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Overview

• Aim: extend the AMY effective kinetic theory to 
NLO Arnold Moore Yaffe 2002, Guy’s talk

• NLO means O(g) effects from the medium

• Relies on cool new light-cone techniques (much 
more complicated for non-relativistic or mildly 
relativistic degrees of freedom)



Overview
• Applications

• Jet propagation and quenching in the QGP
JG Moore Teaney,  Gervais JG Schenke Teaney

• (Isotropic) thermalization (à la Kurkela Lu Moore 
York) at NLO JG Kurkela

• In principle, transport coefficients (η,...) at NLO. In 
practice: severe roadblocks



Motivation

• How reliable is the perturbative treatment? 

• For thermodynamical quantities (p, s, ...) either strict 
expansion in g, QCD (T) + EQCD (gT) + MQCD (g2T) 
(Arnold-Zhai, Braaten Nieto, etc) or non-perturbative 
solution of EQCD (Kajantie Laine etc) or resummations 
(HTLpt, Andersen Braaten Strickland etc.)

• For dynamical quantities? We now have 2 contrasting 
examples of O(g) corrections



• Defined through the noise-noise correlator in a Langevin 
formalism. In field theory it can be written as

• The NLO computation factors in the coefficient C, which 
turns out to be sizeable

Caron-Huot Moore PRL100, JHEP0802 (2008)

1) Heavy quark diffusion
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that, to make the qualitative discussion here more precise, we will need to perform a careful

diagrammatic approach based on power counting. There is one common feature of the sources

for correction we have listed, however; all involve the influence of soft gluons. This observation

suggests that the calculation may be rephrased in terms of an effective theory of gT scale

physics, in which the hard scale ∼ T has been integrated out. This is precisely Braaten and

Pisarski’s HTL effective theory [10]. Carrying out a careful diagrammatic calculation within

this effective theory is the subject of the body of this paper; in the remainder of this section

we will present the results.

2.3 Results: QCD

The squared matrix elements for the processes of Fig. 1, summed over the initial and final

states of the light scattering targets and final states of the heavy quark, and averaged over

the initial states of the heavy quark, have been evaluated in [19], yielding

κLO ≡ g4CH

12π3
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where CH = 4
3 in QCD is the quadratic Casimir of the heavy quark representation, and

mD =
√

1.5gT in QCD with Nf=3 flavors of light quarks. Formally taking mD ≪ T , the

integral is dominated by k ∼ T and q in the logarithmic range mD
<∼ q <∼ T . The leading

behavior in g of Eq. (2.4) can be obtained from the leading behavior in m2
D/k2 of the q

integral. Making room for the next-to-leading order correction C, the result can be written:

κ=
CHg4T 3

18π

([

Nc+
Nf

2

][

ln
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mD

+ξ

]

+
Nf ln 2

2
+

NcmD

T
C + O(g2)
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. (2.5)

Here ξ = 1
2 −γE + ζ′(2)

ζ(2) ≃ −0.64718. The leading order part of Eq. (2.5) was given explicitly in

[19] (it could also have been extracted from the nonrelativistic limit of earlier results [14,20].)

The dependence of the next-to-leading order correction on physical parameters is contained in

the coefficient multiplying C, which itself is a pure number: all of the above-mentioned next-

to-leading order corrections depend on physical parameters in the same way as an O(mD/T )

fraction of the gluon contribution to κLO.

Expression Eq. (2.4) itself contains O(g) corrections, giving rise to a rather trivial con-

tribution2 to C, C2→2 = 21
8π ≃ 0.8356. It arises wholly from the k ∼ gT region of the gluon

contribution to Eq. (2.4), where the result of the q integration is poorly described by the

leading term of its m2
D/k2 expansion, which was used to obtain the leading order behavior

Eq. (2.5). Although slightly tedious, the evaluation of C2→2 is entirely straightforward and we

do not present it here. In section 4 we compute the difference between the full next-to-leading

order momentum diffusion coefficient, and what is already incorporated in κLO, and obtain

C̃ ≃ 1.4946. Thus C ≡ C2→2 + C̃ ≃ 2.3302.

2In [15] this contribution was named CEq. (4).
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Figure 3: Comparison of leading and NLO results for Nf = 3 QCD as a function of coupling.

Our result Eq. (2.5) is plotted in Fig. 3. A simple-minded estimate of the regime of

validity of perturbation theory can be given by equating the size of the correction to the size

of the leading-order result. What is usually referred to in the literature as being the leading

order result is Eq. (2.4), numerically integrated at a given value of the coupling (this is the

curve called “leading order” in Fig. 3): the correction becomes as large as this leading order

result when αs >∼ 0.04. This suggests that at that point perturbation theory starts to get into

trouble. For this reason, and as should be clearly suggested by the plot, we do not believe

that our calculation can be directly used as an “improvement” to the determination of κ in

the context of heavy ion collisions, where phenomenologically realistic values of the coupling

are in the range αs ∼ 0.3 − 0.5. Rather our results signal difficulties with the approach.

Nevertheless we would not like to sound overly pessimistic and conclude that our results

signal that no prediction beyond αs = 0.05 is possible. Rather, the real question now is how

large the higher order corrections are, and more pertinently, which parts of C may duplicate

themselves in higher-order terms, in some more or less predictable (and therefore resummable)

fashion.

Consider for instance the difference between the two lowest curves of Fig. 3, which is

attributable to C2→2, up to terms which are of yet higher order in the mD/T expansion of

Eq. (2.4). This contribution, which can be evaluated knowing only the tree-level matrix

elements with massless external states (and HTL corrections resummed on the exchanged

gluon), is better described as an “ambiguity” in the leading-order result rather than as a

correction to it. This ambiguity is large because the Coulomb scattering processes against

soft gluons (which give the small k contribution to Eq. (2.4)) are poorly described by the

leading term of an mD/T expansion. This is unrelated to the question of whether these

processes are correctly described by the right-hand side of κLO, which is the most pertinent
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1) Heavy quark diffusion



• Defined through the current-current correlator 

• At NLO one has two large, separate and largely cancelling 
contributions

2) Thermal photon rate
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Figure 18. (a) The function, C(k/T ), parametrizing the photon emission rate for Nc = Nf = 3
and ↵s = 0.3 (see Eq. (6.8) and Eq. (2.9)). The full next to leading order function (CLO+NLO) is
a sum of the leading order result (CLO), a collinear correction (�Ccoll), and a soft+semi-collinear
correction (�Csoft+sc). The dashed curve labeled CLO + �Ccoll shows the result when only the
collinear correction is included, with the analogous notation for the CLO + �Csoft+sc curve. The
di↵erence between the dashed curves provides a uncertainty estimate for the NLO calculation. (b)
The same as (a) but for larger k/T . {plot_c_30_1}

Finally, we recall that A(k) and  are given in Eqs. (2.9) and (2.10) and �m

2
1/m

2
1 =

�2mD/(⇡T ), as given by Eq. (3.27). The correction C

�C
coll is intrinsically nonabelian, but

�m

2
1/m

2
1 is nonvanishing in an Abelian theory.

We now plot our results. Let us define
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Given those definitions, it then follows that
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In Fig. 18, we start by plotting the function CLO+NLO(k/T ) for ↵s = 0.3 and Nc =

Nf = 3. In the phenomenologically interesting momentum range, k/T ⇠ 10, the collinear

and semi-collinear+soft corrections largely cancel, leading to a small positive correction

of order ⇠ 15% (Fig. 18(a)). At large momentum, k/T

>⇠ 20, the LO and LO+NLO

curves cross and the NLO correction turns negative (Fig. 18(b)). We believe that the
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Figure 19. The functions C(k/T ) for Nc = 3, Nf = 3 as in Fig. 18, but for ↵s = 0.05. {plot_c_5_1}
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Figure 20. (a) The di↵erential rate d��/dk relative to the leading order rate as a function of k/T
(or equivalently CLO+NLO/CLO). The full next to leading order rate (LO+NLO) is a sum of the
leading order rate (LO), a collinear correction (coll), and a soft+semi-collinear correction (soft+sc).
The dashed curve labeled LO+coll shows the ratio of rates when only the collinear correction is
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for larger k/T . {plot_ratio}

large cancellations we observe are rather accidental, and one should thus consider the

curves CLO(k/T ) + �Ccoll(k/T ) and CLO(k/T ) + �Csoft+sc(k/T ) as upper and lower limits

respectively of an “uncertainty estimate” of the NLO calculation.

In Fig. 19 we plot CLO+NLO(k/T ) and CLO(k/T ) for ↵s = 0.05, and Nc = 3, Nf = 3.

For the smaller coupling constant the NLO correction is always negative and rather flat,

and the magnitude of the two largely canceling contributions is also significantly smaller

than in the previous case.
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2) Thermal photon rate

• GJ Hong Kurkela Lu Moore Teaney JHEP1305 (2013)



Outline

✓ Introduction and motivation

• Overview of the effective kinetic theory at LO

• A useful reorganization leading to...

• the NLO extension, with

• effective descriptions in terms of Wilson line 
operators



 

Overview



The kinetic approach
• We evolve the distribution of a small number of high-

energy particles in a thermalized medium 
s

• At leading order*: elastic, number-preserving 2↔︎2 
processes and collinear, number-changing 1↔︎2 
processes

• D.o.f.s of the kinetic theory are hard, on-shell quarks 
and gluons (                                   ). Questionable? Early 
stages and vacuum cascade?

* We do not consider T/E≪1, but only exp(-E/T)≪1

P 2 <⇠ g2T 2, p0 >⇠ T

momenta. [[I have also killed the 1±n(p) stimulation factors. Eqs. look maybe confusing,

what do you think?]]

The linearized form we have now obtained can be summarized as
✓

@

@t
+ v

x

·r
x

◆

P a(p,x, t) = �CLO
a

[P ] = �C2$2
a

[P ]� C1$2
a

[P ], (2.9) {boltzmann2}

The Jeon-Moore [4] framework is obtained by solving for P (E) = dN(E)/dE and

considering only the collinear part of the collision operator. Within that formalism,

2 $ 2 e↵ects were later introduced in [5, 6] and implemented in MARTINI [7].

Although the techniques presented in this paper are applicable to the more general

Boltzmann approach, with a full dependence of P on the three-momentum p, we will for

simplicity illustrate the simpler case where P is a function of p only. Furthermore, the

description of the soft sector, the matching between di↵erent regions and the extension

to NLO are to a large degree agnostic with respect to the functional dependence on p

or p and we will comment on this in the coming sections. Finally, we will not indicate

explicitly the spacetime dependence of P distributions unless needed.

Let us comment on the IR behaviour of the collision operator. In the 2 $ 2 sector,

gluon exchanges in the t or u Mandelstam channels give rise to power-law divergences, as

we shall show in more detail later on, when the exchanged momentum Q becomes soft,

Q ⇠ gT . These divergences are however smoothened into logarithmic ones by cancella-

tions between the gain and loss terms. Fermion exchanges in the same channels give rise

to logarithmic divergences, without cancellations. A simple and economical prescription,

which is correct at leading order, for making these integrations finite was introduced in

[1]: it amounts to resumming Hard Thermal Loops in just the IR-divergent part of the

matrix elements. Once inserted in the collision operator, these modified matrix elements

get integrated over all possible momentum transfers. In the soft region they are the cor-

rect weak-coupling description, whereas for harder momenta one is including only one

piece of the NNLO correction and hence committing at most an O(g2) error.

In the 1 $ 2 sector quadratic IR divergences arise in the gain and loss terms for

soft-gluon radiation. The collision operator is however finite, the divergence canceling

again in the di↵erence.

3 A renewed approach: leading-order reorganization

The picture we have just illustrated, with separated 1 $ 2 collinear processes and 2 $ 2

processes dressed with HTLs for IR finiteness, starts to be ill-defined already at NLO,

where the line between the two starts to blur. Let us consider the soft limit of the IR-

sensitive 2 $ 2 processes. In the case of a soft gluon exchange, as shown in Fig. 3, we

obtain a process which changes the hard four-momentum P by a small amount Q ⇠ gT ,
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Elastic processes

• Boltzmann picture, loss - gain terms

• Integration with bare matrix elements gives log 
divergences for soft intermediate states, cured by HTL 
resummation ⇒ nasty n-dimensional numerics?

2.1 The Boltzmann picture at leading order {sec_lo_boltzmann}
Let us start from the e↵ective kinetic theory developed in [1]. The Boltzmann equation

there reads
✓

@

@t
+ v ·r

x

◆

fa(p,x, t) = �C2$2
a

[f ]� C1$2
a

[f ], (2.2) {boltzmann}

where fa(p,x, t) is the phase space distribution for a single color and helicity state

quasiparticle of type a (fa = dNa/(d3xd3p)). In the collision operator, at leading order

in the coupling g, one needs to account for 2 $ 2 and e↵ective 1 $ 2 processes. The

former are given by the simple 2 $ 2 diagrams of QCD, such as those shown in Fig. 1,

which also establishes our graphical conventions. E↵ective 1 $ 2 processes correspond

Figure 1. Typical diagrams contributing to 2 $ 2 processes at LO. Double lines represent
particles which have at least one momentum component of the order of the temperature or
larger. Parallel double lines without arrows can be either gluons or quarks. When particle
identities need to be specified, quarks are identified by the fermion flow arrow and gluons by the
curly line. In all diagrams in the paper, time is understood to flow from left to right. {fig_22}

to medium-induced radiation and are the dominant source of energy loss of the hard

particles. They are in principle n + 1 $ n + 2 processes, where n � 1. An example

is shown in Fig. 2. Although apparently suppressed by powers of g, these processes

contribute at leading order under the provision that

• the momenta of the hard/thermal lines are nearly on shell , i.e. P 2, (P �Q)2, Q2

<⇠ g2T 2, and collinear to each other, i.e. ✓ <⇠ g, where ✓ is the emission angle 1

and
1In the case where P and Q are both thermal, such as when dealing with the thermal photon rate, {foot_angle}

then the angle is of order g. In the case of interest, i.e. P hard, there are two di↵erent possibilities. If

either Q or P �Q are thermal, i.e. there is a hierarchical separation between the emitted particles, then

the angle is again of order g. If instead the splitting is more democratic, with no hierarchical separation,

then the angle can become as small as gT/E.
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• Effective 1↔︎2: 1+n↔2+︎n with LPM 
suppression, collinear kinematics

• Rates (gain and loss terms) individually quadratically IR 
divergent for soft gluon emission/absorption, but gain-
loss is finite

• Both processes are implemented in MARTINI Schenke Gale 
Jeon PRC80 (2009)

Radiative processes• the momenta K
i

of the gluons are spacelike and soft with k+, k? ⇠ gT and

k� <⇠ g2T , so that the kinematics of the collinear particles are una↵ected by the

gluon.

g

P

Q

P �Q

Figure 2. A typical diagram contributing to 1 $ 2 processes at LO. The single curly line is a
soft gluon. The crosses represent the scattering centers, i.e. thermal constituents of the medium. {fig_coll}

For those same reasons, the amplitudes involving any number of these soft gluons at-

taching to all colored hard/thermal lines contribute at leading order and interfere with

each other, in what is know as the Landau-Pomeranchuk-Migdal (LPM) e↵ect. [[(all

sort of references here/in intro)]]

In detail, the collision operator reads (dropping for brevity the spacetime depen-

dence, which is local)
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o

, (2.4) {eq:collision12}
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C1$2
a [P ](p) =

(2⇡)3

|p|2⌫a

(

X

bc

Z p/2

0
dq �a

bc(p; (p� q)p̂, qp̂)
n

P a(p) [1±nb(p� q)] [1±nc(q)]� gain
o

+
X

bc

Z 1

0
dq �c

ab((p+ q)p̂;p, q p̂)
n

P a(p)nb(q)[1±nc(p+ q)]� gain
o

)



 

Reorganizing the kinetic theory



• The distinction between 1↔︎2 and 2↔︎2 processes gets 
blurred beyond LO

• Working with matrix elements becomes complicated when 
dealing with HTL resummation beyond LO

• Reorganize LO to isolate soft momentum exchanges 
(Q~gT) and introduce Wilson-line effective descriptions 
for these. Evaluate them with Euclidean and sum rule tech

• Particle identity is important

• Total is given by collinear, diffusion, conversion and large-
angle scattering processes

Basic principles



Basic principles
• If P=(p+,0,0) and Q is the largest momentum transfer that P 

undergoes

TgT

gT

T

Collinear

2�
2 region (LO log)

Large
angle

Diff/conv

q?

q+



• Diffusion process at LO:

• Conversion process at LO:

• At higher order: overlap with collinear

• Intermediate regulation or subtractions are necessary

Basic principles

P

Q

Figure 3. The soft limit of a t� or u�channel gluon exchange diagram. P is the hard momentum
and Q is the soft gluon momentum. {fig_diff}

without changing the particle identity. We call such a process a di↵usion process : as we

shall show later on, they can indeed be treated in a di↵usion picture.

In the case of a soft quark exchange in the same channels, on the other hand, one

obtains a di↵erent process, as shown in Fig. 4. There a hard gluon with momentum P

P

Q

Figure 4. The soft limit of a t� or u�channel quark exchange diagram. P is the hard momentum
and Q is the soft quark momentum. {fig_conversion}

is turned into a quark with an almost equivalent momentum, up to O(gT ). We then

call these processes conversion processes and we will deal with them in a di↵erent way,

inspired by the NLO thermal photon rate [2].

Consider now a 1 $ 2 process in the limit where one of the hard/thermal legs

becomes soft, for instance K in Fig. 2.2 This gives rise to the two possible scenarios

depicted in Fig. 5, i.e. a di↵usion process and a conversion process with one extra

spacelike, soft gluon, which are diagrams that need to be evaluated when dealing with

those processes at NLO in g, as we shall show. We will then need to subtract these limits

from the collinear 1 $ 2 region and treat them as di↵usion or conversion processes.

At leading order we can then rewrite the right-hand side of Eq. (2.9) as

� CLO
a

[P ] = �C large
a

[P ]� Ccoll
a

[P ]� Cdi↵
a

[P ]� Cconv
a

[P ], (3.1) {boltzmannproc}

where C large
a

[P ] is the 2 $ 2 collision operator restricted to large momentum transfers

Q only, meaning Q � gT . This requires regularization, as we shall discuss later on. We

2As we shall show (see also [2]), LPM interference is suppressed in this case.
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Figure 5. The soft-K limits of a 1 $ 2 process. The diagram on the left amounts to a di↵usion
process at NLO, whereas the diagram on the right amounts to a conversion process. {fig_collsoft}

leave the dependence on the regulator implicit. Ccoll
a

[P ] is the purely collinear part of

the e↵ective 1 $ 2 processes, i.e. with the di↵usion and conversion limits subtracted

o↵. As we mentioned, those limits are a relative O(g) correction, so that, at LO ,

Ccoll
a

[P ] = C1$2
a

[P ], as given by Eq. (2.8). We thus defer the presentation of the explicit

form of Ccoll[P ] to Sec. 5, where we also introduce its NLO corrections.

3.1 Large-angle scattering

In more detail, for what concerns C large
a

[P ], one needs to deal with the matrix elements

listed in Table 1, i.e. the standard, leading-order QCD matrix elements, summed over all

colour and spin indices, with the Mandelstam variables s = �(P +K)2, t = �(P �P 0)2

and u = �(P �K 0)2. The presence of di↵erent channel exchanges and their integration

in the collision operator is best dealt with by using the techniques of [8], which treat

each one di↵erently.

Singly-underlined matrix elements are those that, in the soft limit, give rise to

gluonic IR divergences, corresponding to di↵usion processes, whereas doubly-underlined

ones come from fermion-exchange diagrams and give rise, in the same limit, to conversion

processes. To illustrate our regularization scheme, let us consider the contribution from

the scattering of di↵erent quark species q1q2 $ q1q2, which is given by the square of a

single t-channel diagram. Its contribution to C large
q1 [P ] reads3

C large
q1

[P ] � g4

(2⇡)3
C
F

16p2

Z +1

�1
d!

Z 2p�!

0
dq

Z 1

(q�!)/2
dk✓(q � |!|)

Z 2⇡

0

d�

2⇡

s2 + u2

t2

⇥
n

P q1(p)nF(k) [1� nF(p� !)] [1� nF(k + !)]

�⇥

P q1(p� !)nF(k + !) + P q2(k + !)nF(p� !)
⇤

[1� nF(k)]
o

, (3.2) {el2}

where the techniques of [8] have been followed, by eliminating one of the three integration

variables in Eq. (2.7) with the momentum-conserving �-function, shifting one of the

3When obtaining the complete C

large[P ] and summing over c and d, one obtains a factor of two. {foot_final}

– 8 –



• Large angle scattering: just take 2↔︎2 processes and stick 
in an IR regulator. No need for HTL resummation now 
(numerical good news)

• Collinear processes: the overlap region with diffusion and 
conversion is an O(g) region of the LO phase space. Might 
as well include it at LO (e.g. no change) and subtract it at 
NLO

The easy parts
2.1 The Boltzmann picture at leading order {sec_lo_boltzmann}
Let us start from the e↵ective kinetic theory developed in [1]. The Boltzmann equation

there reads
✓

@

@t
+ v ·r

x

◆

fa(p,x, t) = �C2$2
a

[f ]� C1$2
a

[f ], (2.2) {boltzmann}

where fa(p,x, t) is the phase space distribution for a single color and helicity state

quasiparticle of type a (fa = dNa/(d3xd3p)). In the collision operator, at leading order

in the coupling g, one needs to account for 2 $ 2 and e↵ective 1 $ 2 processes. The

former are given by the simple 2 $ 2 diagrams of QCD, such as those shown in Fig. 1,

which also establishes our graphical conventions. E↵ective 1 $ 2 processes correspond

Figure 1. Typical diagrams contributing to 2 $ 2 processes at LO. Double lines represent
particles which have at least one momentum component of the order of the temperature or
larger. Parallel double lines without arrows can be either gluons or quarks. When particle
identities need to be specified, quarks are identified by the fermion flow arrow and gluons by the
curly line. In all diagrams in the paper, time is understood to flow from left to right. {fig_22}

to medium-induced radiation and are the dominant source of energy loss of the hard

particles. They are in principle n + 1 $ n + 2 processes, where n � 1. An example

is shown in Fig. 2. Although apparently suppressed by powers of g, these processes

contribute at leading order under the provision that

• the momenta of the hard/thermal lines are nearly on shell , i.e. P 2, (P �Q)2, Q2

<⇠ g2T 2, and collinear to each other, i.e. ✓ <⇠ g, where ✓ is the emission angle 1

and
1In the case where P and Q are both thermal, such as when dealing with the thermal photon rate, {foot_angle}

then the angle is of order g. In the case of interest, i.e. P hard, there are two di↵erent possibilities. If

either Q or P �Q are thermal, i.e. there is a hierarchical separation between the emitted particles, then

the angle is again of order g. If instead the splitting is more democratic, with no hierarchical separation,

then the angle can become as small as gT/E.

– 3 –



• Landau expansion of C for small, identity-preserving 
momentum exchanges Svetitsky 1988

• Three coefficients: drag, longitudinal and transverse 
momentum diffusion.

can forget p-dependence at LO and NLO. qhat is then the 
standard one, with well-defined Wilson loop definition 
and perturbative computation to NLO. See talks by 
Michael and Simon

Diffusion processes

Cdi↵
a [P ] ⌘ � @

@pi


⌘D(p)piP a(p)

�
� 1

2

@2

@pi@pj

✓
p̂ip̂j q̂L(p) +

1

2
(�ij � p̂ip̂j)q̂(p)

◆
P a(p)

�

scattering is

C large
q1

[P ] � g4

(2⇡)3
C2
F

8p2

Z

p

�1
d!

Z

p
4p(p�!)

µ ˜q?

dq̃?
q̃?
q

Z 1

(q�!)/2
dk

Z 2⇡

0

d�

2⇡

u

t

⇥
n

P q1(p)nF(k) [1 + nB(p� !)] [1 + nB(k + !)]

�⇥

P g(p� !)nB(k + !) + P g(k + !)nB(p� !)
⇤

[1� nF(k)]
o

. (3.7) {el2quarkreg}
The cancellations of the leading IR behaviour in the gluon exchanges, as well as the

matching to the di↵usion and conversion processes will be dealt with in the next sections

and in App. C.

3.2 Di↵usion processes {sub_diff}
As we mentioned, di↵usion processes involve a small momentum transfer that preserves

the identity of the hard particle. One such example is the small (!, q?) region in Eq. (3.5).

Upon consistently expanding all similar contributions for small Q and dropping all ex-

ponentially suppressed terms, one obtains that the di↵usion sector can be described by

an e↵ective Fokker-Planck equation5, such as [9, 10]

Cdi↵
a

[P ] ⌘ � @

@pi



⌘
D

(p)piP a(p)

�

� 1

2

@2

@pi@pj

✓

p̂ip̂j q̂
L

(p) +
1

2
(�ij � p̂ip̂j)q̂(p)

◆

P a(p)

�

,

(3.8) {diff}
where, for more generality and no extra e↵ort, we have left the dependence on the

vector momentum p rather than the energy p, as the equation is valid in the same form

in both cases. There are three coe�cients that enter in this e↵ective description. q̂ is the

standard transverse momentum broadening, q̂
L

is the longitudinal momentum broadening

and ⌘
D

is the drag coe�cient. They are defined as6

⌘
D

(p) = � 1

p
L

dp
L

dt
, q̂(p) ⌘ d

dt

⌦

(�p?)
2
↵

, q̂
L

(p) ⌘ d

dt

⌦

(�p
L

)2
↵

, (3.9)

where p
L

and p? are the longitudinal and transverse components relative to the large

momentum p. Our convention p
L

= pz comes without any loss of generality.

These coe�cients can be determined through the interaction rates [9–11], i.e.

dp
L

dt
= �

Z

dqz qz
d�(p,p� q)

dqz
, (3.10) {dragrate}

q̂
L

(p) =

Z

dqz (qz)2
d�(p,p+ q)

dqz
, (3.11) {longrate}

q̂(p) =

Z

d2q? q2?
d�(p,p+ q)

d2q?
(3.12) {transrate}

5[[Footnote on discretizations?]]
6These coe�cients depend on the species a. However, as we shall show, to leading and next-to-leading

orders in g this dependency reduces to a simple Casimir scaling in the representation of the source a, so

we drop this label in the text for simplicity.
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Transverse momentum diffusion

• All points at spacelike or lightlike separation, only 
preexisting correlations

• Soft contribution becomes Euclidean! Caron-Huot PRD79 
(2008)

• Can be “easily” computed in perturbation theory 

• Possible lattice measurements Laine Rothkopf JHEP1307 
(2013) Panero Rummukainen Schäfer 1307.5850

y2 x2

x1y1

Figure 2.1: Static Wilson loop with edges y1 = (�TW /2, r/2), x1 = (TW /2, r/2), y2 =
(�TW /2,�r/2) and x2 = (TW /2,�r/2). Time direction is from left to right, thus the
quark trajectories are horizontal and the equal-time endpoint Wilson lines are vertical.

where P is the path-ordering operator and the integration contour ⇤ is represented in
Fig. 2.1. The Wilson loop vacuum amplitude can also be expressed as a path integral

hW⇤i =
Z

DADqDqe�iS(0)
TrP exp

⇢

�ig

I

⇤
dxµAa

µ(x)T a

�

(2.8)

where q and q are the light quark fields and S(0) is the Yang-Mills plus light-quark action
of QCD.
At zeroth order in the multipole expansion (2.3) and in the static limit the corresponding
pNRQCD Green function can be derived from the Lagrangian (1.37)

GpNRQCD = Z(0)
s (r)�3(x1 � y1)�3(x2 � y2)e�iT

W

V
(0)
s

(r). (2.9)

We now need to single out the soft scale: exploiting the fact that this scale is much
greater than the ultrasoft scale E we can consider the large TW limit of the Wilson loop,
equivalent to the �E ! 0 limit. We thus have

i

TW
loghW⇤i = u0(r) + i

u1(r)
TW

+O
✓

1
T 2

W

◆

, (2.10)

and in the infinite-time limit the higher-order terms in the 1/TW expansion are sup-
pressed. We have also dropped terms that do not depend on r, such as self energies.
These terms can arise both in the perturbative and non-perturbative regions, but are
not relevant for the potential. The matching condition GNRQCD = GpNRQCD at the
matching scale µ (the two theories and their Green functions are of course in general
not equal; they are so only in the region where pNRQCD exists) then implies

(

V (0)
s (r) = u0(r)

log Z(0)
s (r) = u1(r)

(2.11)

So we see that the potential at this order of the multipole expansion is simply linked to
the vacuum expectation value of the Wilson loop by the relation

V (0)
s (r) = u0(r) = � lim

T
W

!1

1
iTW

loghW⇤i. (2.12)

22

Collinear case

Collinear ⇒ almost on-shell ⇒ large x separation

x− ≪ x⊥ ≪ x+
(1/T ≪ 1/gT ≪ 1/g2T )

Consider spacetime trajectory of q, q̄:

Jµ Jµ

x

x

Trajectory in

Trajectory in

M

M

Wilson Loop Controls
Gauge Interactions

Need x⊥-separated Wilson loop.

Spacetime picture pioneered by B. Zakharov, hep-ph/9607440,9807540

XQCD, Bern, 4 Aug. 2013: Seite 14 von 25

L
/ eC(x?)L

BDMPS-Z, Wiedemann, Casalderrey-Solana Salgado, D’Eramo Liu 
Rajagopal, Benzke Brambilla Escobedo Vairo



Euclideanization of light-cone soft 
physics

• For t/xz =0: equal time Euclidean correlators.

Caron-Huot PRD79 (2009)

Grr(t = 0,x) =
PZ

p

GE(!n, p)e
ip·x
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• Consider the more general case 
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Euclideanization of light-cone soft 
physics

• For t/xz =0: equal time Euclidean correlators.

• Consider the more general case 

• Change variables to

• Retarded functions are analytical in the upper plane in any 
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Euclideanization of light-cone soft 
physics

• For t/xz =0: equal time Euclidean correlators.

• Consider the more general case 

• Change variables to

• Retarded functions are analytical in the upper plane in any 
timelike or lightlike variable => GR analytical in p0

• Soft physics dominated by n=0 (and t-independent) 
=>EQCD! Caron-Huot PRD79 (2009)
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Euclideanization of light-cone soft 
physics

• At leading order

• Agrees with the earlier sum rule in Aurenche Gelis Zaraket 
JHEP0205 (2002)

• At NLO: Caron-Huot PRD79 (2009)
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Figure 2.1: Static Wilson loop with edges y1 = (�TW /2, r/2), x1 = (TW /2, r/2), y2 =
(�TW /2,�r/2) and x2 = (TW /2,�r/2). Time direction is from left to right, thus the
quark trajectories are horizontal and the equal-time endpoint Wilson lines are vertical.

where P is the path-ordering operator and the integration contour ⇤ is represented in
Fig. 2.1. The Wilson loop vacuum amplitude can also be expressed as a path integral

hW⇤i =
Z

DADqDqe�iS(0)
TrP exp

⇢

�ig

I

⇤
dxµAa

µ(x)T a

�

(2.8)

where q and q are the light quark fields and S(0) is the Yang-Mills plus light-quark action
of QCD.
At zeroth order in the multipole expansion (2.3) and in the static limit the corresponding
pNRQCD Green function can be derived from the Lagrangian (1.37)

GpNRQCD = Z(0)
s (r)�3(x1 � y1)�3(x2 � y2)e�iT

W

V
(0)
s

(r). (2.9)

We now need to single out the soft scale: exploiting the fact that this scale is much
greater than the ultrasoft scale E we can consider the large TW limit of the Wilson loop,
equivalent to the �E ! 0 limit. We thus have

i

TW
loghW⇤i = u0(r) + i

u1(r)
TW

+O
✓

1
T 2

W

◆

, (2.10)

and in the infinite-time limit the higher-order terms in the 1/TW expansion are sup-
pressed. We have also dropped terms that do not depend on r, such as self energies.
These terms can arise both in the perturbative and non-perturbative regions, but are
not relevant for the potential. The matching condition GNRQCD = GpNRQCD at the
matching scale µ (the two theories and their Green functions are of course in general
not equal; they are so only in the region where pNRQCD exists) then implies

(

V (0)
s (r) = u0(r)

log Z(0)
s (r) = u1(r)

(2.11)

So we see that the potential at this order of the multipole expansion is simply linked to
the vacuum expectation value of the Wilson loop by the relation

V (0)
s (r) = u0(r) = � lim

T
W

!1

1
iTW

loghW⇤i. (2.12)
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Collinear case

Collinear ⇒ almost on-shell ⇒ large x separation

x− ≪ x⊥ ≪ x+
(1/T ≪ 1/gT ≪ 1/g2T )

Consider spacetime trajectory of q, q̄:

Jµ Jµ

x

x

Trajectory in

Trajectory in

M

M

Wilson Loop Controls
Gauge Interactions

Need x⊥-separated Wilson loop.

Spacetime picture pioneered by B. Zakharov, hep-ph/9607440,9807540

XQCD, Bern, 4 Aug. 2013: Seite 14 von 25

/ eC(x?)L

How reliable are LO Calculations?

Bad news 1: first corrections are O(g), not O(αs)

Soft gluons involved! Loop gives αs and Bose factor ∼ T/gT ∼ 1/g

And there are a lot of O(g) corrections!

(d)(c)(b)(a) (e) (f) (g)

LO requires using (a) as rung. NLO requires all!

Bad news 2: O(g) coefficient likely to be large!

NLO Not Computed! But similar computation for heavy quarks

indicate large O(g) NLO corrections. Similar to pressure at

O(g2), O(g3), possibly for similar reasons

BNL Photons: 5 December 2011: page 19 of 27



•  drag and longitudinal momentum diffusion: see Arnold 
hep-ph/991220{8,9}
“[The solution] is something that, I believe, may be well known 
to the few people to whom it is well known. However, since there 
seems to be general confusion on this matter, it seems 
worthwhile to continue rather than simply ending here.”

• This effective description must match to large-angle for 
intermediate Q and must lead to equilibration

• This leads to a relation between the three coefficients, 
which we use to fix the drag

Diffusion processes
Cdi↵

a [P ] ⌘ � @

@pi


⌘D(p)piP a(p)

�
� 1

2

@2

@pi@pj

✓
p̂ip̂j q̂L(p) +

1

2
(�ij � p̂ip̂j)q̂(p)

◆
P a(p)

�



Longitudinal momentum diffusion
• Field-theoretical lightcone definition (justifiable with SCET)

F+-=Ez, longitudinal Lorentz force correlator

• At leading order

q̂L ⌘ g

2

dR

Z +1

�1
dx

+Tr
⌦
U(�1, x

+)F+�(x+)U(x+
, 0)F+�(0)U(0,�1)

↵

q̂L /
Z

dq+d2q?
(2⇡)3

(q+)2G>
++(q

+, q?, 0)

=

Z
dq+d2q?
(2⇡)3

Tq+(GR
++(q

+, q?, 0)�GA)

Wilson lines in the x� lightcone directions at x+ = �1, irrelevant in non-singular

gauges, are discussed in App. B.

We now evaluate Eq. (3.16) at LO: we simply contract the two F fields, obtaining

a forward Wightman correlator, i.e. the diagram shown in Fig. 6, which reads

Figure 6. The leading-order soft contribution to q̂L. The Wilson lines before and after the two
black dots, which represent the F+� vertices, cancel at leading order, whereas the one between
the two dots always turns into an adjoint line, which we have represented as a double line. The
curly line is a soft HTL gluon. {fig_lo_soft}

q̂
L

�

�

�

�

LO soft

= g2C
R

Z +1

�1
dx+

Z

d4Q

(2⇡)4
e�iq

�
x

+
(q+)2G��>(Q), (3.18) {lo}

where G(Q) is the HTL-resummed propagator and the integral is understood to run over

soft momenta only. The x+ integration sets q� to zero and, as we show in App. C, bring

this expression in agreement with the one obtained from the rate-based definition in

Eq. (3.11). Furthermore, only the even-in-q+ part of G>(q+, q� = 0, q?) can contribute,

which is the same for G> and G< and is given by G
rr

. It is furthermore dominated

by the T/q0 = T/q+ leading infrared piece of the Bose–Einstein distribution. Upon

expanding it we have, up to O(g2) correction,

q̂
L

�

�

�

�

LO soft

= g2C
R

Z

dq+d2q?
(2⇡)3

Tq+(G��
R

(q+, q?)�G��
A

(q+, q?)). (3.19) {lo2}

We can perform the q+ integration by resorting to the analyticity sum rule techniques

developed in [2, 12]. Since retarded (advanced) two-point functions are analytic in

the upper (lower) half-plane in any timelike or light-like variable, we can deform the

integration contours away from the real axis onto C
R

(|q+| = µ
!

� gT , Im q+ > 0) and

C
A

(|q+| = µ
!

� gT , Im q+ < 0), as depicted in Fig. 7. Along the arcs the longitudinal

and transverse propagators simplify greatly, i.e.

G��
R

(P ) ! i

(q+)2

✓

1 +
q�

q+

◆

2q+q� �M2
1

2q+q� � q2? �M2
1

�

�

�

�

R

, (3.20) {arcexpand}

where M2
1 = m2

D/2 is the gluon asymptotic thermal mass. The end result is then

q̂
L

�

�

�

�

LO soft

= g2C
R

T

Z

d2q?
(2⇡)2

M2
1

q2? +M2
1

=
g2C

R

T

2⇡
M2

1 ln
µ
q̃?

M1
, (3.21) {lofinal}
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Longitudinal momentum diffusion

?

?
�µ+ µ+

q+
q̂L

����
LO

= g2CR

Z
dq+d2q?
(2⇡)3

Tq+(G��
R (q+, q?)�G��

A (q+, q?))



Longitudinal momentum diffusion

�µ+ µ+

q+
q̂L

����
LO

= g2CR

Z
dq+d2q?
(2⇡)3

Tq+(G��
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Longitudinal momentum diffusion

�µ+ µ+

q+
q̂L

����
LO

= g2CR

Z
dq+d2q?
(2⇡)3
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Longitudinal momentum diffusion

• Use analyticity to deform the contour away from the real 
axis and keep 1/q+ behaviour

�µ+ µ+

q+
q̂L

����
LO

= g2CR

Z
dq+d2q?
(2⇡)3

Tq+(G��
R (q+, q?)�G��

A (q+, q?))

q̂L

����
LO

= g2CRT

Z
d2q?
(2⇡)2

M2
1

q2? +M2
1



Conversion processes
• General structure:

• Momentum change is 
not relevant to LO and NLO

• Can get Wilson line definition

• At LO: fermionic sum rule

Besak Bödeker JCAP1203 (2012) JG Hong Kurkela Lu Moore Teaney

infinite momentum limit, i.e. q̂
L

= �2Tdp
L

/dt + O(1/p). The relative O(1/p) terms

can then be obtained by imposing equilibration on Eq. (3.8). In App. C we will show

how, at leading order, those 1/p terms can be determined explicitly, how the di↵usion

picture matches exactly with C large[P ] at large Q and how di↵erent cuto↵ schemes can

be implemented. At next-to-leading order we will only compute q̂
L

and, together with

the known q̂, determine ⌘
D

. Here we just remark that the O(1/p) terms in Eq. (3.6) are

very important in getting the correct result (the one leading to equilibration) for ⌘
D

.

That is because d�(p,p� q)/dqz is at leading order even in ! = qz +O(1/p). It is also

worth stressing that the 1/p terms to Eq. (3.22) and equivalently to ⌘
D

do not come

from a T/p expansion, but only from the g ⌧ 1 expansion. Up to relative O(g2), there

are no 1/p2 terms.

Finally, we remark that the equilibration condition (3.22) is valid also in the simpler

case where P is a function of p only. In that case, plugging Eq. (3.22) into Eq. (3.8)

e↵ectively removes the dependence on q̂.

3.3 Conversion processes {sec_lo_conv}
For what concerns conversion processes, the corresponding part of the collision operator

can be simplified as

Cconv
qi

[P ] = P qi(p)�conv
q!g

(p)� P g(p)
d
A

d
F

�conv
g!q

(p), (3.23) {defconvq}

Cconv
q̄i

[P ] = P q̄i(p)�conv
q̄!g

(p)� P g(p)
d
A

d
F

�conv
g!q̄

(p), (3.24) {defconvqbar}

Cconv
g

[P ] =

nf
X

i=1

⇢

P g(p)



�conv
g!qi

(p) + �conv
g!q̄i

(p)

�

�d
F

d
A



P qi(p)�conv
q!g

(p) + P q̄i(p)�conv
q̄!g

(p)

��

, (3.25) {defconvgluon}

where for generality we have also left a three-momentum dependence for P . This equa-

tion introduces the conversion rates, that again depend implicitly on the regularization

scheme. They do not, however, depend on the exchanged momentum to leading and

next-to-leading order. To see this, consider Eq. (3.7) for !, q̃? ⇠ g. One has that the

statistical factors, once expanded for g ⌧ 1, yield
⇢

P q1(p)nF(k)[1 + nB(k)]� P g(p)nB(k)[1� nF(k)]

�✓

1 +O
✓

!

T
,
!

p

◆◆

. (3.26) {statexpand}

Similarly, as we shall show in more detail in App. C.2, the HTL-resummed and �-

averaged matrix elements, once expanded for small Q, are to leading order even in !,

up to O(!/T,!/p) corrections.9 As in the previous section, all these odd, subleading

9Non-underlined fermion exchange matrix elements, such as u/s in q1g $ q1g scattering, are sup-

pressed by two powers of g.
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1
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Going to NLO



Sources of NLO corrections

• As usual in thermal field theory, the soft scale gT 
introduces NLO O(g) corrections

• The diffusion,  conversion and the collinear regions 
receive O(g) corrections

• There is a new semi-collinear region



Sources of NLO corrections

TgT

gT

T

Collinear

2�
2 region (LO log)

Large
angle

Diff/conv

q?

q+

Semi-
collinear



Collinear corrections
• Regions of overlap with the diffusion,  conversion 

and semi-collinear regions need to be subtracted

• The differential eq. for LPM resummation (cfr talks 
by Simon, Mikko, Harvey) gets correction from NLO 
C(x⟂) and from the thermal asymptotic mass at NLO 
(Caron-Huot 2009)

Figure 5. The soft-K limits of a 1 $ 2 process. The diagram on the left amounts to a di↵usion
process at NLO, whereas the diagram on the right amounts to a conversion process. {fig_collsoft}

leave the dependence on the regulator implicit. Ccoll
a

[P ] is the purely collinear part of

the e↵ective 1 $ 2 processes, i.e. with the di↵usion and conversion limits subtracted

o↵. As we mentioned, those limits are a relative O(g) correction, so that, at LO ,

Ccoll
a

[P ] = C1$2
a

[P ], as given by Eq. (2.8). We thus defer the presentation of the explicit

form of Ccoll[P ] to Sec. 5, where we also introduce its NLO corrections.

3.1 Large-angle scattering

In more detail, for what concerns C large
a

[P ], one needs to deal with the matrix elements

listed in Table 1, i.e. the standard, leading-order QCD matrix elements, summed over all

colour and spin indices, with the Mandelstam variables s = �(P +K)2, t = �(P �P 0)2

and u = �(P �K 0)2. The presence of di↵erent channel exchanges and their integration

in the collision operator is best dealt with by using the techniques of [8], which treat

each one di↵erently.

Singly-underlined matrix elements are those that, in the soft limit, give rise to

gluonic IR divergences, corresponding to di↵usion processes, whereas doubly-underlined

ones come from fermion-exchange diagrams and give rise, in the same limit, to conversion

processes. To illustrate our regularization scheme, let us consider the contribution from

the scattering of di↵erent quark species q1q2 $ q1q2, which is given by the square of a

single t-channel diagram. Its contribution to C large
q1 [P ] reads3

C large
q1

[P ] � g4

(2⇡)3
C
F

16p2

Z +1

�1
d!

Z 2p�!

0
dq

Z 1

(q�!)/2
dk✓(q � |!|)

Z 2⇡

0

d�

2⇡

s2 + u2

t2

⇥
n

P q1(p)nF(k) [1� nF(p� !)] [1� nF(k + !)]

�⇥

P q1(p� !)nF(k + !) + P q2(k + !)nF(p� !)
⇤

[1� nF(k)]
o

, (3.2) {el2}

where the techniques of [8] have been followed, by eliminating one of the three integration

variables in Eq. (2.7) with the momentum-conserving �-function, shifting one of the

3When obtaining the complete C

large[P ] and summing over c and d, one obtains a factor of two. {foot_final}
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Conversion corrections

• Operator ordering is not relevant at NLO: abelianization 
of Wilson line operator

• Exactly what was computed for the NLO photon rate:

after collinear subtraction:

�conv

q!g(p) = � g

2

8dF p

Z
+1

�1
dx

+

⌦
Tr

⇥
UF (�1, x

+)T a
 ̄(x+)

/

vUA(x
+

, 0) (0)T b
UF (0,�1)

⇤↵

�conv

q!g(p) = �g

2

CF

8dF p

Z
+1

�1
dx

+

⌦
Tr

⇥
 ̄(x+)

/

vUF (0, x
+) (0)

⇤↵

that the structure of the NLO correction arising from the collinear region is then

d���

d

3
k

����
coll

=
d���

d

3
k

����
�m

+
d���

d

3
k

����
�C

, (2.15)

where the first term is due to O(g) shift in m

2
1 and the in the second term they arise from

considering one-loop soft rungs rather than tree-level ones in the ladder resummation.

In the soft region, the addition of an extra soft gluon to the diagram in Fig. 4 results in

the diagrams shown in Fig. 8, which represent an O (g) correction. In particular, wherever

Figure 8. Diagrams contributing to the NLO fully soft rate. The black blobs are bare+HTL
vertices, plain lines and gluons are soft. We call these four diagrams, from left to right, the soft-soft
self-energy, the tadpole, the hard-soft self-energy and the cat eye. {fig_nlo_soft}

a gluon ends on a soft fermion line, all momenta flowing in that quark-gluon vertex are of

order gT . This causes the bare and HTL vertices to be of the same order, requiring the

inclusion of the HTL vertex, as shown in the first and last diagrams in Fig. 8. Furthermore,

the two-quark, two-gluon HTL gives rise to a new topology, the second diagram in that

figure.

The complicated analytic structure of the HTL vertices and propagators, with their

branch cuts and imaginary parts, as well as the non-trivial functional dependence on the

momenta, would in principle make the calculation of the diagrams in Fig. 8 technically

intricate and only amenable to a multi-dimensional numerical integration. However in

Sec. 4 we develop a set of sum rules, based on these amplitudes’ analyticity properties in

the complex plane, which are in turn related to causality. These sum rules, as we shall

show, simplify the calculation dramatically, leading to an analytical result.

The first diagram in Fig. 8 is the soft limit of the self-energy included in the soft leading-

order calculation, see Fig. 4. The HTL self-energy used in the leading-order calculation

includes an integral over this loop momentum which extends down to zero, with O(g) of

the contribution arising from O(g) loop momenta. Therefore, the first diagram in Fig. 8

has already been included – in fact mistreated, since a Q � P approximation is performed

where it is not applicable – in the leading-order calculation. Therefore we have to subtract

this soft-loop part of the HTL calculation to avoid double counting and to correct this

mistreatment. We do this by subtracting a counterterm diagram shown in Figure 9.

Similarly, in the calculation of the leading order collinear rate, an O(g) part of p+

integration arises from the kinematical region where p

+ is soft and so overlaps with the

soft kinematic region. This contribution is correctly dealt with by the soft contribution,

and the mistreated LO contribution must be subsequently subtracted. The structure of

– 11 –
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Diffusion corrections
• At NLO one has these diagrams

• Unsurprisingly?

• Can a SCET-like EFT help understand these results?

with cuto↵ �E

µ

= (µNLO
? )2|p|/(2|k(p� k)|) (with some care on the sign of pk(p� k)) we have
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d
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h
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so that Eq. (64) turns into
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.(73) {jmsemicolltrans}

For µNLO
? ! 0 Eq. (65) is recovered.

A Longitudinal momentum di↵usion at NLO
{app_nlo}

Some comments: I have not analyzed HTL vertices (the photon lesson should do) and I have not
explicitly checked the cancellation of the “Coulomb gauge poles” at p+ = p

�
/2± ip? (p2 = 0).

A.1 The rainbow diagram

P

Q

Figure 3: The rainbow diagram {fig_rainbow}
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where we have used the symmetries of the integrand to express the leading-order term as a �

function of q�.
We now inspect the second term, labeled s

q̂
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When deforming on C
R

and C
A

we have
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The p

� integration can be performed as before, yielding
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which goes like 1/(p+)2 and hence is irrelevant. This can be easily understood by noting that
the pinched poles in p

� force p

� ⇠ 1/p+, so that the factor of p�/p+ of this term with respect
to Eq. (77) behaves like 1/(p+)2.

Finally, we look at the Euclidean term, labeled e
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We need not go any further with its evaluation, at least for now.

A.2 The crossed self-energy

P

Q

Figure 4: The crossed rainbow diagram {fig_cross}
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P +Q

Figure 5: The cat-eye diagram {fig_cateye}

A.3 The cat eye

The amplitude reads, with label c
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where I have defined the three-gluon vertex as
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where P,Q,K are all inflowing in the vertex, P is associated with a and µ and similarly for the
others. Taking the coordinate integration gives
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Let us look at the r/a structure of the propagators. Neglecting Lorentz indices the terms in
square brackets can be rewritten as
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which yields
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The second term on the bottom line vanishes under the p

+ integration, as it is odd. Similarly,
the first term yields
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which vanishes, as the p

+ integration can only pick up the residue of the Coulomb gauge poles,
which is O(�Ep) and thus makes the q

+ integration vanish.
Finally, terms with p

� or p� + q

� at the numerator in Eq. (92) vanish again for the loss of
p

+ at the numerator and of a pinched pole at the denominator. The last term trivially vanishes.
The entire result is hence given by Eq. (97).

A.4 Self-energy diagrams

We analyze separately the two diagrams show in Fig. 6, the loop diagram on the left and the
tadpole diagram on the right.
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P +Q P
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Figure 6: The loop diagram on the left and the tadpole diagram on the right. {fig_loop}

A.4.1 The loop diagram

The amplitude is labeled by s and reads
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• Seemingly different processes boiling down to wider-angle 
radiation

• Evaluation: introduce “modified    ” that keep tracks of the 
changes in the small light-cone component p- of the quarks

• The “modified    ” can also be evaluated in EQCD 

• The regulator dependence vanishes across all regions

Semi-collinear processes
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Figure 9. Diagrams for two typical semi-collinear processes. In the first case the soft gluon
is in the spacelike Landau cut, whereas in the second case it is on its timelike plasmon pole,
represented by the black blob. {fig_semicoll}

the two final-state particles are collinear, albeit with an increased virtuality and open-

ing angle with respect to the collinear sector. The leading contribution then comes

from q+ ⇠ T, q� ⇠ gT, q2? ⇠ gT 2, Q2 ⇠ gT 2 or, in the case of a democratic splitting,

q+ ⇠ E, q� ⇠ gT, q2? ⇠ gTE, Q2 ⇠ gTE. Naive power-counting arguments would sug-

gest that the semi-collinear region should contribute to leading-order, as it is the largest

slice of phase space where a soft gluon can attach to a 1 $ 2 process. However, once all

diagrams are summed and squared, a cancellation, first noticed in [17] in the context of

photon radiation, introduces an extra O(g) suppression. Furthermore, as we shall show,

the contribution from timelike soft gluons, e.g. plasmons, is now allowed.

The contribution �Csemi�coll
a

to the collision operator can be written in the same way

as the collinear one, as given by Eqs. (5.1)-(5.2), with the replacement of the collinear

rates with semi-collinear ones. For instance, for quark and antiquark it reads
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The derivation of the semi-collinear rates then requires the evaluation of processes of

the form of Fig. 9, with p, q+ � q? � k?, k
+. Actually we have already evaluated

these diagrams using the collinear expansion, since it is precisely these diagrams which

give rise to the linear-in-collisions expressions we found in Subsec. 5.2.3. In particular,

the subtraction term from the collinear region, Eq. (5.16), was derived by making an

expansion in q+ � q?, and it still applies, under one condition. In evaluating the

collision sector, we treated q? ⇠ k? ⇠ gT , leading to �E ⇠ g2T . This let us neglect

�E when working out the kinematics of the soft gluons, so that C
R

(k?) (see for instance

Eq. (3.14)) is defined for k� = 0 and hence only spacelike gluons contribute to it. But if

q2? ⇠ gT 2, q+ ⇠ T , or q2? ⇠ gTE, q+ ⇠ E, then �E ⇠ gT and can no longer be neglected,
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K soft plasmon, 
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Conclusions
• Useful reorganization of the kinetic theory that shows the 

appearance of gauge-invariant light-front operators that 
effectively describe soft momentum exchanges

• These operators can be evaluated using new techniques and are 
of two kinds

• Euclidean (C(x⟂),           ): can also be evaluated on the (EQCD) 
lattice

• “Collinear”: are the same for bosons and fermions, include 
the effect of the modified dispersion relation at LO and NLO

• Applications are underway: implementation in MARTINI and 
thermalization studies 
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