
22/03/12  1

Thermalization process on the lattice 

Soeren Schlichting
In collaboration with
J. Berges, K. Boguslavski and R. Venugopalan

MITP Workshop, Mainz  07/29/14 



22/03/12  2

Motivation

Relativistic heavy-ion collision experiments at RHIC and LHC

The LHC (scienceblogs.com)
Pb+Pb collision @ 2.76b TeV
(ALICE Collaboration)

How can one understand the complex 
dynamics of a  heavy-ion collisions?

Pb+Pb collision @ 2.76b TeV
(ALICE Collaboration)

Soeren Schlichting | Brookhaven National Lab2 
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Heavy-ion collisions

Standard model of HIC

Conjectured space-time evolution of a heavy-collision based on 
phenomenological models and experimental information

(c. f. U.Heinz, J.Phys.Conf.Ser. 455 (2013) 012044)

Soeren Schlichting | Brookhaven National Lab3 
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A large variety of data at RHIC and LHC can 
be explained based on this standard model

Heavy-ion collisions

Hydrodynamic simulations versus experiment

Schenke et al. PRL 110 (2013) 012302

Soeren Schlichting | Brookhaven National Lab4 



  

The thermalization problem 

 

colliding
nuclei

HadronizationHadronization

Kinetic
freeze-out

Time

Non-
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dynamics Viscous hydrodynamics free streaming

Final detected
particle distributions

Experimental 
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Phenomenological models

τ~1fm/c

Standard Model of Heavy Ion Collisions

Initial 
energy density

When and to what extent is a thermalized QGP achieved? 
How does this happen?
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Thermalization process

Holographic thermalization:

Turbulent thermalization:

Heller, Janik, Witaszczyk; Chesler, Yaffe ...

CGC: McLerran, Venugopalan ...

Progress in a first-principle understanding from two limiting cases

Fig. by T. Epelbaum

Fig. from strings.net.technion.ac.il

Soeren Schlichting | Brookhaven National Lab6 
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Weak coupling out-of-equilibrium methods  

f (t , p)∼1 /λ 1/ λ> f (t , p)>1 f (t , p)∼1
('strongly interacting system') ('classical particles')

Classical-statistical field theory Kinetic theory

Whenever the occupancy/field amplitudes are 
large ( f >> 1) a description in terms of classical 
field equations of motion is applicable

→ Can be solved numerically for a discretized 
space-time using standard lattice techniques 

Whenever the occupancy becomes less than  
( f <1/   ) a description in terms of quasi 
particle excitations should also be applicable

→ Can study the effect of individual 
processes (e.g. 2 ↔2 or 2↔3 scattering) 

∂t f (t , p)=C [ f ](t , p)

→ Overlap in the range of applicability

('quantum')

λ
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Thermalization process

Non-equilibrium
 dynamics

How is thermal equilibrium achieved?

Soeren Schlichting | Brookhaven National Lab8 
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Thermalization process

Non-equilibrium phenomena may be shared by a large class of 
strongly correlated many-body systems

II) Thermalization in Yang-Mills theory in Minkowski space

(Berges,SS,Sexty PRD 86 (2012) 074006; SS PRD 86 (2012) 065008)

III) Thermalization in heavy-ion collisions at ultra-relativistic energies 

(Berges,Boguslavski,SS,Venugopalan  arXiv:1303.5650,  arXiv:1311.3005)

I) Thermalization in scalar field theory (c.f. Cosmology)
(Micha, Tkachev PRD 70 (2004) 043538)
(Berges, Boguslavski,SS, Venugopalan  arXiv:1312.5216)

Soeren Schlichting | Brookhaven National Lab9 
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Scalar theory – Reheating model

Scalar field theory (λФ4); Small coupling

 
Simplest model for thermalization of the early 
universe (Micha, Tkachev PRD 70 (2004) 043538)

Initial conditions (e.g. at the end of inflation):

 Homogenous background field (condensate) Ф
0
 ~1/        + vacuum fluctuations

Coupling constant is 
typically very small 

The initial field amplitude of 
the inflation field is large

Weakly coupled but strongly interacting

Soeren Schlichting | Brookhaven National Lab10 
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p

Thermal 
equilibrium

~T

Initial state –
Far from equilibrium

???

Energy transport 
towards Ultra-Violet

Soeren Schlichting | Brookhaven National Lab11 Soeren Schlichting | Brookhaven National Lab11 

What happens during thermalization?

Initially most energy is stored 
in the background field

In thermal equilibrium energy 
is mostly carried by 

momentum modes ~T

O
cc

up
an

cy
  

f(
p)

Momentum
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Time:

Momentum:

M
om

en
t: 

k 
4
 f(

k)

Self-similar evolution

Thermalization process 

Non-thermal fixed point

 The thermalization process is described by a quasi-stationary evolution 
with scaling exponents Dynamic: α=-4/5    β=-1/5 Spectral:   κ=-3/2

(Micha, Tkachev PRD 70 (2004) 043538)

 The evolution becomes self-similar

Soeren Schlichting | Brookhaven National Lab12 
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-(κ+z)E(k) ~ k

source sink

 Stationary scaling solution 
associated with scale invariant 

energy flux

 Kolmogorov spectra 

Uriel Frisch, “Turbulence. The Legacy of A. N. Kolmogorov.”

Zakharov, V. E.; L'vov, V. S.; Falkovich, G, “Kolmogorov spectra 
of turbulence 1. Wave turbulence.”

Soeren Schlichting | Brookhaven National Lab13 Soeren Schlichting | Brookhaven National Lab13 

Turbulent thermalization – 
Classical picture of wave turbulence

E
ne

rg
y 

di
st
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ut
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n

Momentum / Wave number

Richardson cascade
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-(κ+z)E(k) ~ k

source sink

-(κ+z)E(k) ~ k

 Stationary scaling solution 
associated with scale invariant 

energy flux

“Driven” Turbulence – 
Kolmogorov wave turbulence 

“Free” Turbulence – 
Turbulent Thermalizationvs.

 Quasi-stationary scaling 
solution

closed system

Turbulent Thermalization

Soeren Schlichting | Brookhaven National Lab14 

Turbulent Thermalization

Soeren Schlichting | Brookhaven National Lab14 

Turbulent thermalization – 
Wave turbulence in closed systems

 Self-similar  time evolution 
associated with energy transport 

towards the ultra-violet

Soeren Schlichting | Brookhaven National Lab14 
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Kinetic interpretation

(Cosmology: Micha, Tkachev PRD 70 (2004) 043538)

→ Boltzmann equation reduces to a fixed point equation and 
a scaling relation

of the Boltzmann equation

 C [ f ] (p ,t )=tμC [ f S ](t
β p)(f≫1)

scale invariance

 Search for self-similar scaling solutions 

Soeren Schlichting | Brookhaven National Lab15 
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Turbulent thermalization

Interaction

2<->1+soft

Λ evolution
(Exponent α)

-1/5

Occupancy 
evolution

(Exponent β)

-4/5

2<->2 -1/7* -4/7*

→ Scalar theory: Turbulent cascade is driven by 2<->(1+soft) interaction  

(* c.f. Kurkela, Moore for SU(Nc) gauge theory)

 The dynamic scaling exponents are uniquely determined by 

Canonical scaling of the 
collision integral Conservation laws+

 Classification scheme for relativistic field theories

Universality far 
from equilibrium

 (Micha, Tkachev)

Spectral Shape
(Exponent κ)

3/2

4/3, 5/3

 Heavy Ion collisions at very high energies Heavy Ion collisions at very high energies

“free” cascade stationary cascade

Soeren Schlichting | Brookhaven National Lab16 
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Generic phenomenon?

 Consider e.g. initial conditions without a condensate

(Berges,Boguslavski,SS,Venugopalan  arXiv:1312.5216)

Thermal 
equilibrium

~T

Initial 
over-occupation

???
Energy transport 

towards UV

→ Thermalization process remains essentially the same

f (t 0 , p)=
n0

λ θ(Q−p)

O
cc

up
an

cy
  

f(
p)

Momentum

n0 controls initial over-occupancy

Soeren Schlichting | Brookhaven National Lab17 
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 The turbulent scaling behavior is a property of the thermalization 
process – independent of the underlying initial conditions

(Berges,Boguslavski,SS,Venugopalan  arXiv:1312.5216)
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λ 
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Independence of Initial conditions

 An effective memory loss occurs already at the early stages 
of the thermalization process

Momentum: p / Q

Initial conditions

attractor solution
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→ Dynamical formation of macroscopic zero mode (Bose condensation) 
even the though the system is in the symmetric phase

(Berges, Sexty  PRL 108 (2012) 161601 Berges,Boguslavski,SS,Venugopalan  arXiv:1312.5216)
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Bose-Condensation far from equilibrium

Time: Qt

B
ac

kg
ro
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d 

fie
ld

Momentum: p / Q
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Turbulent thermalization
Thermalization for a system far from equilibrium proceeds as a 
self-similar evolution associated to the presence of a non-
thermal fixed point 

How does this picture apply to non-Abelian gauge theories? 
Does it hold for relativistic heavy-ion collisions?  

Far from 
equilibrium

Close to 
equilibrium

eff. m
emory loss Thermal 

equilibrium

Classical 
attractor

Instabilities,

Over-population ...

Self-similarity

f  t , p= t f S  t
 p

relaxation: 

Quantum effects

f t , p − f eq  p~e− t

f eq  p

Soeren Schlichting | Brookhaven National Lab20 Soeren Schlichting | Brookhaven National Lab20 
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Non-abelian plasma in Minkowski space

f(p)

p

Thermal 
equilibrium

Q T

(c.f. Kurkela, Moore JHEP 1112 (2011) 044;  Blaizot et al. Nucl.Phys. A873 (2012) 68-80)

 Consider homegenous and isotropic systems which are initially highly 
occupied and initially characterized by a single momentum scale Q 

Initial 
over-occupation

How does thermalization proceed? Turbulent attractor? 
What are the relevant kinetic processes? 

???
Energy transport 

towards UV

Soeren Schlichting | Brookhaven National Lab21 
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Definition of occupation number

 Single particle distribution is a gauge 
dependent quantity but facilitates 
comparison with kinetic theory. 

 Chose temporal axial + Coulomb 
type gauge to fix the gauge freedom

 Define occupation number  from 
equal time correlation functions

f ( p , t )=〈∣ξμ(λ)k (t )∂t A a
μ (t , p )∣

2
〉
(Coul. gauge)

(see e.g. Kurkela, Moore  PRD 86, (2012) 056008;  SS PRD86 (2012) 065008;
Berges,Boguslavski,SS, Venugopalan  PRD89 (2014) 114007 )

At=0 ∇ A =0
t

Soeren Schlichting | Brookhaven National Lab22 
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 Evolution at late times shows 
a self-similar behavior 

with dynamical scaling 
exponents 

consistent with elastic & 
inelastic scattering processes

α = -4/7 

β = -1/7

(SS PRD 86 (2012) 065008; Kurkela, Moore  PRD 86, (2012) 056008) 

(c.f. Kurkela, Moore JHEP 1112 (2011) 044; 
 Blaizot et al. Nucl.Phys. A873 (2012) 68-80)

f ( p , t )=(Qt )α f S((Qt )β p)

Energy transport 
towards UV

Self-similarity

Soeren Schlichting | Brookhaven National Lab23 
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Turbulent thermalization
Thermalization for a system far from equilibrium proceeds as a 
self-similar evolution associated to the presence of a non-
thermal fixed point 

How does this picture apply to non-Abelian gauge theories? 
Does it hold for relativistic heavy-ion collisions?  

Far from 
equilibrium

Close to 
equilibrium

eff. m
emory loss

Thermal 
equilibrium

Non-thermal 
fixed point

Instabilities,

Over-population ...

Self-similarity
Turbulence 

f  t , p= t f S  t
 p

relaxation: 

Quantum effects

f t , p − f eq  p~e− t

f eq  p

Soeren Schlichting | Brookhaven National Lab24 
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Soeren Schlichting | Brookhaven National Lab25 

Thermalization  process in heavy-ion collisions
– a weak coupling perspective



  

General picture at weak coupling 

Colliding nuclei
Gluons produced

in highly anisotropic
state 'Glasma'

Soeren Schlichting | Brookhaven National Lab26 

Thermalized QGP

?

Thermalization 
process

Coupling constant 
assumed to be small  

Many gluons prodcued
in the collision 

Weakly coupled but strongly interacting



  

Soeren Schlichting | Brookhaven National Lab27 

Early time dynamics
f(
τ
,p

T
,ν
)
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p
T /Q

s

Transverse 

momentum
Rapidity

wavenumber
ν

Vacuum 

fluctuations

'G
lasm

a' fields

Instability

Qs τ∼1 1<Qs τ< log2
(αs

−1
) Qs τ∼log2

(αs
−1
)

Over-occupied
plasma

Initial state is highly anisotropic → Plasma instabilities lead to exponential 
growth of low momentum modes (c.f. Mrowczynski, Romatschke, Strickland, Rebhan, 
Attems , Venugopalan, Epelbaum, Gelis, Fukushima, Berges, Sexty ...)

        

(Berges,Schenke,SS, Venugopalan work in progress) 

τ∼Qs
−1 log2

(αS
−1
) → Over-occupied plasma                              formed on a time scale    

(



  

τ0=1 /Qs ln2
(1 /αs)

Soeren Schlichting | Brookhaven National Lab28 

Thermalization process at weak coupling

'Glasma' Over-occupied QGP

Thermalization process

System is still far from equilibrium at times

?

Longitudinal Expansion:
 Red-shift of longitudinal momenta 

 → Increase of anisotropy
→ Dilution of the plasma

Interactions:
Momentum broadening

→ Decrease of anisotropy

Competition between interactions and the longitudinal expansion, 
may render the system anisotropic on large time scales
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Thermalization scenarios
 Different scenarios of how thermalization proceeds have been 
proposed in the literature

 

Baier et al. ( BMSS ),
PLB 502 (2001) 51-58

Boedeker ( BD ), 
JHEP 0510 (2005) 092 

Kurkela, Moore ( KM ),
JHEP 1111 (2011) 120

→ Difference arises from the treatment of soft (non-perturbative) 
physics of modes below the Debye scale.

Elastic + inelastic scattering

Plasma instabilities

Plasma instabilities

Soeren Schlichting | Brookhaven National Lab29 



  

Study thermalization process for a variety of different initial conditions which 
describe the the over-occupied plasma at initial time                             

τ0=1/Qs ln
2
(1/αs)

f ( pT , pZ , τ0)=
n0
αs

θ(Qs−√ pT
2
+ξ0

2 pZ
2
)

Momentum space anisotropyOver-occupation

Soeren Schlichting | Brookhaven National Lab30 

Thermalization of the over-occupied QGP

n0
αs

ξ0

(Berges, Boguslavski, SS, Venugopalan PRD 89 074011 &  arXiv:1311.3005)

τ0=1 /Qs ln2
(1 /αs)

Over-occupied QGP

Thermalization process

?

Classical regime can be studied non-perturbatively
 within classical-statistical lattice simulations



  

Lattice results – Bulk anisotropy

 Competition between interactions 
and longitudinal expansion leads to 
an increase of the anisotropy. 

 Nevertheless the system remains 
significantly interacting throughout 
the entire evolution.

 The evolution becomes insensitive 
to the initial conditions and exhibits 
a universal scaling behavior at late 
times.Pla

sm
a

in
st

ab
ili

tie
s

n0 controls initial over-occupancy

Soeren Schlichting | Brookhaven National Lab31 

τ / τ01 10 τ / τ01 10Time: Time:

ξ0 controls initial anisotropy

(Berges, Boguslavski, SS, Venugopalan PRD 89 074011 &  arXiv:1311.3005)
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 The typical transverse 
momentum of hard excitations 
remains approximately constant 

 The typical longitudinal 
momentum of hard excitations 
exhibits a universal scaling 
behavior 

Universal Scaling

τ / τ01 10Time:

Soeren Schlichting | Brookhaven National Lab32 



  

Single particle spectra

Transverse spectrum Longitudinal spectrum
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Transverse spectrum quickly approaches 
'thermal' like          shape, with decreasing 
amplitude

T / pT

τ / τ0=5
τ / τ0=10
τ / τ0=20
τ / τ0=40

Significant momentum broadening in the 
longitudinal direction observed. 
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Soeren Schlichting | Brookhaven National Lab33 

(Berges, Boguslavski, SS, Venugopalan PRD 89 074011 &  arXiv:1311.3005)
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Single particle spectra

Transverse spectrum Longitudinal spectrum

G
lu
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n:

Transverse spectrum quickly approaches 
'thermal' like          shape, with decreasing 
amplitude

T / pT

τ / τ0=5
τ / τ0=10
τ / τ0=20
τ / τ0=40

However not strong enough to compensate 
completely for the red shift due to the 
longitudinal expansion.
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(Berges, Boguslavski, SS, Venugopalan PRD 89 074011 &  arXiv:1311.3005)
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pz /Q=ν/(Q τ)Longitudinal momentum:



  

Self-similarity

R
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The system reaches a classical turbulent attractor, where the space-time evolution

 becomes self-similar, i.e.

with scaling exponents

f ( pT , pZ , τ)=(Q τ)
α f S((Q τ)

β pT ,(Q τ)
γ pZ )

 α≈−2 /3 , β≈0 , γ≈1 /3

Soeren Schlichting | Brookhaven National Lab35 

(Berges, Boguslavski, SS, Venugopalan PRD 89 074011 &  arXiv:1311.3005)



  

Kinetic interpretation

Soeren Schlichting | Brookhaven National Lab36 

Consider the Boltzmann equation

 

f ( pT , pZ , τ)=(Q τ )α f S ((Q τ)β pT ,(Q τ)γ pZ )

[∂τ−
pZ
τ ∂ pZ

] f ( pT , pZ , τ)=C [ f ]( pT , pZ , τ)

 Particle number conservation

(α−3β−γ=−1)

(α−2β−γ=−1)

(2α−2β+γ=−1)

α=−2/3 ,β=0 ,γ=1 /3→  in excellent agreement with lattice data!    

[α+β pT ∂pT
+(γ−1) pZ ∂pZ

] f S( pT , pZ)=Q−1C [ f S ]( pT , pZ )

(f≫1)

Confirms “bottom-up” thermalization scenario (Baier et al. PLB 502 (2001) 51-58) 

with a self-similar evolution  

→ Non-thermal fixed point solution

→ Scaling exponents determined by scaling relations for

 Small angle elastic scattering
 Energy conservation

(Berges, Boguslavski, SS, Venugopalan PRD 89 074011 &  arXiv:1311.3005)



22/03/12  37

The attractor solution

 Universal scaling behavior 
for different initial conditions
 

 Qualitative agreement with 
the first stage of the 
“bottom-up” thermalization 
scenario (Baier et al. PLB 
502 (2001) 51-58) 

No sign that plasma 
instabilities play a 

significant role

Soeren Schlichting | Brookhaven National Lab37 
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The expanding plasma exhibits a self-similar evolution. However, at the 
end of the classical regime the system is still far from equilibrium

Far from 
equilibrium

Thermal 
equilibrium

Non-thermal 
fixed point

Self-similarity
Turbulence 

Increase of 
anisotropy

Thermalization?
Isotropization?

Quantum turbulence?

~S
−3/ 2Q s

−1

Classical regime Quantum regime

Thermalization process

eff. memory loss

Soeren Schlichting | Brookhaven National Lab38 
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Thermalization process
Classical statistical simulations no longer applicable in the 
quantum regime. However kinetic theory predictions provide 
route to thermal equilibrium

Far from 
equilibrium

eff. memory loss

Thermal 
equilibrium

Non-thermal 
fixed point

Self-similarity
Turbulence 

Classical regime Quantum regime

“bottom up” scenario

Soft sector 
builds up and 
thermalizes

Jet-like decay 
of hard sector

~S
−3/ 2Q s

−1 ~S
−5/ 2Qs

−1
~S

−13 /5Q s
−1

(c.f. talk by G. Moore)

Soeren Schlichting | Brookhaven National Lab39 
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Conclusion & Outlook
 Classical-statistical lattice simulations can be used to study the non-
equilibrium dynamics from first principles in weak coupling limit. 

  Within the common range of validity lattice simulations agree well with kinetic 
theory (c.f. talk by G. Moore) 

 Turbulent thermalization process appears as a generic feature of strongly 
correlated many-body systems across different energy scales ('big bang', 'little 
bang', 'ultracold bang')

05/23/1340 

Open questions:
 How is the weak-coupling attractor approached for themost realistic initial 
conditions?

 How exactly is isotropization/thermalization achieved in the quantum regime?
(c.f. Kurkela, Lu arXiv:1405.6318)

 How to compare weak coupling and strong coupling results?

 Can we reliably perform simulations directly at larger values of the coupling? 
(c.f. Epelbaum, Gelis PRL 111 (2013) 232301; BBSV arXiv:1312.5216)
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