Thermalization process on the lattice

Soeren Schlichting

In collaboration with

J. Berges, K. Boguslavski and R. Venugopalan

MITP Workshop, Mainz 07/29/14

Motivation

Relativistic heavy-ion collision experiments at RHIC and LHC

How can one understand the complex dynamics of a heavy-ion collisions?

Heavy-ion collisions

Conjectured space-time evolution of a heavy-collision based on phenomenological models and experimental information

(c. f. U.Heinz, J.Phys.Conf.Ser. 455 (2013) 012044)

Soeren Schlichting | Brookhaven National Lab

Heavy-ion collisions

Hydrodynamic simulations versus experiment

Schenke et al. PRL 110 (2013) 012302

A large variety of data at RHIC and LHC can be explained based on this standard model

The thermalization problem

Thermalization process

Progress in a first-principle understanding from two limiting cases

Holographic thermalization:

a) strong coupling? Heller, Janik, Witaszczyk; Chesler, Yaffe ...

Sizeable anisotropy at transition to hydrodynamic regime

Fig. from strings.net.technion.ac.il

Turbulent thermalization:

 ϵ

b) weak coupling but highly occupied? CGC: McLerran, Venugopalan ...

Energy density of gluons with typical momentum Q_s (at time ~1/ Q_s)

$$\sim rac{Q_s^4}{lpha_s}$$
 i.e. 'occupation numbers'

$$n(p \lesssim Q_s) \sim \frac{1}{\alpha_s}$$

Fig. by T. Epelbaum

Soeren Schlichting | Brookhaven National Lab

Weak coupling out-of-equilibrium methods

Classical-statistical field theory

Whenever the occupancy/field amplitudes are large (f >> 1) a description in terms of classical field equations of motion is applicable

$$D_{\mu}F^{\mu\nu} = J^{\nu}$$

→ Can be solved numerically for a discretized space-time using standard lattice techniques

Kinetic theory

Whenever the occupancy becomes less than ($f < 1/\lambda$) a description in terms of quasi particle excitations should also be applicable

$$\partial_t f(t, p) = C[f](t, p)$$

 \rightarrow Can study the effect of individual processes (e.g. 2 \leftrightarrow 2 or 2 \leftrightarrow 3 scattering)

 \rightarrow Overlap in the range of applicability

Thermalization process

Initial state: Far from equilibrium

Non-equilibrium dynamics

Final state: Thermal equilibrium

How is thermal equilibrium achieved?

Thermalization process

Non-equilibrium phenomena may be shared by a large class of strongly correlated many-body systems

I) Thermalization in scalar field theory (c.f. Cosmology)

(Micha, Tkachev PRD 70 (2004) 043538) (Berges, Boguslavski,SS, Venugopalan arXiv:1312.5216)

II) Thermalization in Yang-Mills theory in Minkowski space

(Berges, SS, Sexty PRD 86 (2012) 074006; SS PRD 86 (2012) 065008)

III) Thermalization in heavy-ion collisions at ultra-relativistic energies (Berges, Boguslavski, SS, Venugopalan arXiv:1303.5650, arXiv:1311.3005)

Scalar theory – Reheating model

Scalar field theory ($\lambda \Phi^4$); Small coupling $\lambda = 10^{-8}$.

$$S\left[arphi
ight] = \int d^4x \left(rac{1}{2}\partial_\muarphi\partial^\muarphi - rac{\lambda}{24}arphi^4
ight) \, ,$$

Simplest model for thermalization of the early universe (*Micha, Tkachev PRD 70 (2004) 043538*)

Initial conditions (e.g. at the end of inflation):

Homogenous background field (condensate) $\Phi_0 \sim 1/\sqrt{\lambda} + vacuum$ fluctuations

Coupling constant is typically very small

 $\lambda \sim 10^{-8}$

The initial field amplitude of the inflation field is large

$$\phi \sim 1/\sqrt{\lambda}$$

Weakly coupled but strongly interacting

What happens during thermalization?

Soeren Schlichting | Brookhaven National Lab

Thermalization process

The evolution becomes self-similar

$$f(p,t) = t^{\alpha} f_S(t^{\beta}p)$$

• The thermalization process is described by a *quasi-stationary evolution* with *scaling exponents* Dynamic: $\alpha = -4/5$ $\beta = -1/5$ Spectral: $\kappa = -3/2$

(Micha, Tkachev PRD 70 (2004) 043538)

Turbulent thermalization – Classical picture of wave turbulence

Richardson cascade

Kolmogorov spectra

Momentum / Wave number

• Stationary scaling solution associated with scale invariant energy flux

Uriel Frisch, "Turbulence. The Legacy of A. N. Kolmogorov."

Zakharov, V. E.; L'vov, V. S.; Falkovich, G, "Kolmogorov spectra of turbulence 1. Wave turbulence."

Turbulent thermalization – Wave turbulence in closed systems

"Driven" Turbulence – Kolmogorov wave turbulence

 Stationary scaling solution associated with scale invariant energy flux VS.

"Free" Turbulence – Turbulent Thermalization

closed system

 Quasi-stationary scaling solution

• Self-similar time evolution associated with energy transport towards the ultra-violet

Kinetic interpretation

Search for self-similar scaling solutions

 $f(p,t) = t^{\alpha} f_S(t^{\beta} p)$

of the Boltzmann equation

$$\partial_t f(p,t) = C[f](p,t) \xrightarrow{\text{scale invariance}} C[f](p,t) = t^{\mu} C[f_s](t^{\beta} p)$$

 \rightarrow Boltzmann equation reduces to a fixed point equation and a scaling relation

$$\alpha f_S(p) + \beta \partial_p f_S(p) = C[f_S](p) \qquad \alpha - 1 = \mu(\alpha, \beta)$$

(Cosmology: Micha, Tkachev PRD 70 (2004) 043538)

Turbulent thermalization

• The dynamic *scaling exponents* are uniquely determined by

Canonical scaling of the collision integral + Conservation laws -

Universality far from equilibrium

Classification scheme for relativistic field theories (Micha, Tkachev)

→ Scalar theory: Turbulent cascade is driven by 2<->(1+soft) interaction

(* c.f. Kurkela, Moore for SU(Nc) gauge theory)

16

Generic phenomenon?

Consider e.g. initial conditions without a condensate

$$f(t_0, p) = \frac{n_0}{\lambda} \Theta(Q - p)$$

 n_0 controls initial over-occupancy

\rightarrow Thermalization process remains essentially the same

(Berges, Boguslavski, SS, Venugopalan arXiv:1312.5216)

Independence of Initial conditions

 The turbulent scaling behavior is a property of the thermalization process – *independent of the underlying initial conditions*

 An effective memory loss occurs already at the early stages of the thermalization process

(Berges, Boguslavski, SS, Venugopalan arXiv:1312.5216)

Bose-Condensation far from equilibrium

→ Dynamical formation of macroscopic zero mode (Bose condensation) even the though the system is in the symmetric phase

(Berges, Sexty PRL 108 (2012) 161601 Berges, Boguslavski, SS, Venugopalan arXiv:1312.5216)

Turbulent thermalization

Thermalization for a system far from equilibrium proceeds as a **self-similar evolution** associated to the presence of a **nonthermal fixed point**

How does this picture apply to non-Abelian gauge theories? Does it hold for relativistic heavy-ion collisions?

20

Non-abelian plasma in Minkowski space

 Consider homegenous and *isotropic* systems which are initially *highly* occupied and initially characterized by a single momentum scale Q

How does thermalization proceed? Turbulent attractor? What are the relevant kinetic processes?

(c.f. Kurkela, Moore JHEP 1112 (2011) 044; Blaizot et al. Nucl.Phys. A873 (2012) 68-80)

Definition of occupation number

 Single particle distribution is a gauge dependent quantity but facilitates comparison with kinetic theory.

 Chose temporal axial + Coulomb type gauge to fix the gauge freedom

$$A_t = 0$$
 $\nabla A = 0$

 Define occupation number from equal time correlation functions

$$f(p,t) = \langle \left| \xi_{\mu}^{(\lambda)k}(t) \overline{\partial}_{t} A_{a}^{\mu}(t,p) \right|^{2} \rangle_{(Coul. gauge)}$$

(see e.g. Kurkela, Moore PRD 86, (2012) 056008; SS PRD86 (2012) 065008; Berges,Boguslavski,SS, Venugopalan PRD89 (2014) 114007)

Soeren Schlichting | Brookhaven National Lab

Self-similarity

 Evolution at late times shows a *self-similar* behavior

 $f(p,t)=(Qt)^{\alpha}f_{s}((Qt)^{\beta}p)$

with dynamical scaling exponents

 $\alpha = -4/7$ $\beta = -1/7$

consistent with *elastic & inelastic scattering* processes

(c.f. Kurkela, Moore JHEP 1112 (2011) 044; Blaizot et al. Nucl.Phys. A873 (2012) 68-80)

(SS PRD 86 (2012) 065008; Kurkela, Moore PRD 86, (2012) 056008)

Turbulent thermalization

Thermalization for a system far from equilibrium proceeds as a **self-similar evolution** associated to the presence of a **non-thermal fixed point**

How does this picture apply to non-Abelian gauge theories? Does it hold for relativistic heavy-ion collisions?

CMS Experiment at the LHC, CERN

Data recorded: 2010-Nov-08 10:22:07.828203 GMT(11:22:01 CEST)

Run / Event: 150431 / 541464

Thermalization process in heavy-ion collisions – a weak coupling perspective

Soeren Schlichting | Brookhaven National Lab

General picture at weak coupling

Weakly coupled but strongly interacting

Early time dynamics

Initial state is highly anisotropic → *Plasma instabilities lead to exponential growth of low momentum modes* (c.f. Mrowczynski, Romatschke, Strickland, Rebhan, Atťems , Venugopalan, Epelbaum, Gelis, Fukushima, Berges, Sexty ...)

 \rightarrow Over-occupied plasma $f(p \lesssim Q_s) \sim 1/\alpha_s$ formed on a time scale $\tau \sim Q_s^{-1} \log^2(\alpha_s^{-1})$

(Berges, Schenke, SS, Venugopalan work in progress)

Thermalization process at weak coupling

System is still far from equilibrium at times $\tau_0 = 1/Q_s \ln^2(1/\alpha_s)$

Competition between interactions and the longitudinal expansion, may render the system *anisotropic on large time scales*

Longitudinal Expansion:

Red-shift of longitudinal momenta

- → Increase of anisotropy
- \rightarrow Dilution of the plasma

Interactions:

Momentum broadening

 \rightarrow Decrease of anisotropy

Soeren Schlichting | Brookhaven National Lab

Thermalization scenarios

 Different scenarios of how thermalization proceeds have been proposed in the literature

Baier et al. (BMSS), PLB 502 (2001) 51-58	>	Elastic + inelastic scattering
Boedeker (BD), JHEP 0510 (2005) 092		Plasma instabilities
Kurkela, Moore (KM), JHEP 1111 (2011) 120		Plasma instabilities

→ Difference arises from the treatment of soft (non-perturbative) physics of modes below the Debye scale.

Thermalization of the over-occupied QGP

Classical regime can be studied non-perturbatively within classical-statistical lattice simulations

 $\overline{\alpha_{c}}$

Study thermalization process for a variety of different initial conditions which describe the the over-occupied plasma at initial time $\tau_0 = 1/Q_s \ln^2(1/\alpha_s)$

Over-occupation Momentum space anisotropy $f(p_T, p_Z, \tau_0) = \frac{n_0}{\alpha_s} \Theta(Q_s - \sqrt{p_T^2 + \xi_0^2 p_Z^2})$

(Berges, Boguslavski, SS, Venugopalan PRD 89 074011 & arXiv:1311.3005)

Soeren Schlichting | Brookhaven National Lab

Lattice results – Bulk anisotropy

 Competition between interactions and longitudinal expansion leads to an *increase of the anisotropy*.

 Nevertheless the system remains significantly interacting throughout the entire evolution.

 The evolution becomes *insensitive* to the initial conditions and exhibits a universal scaling behavior at late times.

 ξ_{0} controls initial anisotropy

 n_0 controls initial over-occupancy

Universal Scaling

 The typical *longitudinal momentum* of hard excitations exhibits a *universal scaling* behavior

$$\Lambda_L^2/Q^2 \sim (Qt)^{-2\gamma}$$

$$2\gamma \quad = \quad 0.67 \pm 0.07$$

 The typical *transverse momentum* of hard excitations remains approximately *constant*

$$\Lambda_T^2/Q^2 \sim (Qt)^{-2\beta}$$

$$2\beta\simeq 0$$

Single particle spectra

Transverse spectrum quickly approaches 'thermal' like T/p_T shape, with decreasing amplitude Significant momentum broadening in the longitudinal direction observed.

Single particle spectra

Transverse spectrum quickly approaches 'thermal' like T/p_T shape, with decreasing amplitude However not strong enough to compensate completely for the red shift due to the longitudinal expansion.

Self-similarity

The system reaches a classical turbulent attractor, where the space-time evolution becomes self-similar, i.e. $f(p_T, p_Z, \tau) = (Q\tau)^{\alpha} f_S((Q\tau)^{\beta} p_T, (Q\tau)^{\gamma} p_Z)$ with scaling exponents $\alpha \approx -2/3$, $\beta \approx 0$, $\gamma \approx 1/3$

Kinetic interpretation

Consider the Boltzmann equation

$$[\partial_{\tau} - \frac{p_Z}{\tau} \partial_{p_Z}] f(p_T, p_Z, \tau) = C[f](p_T, p_Z, \tau)$$

with a self-similar evolution

36

$$f(p_T, p_Z, \tau) = (Q\tau)^{\alpha} f_S((Q\tau)^{\beta} p_T, (Q\tau)^{\gamma} p_Z)$$

 \rightarrow Non-thermal fixed point solution $(f \gg 1)$

$$[\alpha + \beta p_T \partial_{p_T} + (\gamma - 1) p_Z \partial_{p_Z}] f_S(p_T, p_Z) = Q^{-1} C[f_S](p_T, p_Z)$$

→ Scaling exponents determined by scaling relations for

- Small angle elastic scattering $(2\alpha 2\beta + \gamma = -1)$
- Energy conservation $(\alpha 3\beta \gamma = -1)$
- Particle number conservation $(\alpha 2\beta \gamma = -1)$
- $\rightarrow \alpha = -2/3, \beta = 0, \gamma = 1/3$ in excellent agreement with lattice data!

Confirms "bottom-up" thermalization scenario (Baier et al. PLB 502 (2001) 51-58)

The attractor solution

 Universal scaling behavior for different initial conditions

 Qualitative agreement with the first stage of the "bottom-up" thermalization scenario (Baier et al. PLB 502 (2001) 51-58)

> No sign that plasma instabilities play a significant role

Thermalization process

The expanding plasma exhibits a *self-similar evolution*. However, at the end of the classical regime the system is *still far from equilibrium*

Thermalization process

Classical statistical simulations no longer applicable in the quantum regime. However kinetic theory predictions provide route to thermal equilibrium

Conclusion & Outlook

 Classical-statistical lattice simulations can be used to study the nonequilibrium dynamics from first principles in weak coupling limit.

• Within the common range of validity lattice simulations agree well with kinetic theory (*c.f. talk by G. Moore*)

 Turbulent thermalization process appears as a generic feature of strongly correlated many-body systems across different energy scales ('big bang', 'little bang', 'ultracold bang')

Open questions:

- How is the weak-coupling attractor approached for themost realistic initial conditions?
- How exactly is isotropization/thermalization achieved in the quantum regime? (c.f. Kurkela, Lu arXiv:1405.6318)
- Can we reliably perform simulations directly at larger values of the coupling? (c.f. Epelbaum, Gelis PRL 111 (2013) 232301; BBSV arXiv:1312.5216)
- How to compare weak coupling and strong coupling results?