\text{eff}} \equiv V_0 = -\frac{m_h^2}{4} h^2 \left( 1 + X \log\left[\frac{h^2}{v^2}\right] \right) + \frac{\lambda}{4} h^4$$



[Abel, Mariotti '13]





# MSSM + "singlets"

singlets models contain cubic (SHH) terms at tree-level → stronger PT New: problematic Higgs singlet mixing also new sources of CP violation problems: domain walls vs. destabilization of the weak scale

#### which model to take?

Z<sub>3</sub> symmetry (NMSSM) Z<sub>5,7</sub> R-symmetries (nMSSM) extra U(1)'s (ESSM, ...) fat Higgs... Pietroni '92

- Davies, Froggatt, Moorhouse '96
  - S.H., Schmidt '98
- Bastero-Gil, Hugonie, King, Roy, Vespati '00
  - Kang, Langacker, Li, Liu '04
  - Menon, Morrissey, Wagner '04
  - S.H., Konstandin, Prokopec, Schmidt '06
    - Balazs, Carena, Freitas, Wagner '07
- (Profumo, Ramsey-Musolf, Shaughnessy '07)
  - Carena, Shah, Wagner '11
  - Huang, Kang, Shu, Yang '14
- Kozaczuk, Profumo, Haskins, Wainwright '14

problem with 1-loop EDM's remains!

# Strong phase transition

#### singlet model without discrete symmetries

#### nMSSM

$$W = \lambda S H_1 H_2 + \frac{k}{3} S^3 + \mu H_1 H_2 + rS$$



$$W_{nMSSM} = \lambda \hat{S} \hat{H}_1 \cdot \hat{H}_2 + \frac{m_{12}^2}{\lambda} \hat{S}$$



Menon, Morrissey, Wagner '04 (S.H., Konstandin, Prokopec, Schmidt '06)

S.H.,Schmidt '00

# Baryogenesis in the nMSSM

#### $\lambda$ above Landau pole prefered:

(and tan  $\beta \sim 1$ )

CP violation in  $t_S e^{iq} S$  (phase in  $\mu$  parameter induced, not constant along the bubble wall)



# EDM constraints with 1TeV sfermions (1. & 2. generation):



#### S.H., Konstandin, Prokopec, Schmidt '06

# **Transitional CP violation**

in the general singlet model the broken minimum can be CP conserving, but the symmetric minimum violates CP  $\rightarrow$  CP violating wall profile

CP conservation at T=0





S.H., John, Laine, Schmidt '99

S.H., Schmidt '00

# Extra U(1)'s

#### Kang, Langacker, Li, Liu '04

 $W_H = hSH_dH_u + \lambda S_1S_2S_3$ 



$$m_{S_1S_2}^2 \equiv |m_{S_1S_2}^2| e^{i\gamma}$$

thin wall approximation used, tau lepton contribution only

#### Ham, Oh ' 07

$$W \approx h_t Q H_2 t_R^c + \lambda N H_1^T \epsilon H_2$$

Strong phase transition possible No computation of the BAU Examples have large  $\lambda$ =0.7, 0.8

### Z<sub>3</sub> NMSSM revisited:

[Kozaczuk, Profumo, Haskins, Wainwright '14]



# Summary and outlook

wealth of new constraints on a possible electroweak phase from measured Higgs properties

strong phase transition in the 2HDM model is easy to realize and consistent with a SM-like light Higgs

► singlet extensions of the MSSM can easily accommodate baryogenesis: but there are interesting constraints from Higgs properties and EDMs

- first 3d numerical simulation of scalar + fluid GW production by sound waves no sign of turbulence
- Can one have baryogenesis and GW's at the same time?